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Abstract: - This paper will demonstrate a new method to compute the Cross Ambiguity Function (CAF) using 
over-sampled Perfect Reconstruction Discrete Fourier Transform (DFT) filter Banks, and compare it to 
previous work with maximally decimated DFT Filter Banks [1].   As was shown in our previous work, the 
DFT Filter Bank can be used to efficiently filter the signal into sub-bands, compute the CAF in each sub-band, 
and then reconstruct the CAFs coherently.  This method has the advantage that Narrow Band (NB) 
interference can be removed prior to the reconstruction.  If the prototype filter satisfies specific conditions, the 
CAF can be reconstructed coherently, thereby improving the Time Difference of Arrival (TDOA) estimate 
while maintaining the Frequency Difference of Arrival (FDOA) estimate.   
 
Maximally decimated Filter Banks are most efficient from a computational viewpoint, but the choice of the 
prototype filter is limited to a very simple filter with poor (13 dB) side-lobes.  The over-sampled DFT filter 
bank is somewhat more computationally complex, but filters can be designed with better side-lobe properties, 
so that interference can be removed more efficiently.  The prototype filter for the over-sampled filter bank can 
be designed with lower side-lobes, which removes more of the interferer and less of the signal of interest. The 
design constraints for the prototype filter for the over-sampled filter bank are the same as that of the cosine 
modulated filter bank. 
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1   Introduction 
1.1 Use of CAF to estimate TDOA and FDOA 
The CAF is used in signal processing to estimate the 
TDOA and FDOA of a signal received at two 
spatially separated receivers.  The TDOA/FDOA 
estimates can then be used to estimate the location 
of the transmission source relative to the receivers.  
The output Signal to Noise Ratio (SNR) of the CAF 
improves proportionally to the Time-Bandwidth 
product of the signal.  The estimate of the TDOA 
and FDOA occurs at the CAF peak.  When the 
Time-Bandwidth product is much less than one, the 
following formula can be used to compute the CAF. 
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where r1(t) and r0(t) are the low pass equivalent 
signals.  Computation over all possible delay and 
frequency bins would be computationally intensive, 
but since in many applications the FDOA is much 
smaller than the sampling rate, the search range can 
be significantly reduced.  This can be accomplished 
by using a Low Pass Filter (LPF) and then down-
sampling.  A computationally efficient mechanism is 

a simple integrate and dump, which greatly 
simplifies the computational complexity, at the 
expense of a filter with poor stop-band 
characteristics.  Zero-padding the output of the 
down-sampler is used to get the proper doppler bin 
spacing.  Figure 1 shows a block diagram of a 
typical CAF processor. 
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Figure 1. Typical CAF processor 
 
The CAF is an efficient estimator since it is 
unbiased, and achieves the Cramer-Rao Lower 
Bound (CRLB).2   The standard deviation of the 
TDOA and FDOA estimates are proportional to the 
inverse of the square root of the BTγ product, where 
B is the signal bandwidth, T is the integration time, 
and γ is the input SNR. 
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Figure 2 shows an example of a CAF of a Minimum 
Shift Keying (MSK) signal at 0 dB input SNR with 
the TDOA and FDOA equal to zero.   
  

 
Figure 2. CAF of MSK signal at 0 dB input SNR 
 
1.2 Effect of NB Interference on CAF plane 
Computing the CAF of a Wide-Band (WB) signal in 
the presence of narrowband interference can 
significantly degrade the TDOA and FDOA 
estimates, because the main lobe of the narrowband 
signal is much wider than the WB signal, and can 
therefore obscure the true TDOA/FDOA of the WB 
signal.  Figure 3 is an example of two MSK signals 
of equal power, but different bandwidths. 
  

 
Figure 3. CAF with WB signal and NB interferer 
 
1.3 Performance Impact of Non-coherent 
Processing 
As suggested by Stein in [3], one way to work 
around this problem is to filter the signal into sub-
bands, eliminate the interference, and then 
recombine the results.  The problem with this is that 
recombining the results non-coherently degrades the 

variance of the TDOA estimate by a factor equal to 
the number of sub-bands.  Figure 4 shows the same 
case as above, but with the signal filtered into M=16 
sub-bands, the interference removed, and then added 
non-coherently.  From the figure, is clear that the 
TDOA estimate is significantly degraded. In fact, as 
predicted, the variance has degraded by a factor of 
M=16, and the standard deviation by a factor of 4.   
  

 
Figure 4. CAF after non-coherent reconstruction 
 
 
2 Problem Formulation 
2.1 CAF Processing using DFT Filter Bank 
Vaidyanathan3 proposed a method for performing 
convolution in sub-bands using Perfect 
Reconstruction Filter Banks (PRFBs) as in fig 5.  
Since convolution and correlation are 
mathematically similar (i.e. the convolution of r0[n] 
and r1*[-n] is equivalent to the correlation of r0[n] 
and r1[n]), his method can also be used for 
correlation.  His motivation was to show how his 
method could be used to obtain a coding gain over 
direct convolution by basing the sub-band 
quantization on signal power.  Sufficient conditions 
for perfect reconstruction are that the filters satisfy 
(3), where K is the decimation ratio, M is the 
number of sub-bands, and M/K is an integer.  For 
maximally decimated filter banks, K=M.  
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Figure 5. Implementation of sub-band convolver 
 
 
The architecture in figure 5 increases the processing 
burden by a factor of M, since there are now M 
correlations, each of length of the original input 
sequence.  The filtering and decimation/expansion 
steps can be greatly simplified by using the 
polyphase implementation.  The correlation step can 
also be greatly reduced by noticing that, after up-
sampling r1[n], (M-1)/M of the samples contains 
zeros, so many of the operations are unnecessary.  
This can be corrected by taking the output of r0[n] 
from the DFT filter bank, delaying the signal K 
times, and down-sampling by a factor of K.  We 
now have to calculate M*K correlations, but each is 
at the decimated rate.  The corresponding realization 
for the CAF processing is shown in Fig 6.   
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Figure 6. Efficient implementation of CAF with 
Perfect Reconstruction DFT Filter Bank 
 
 
3 Problem Solution 
3.1 Maximally Decimated DFT Filter Banks 
In the above example, if K=M, the filter bank is 
maximally decimated.  Maximally decimated DFT 
filter banks are very efficient.  One major issue, 
though, is that the only filters which satisfy the 
perfect reconstruction criteria of (3) are filters with 
exactly M non-zero coefficients where each of their 
coefficients are of equal magnitude, as the filter in 

(4).  In this case, the filters each have 13 dB side-
lobes.  This may not be acceptable if the NB 
interference is sufficiently strong.  The advantage is 
that the structure is simplified, since each polyphase 
component is equal to unity, and the polyphase filter 
step of Figure 6 can be omitted. 
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3.2 Over-sampled DFT Filter Bank 
A slightly less efficient, but more flexible structure 
is implemented with an over-sampled filter bank.  If 
the decimation ratio, K is equal to half the number 
of sub-bands, then the prototype filter can be 
designed with less constraints and better side-lobe 
performance. 
 
In general, nonlinear optimization techniques are 
required to find filters that meet the necessary 
criteria of (3).  Several methods for creating the 
prototype filters can be found in [4] and [5].  For 
prototype filters of length N=2M, a simple closed-
form expression for the zero-phase prototype filter 
as given in (5) can be used.6  Figure 7 compares the 
frequency response of the filters represented in (4) 
and (5) for M=16. 
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Figure 7.  Frequency Response of prototype filters 
with length N=M and N=2M 
 
 
3.3 Assessment of Computational Complexity 
Assume that Nt is the number of samples of the Low 
Pass Equivalent (LPE) signal, Nτ is the number of 
delay values of interest, and Nω is the number of 
doppler values of interest.  For each delay value of 
interest, we must multiply each sample of r0 with the 
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complex conjugate of r1 delayed by τ, filter, 
decimate, and perform an FFT.  The number of 
complex multiplications is then 
Nτ*(Nt+Nω*log2(Nω)) 
 
For the DFT filter bank architecture, we must first 
filter the signals into sub-bands.  Assume L equals 
the length of the prototype filter, M is the number of 
sub-bands, and K is the decimation ratio (either M 
or M/2).  For each input time sample, the first signal 
requires L/K+M/K*log2(M) complex multiplies, and 
the second signal requires L+M*log2(M), for a 
subtotal of (1+1/K)(L+M*log2(M))*Nt.  For the case 
when M=K, the polyphase filter step can be skipped, 
and the subtotal is (1+1/K)(M*log2(M))*Nt. 
 
We must now compute M*K CAFs, but each is at 
the decimated rate, so the subtotal is 
Nτ*(Nt*M/K+Nω*log2(Nω)).  For the case when 
M=K, this is identical to the conventional CAF, so 
the overhead for performing the DFT filter bank is 
the only additional cost.  The total is then 
(1+1/K)(M*log2(M))*Nt+Nt*Nτ*M/K.  When 
K=M/2, we have approximately doubled our 
computational complexity over that of the 
maximally decimated filter bank. 
 
Since the filter bank is done once, independent of 
the number of delay values of interest, the 
maximally decimated filter bank’s computational 
complexity approaches that of the conventional CAF 
as the number of delay values of interest increases.  
The over-sampled filter bank requires approximately 
twice the number of complex multiplications as the 
maximally decimated filter bank, independent of the 
number of delay values of interest.   
 
To further reduce computational complexity, we 
could compute one decimated CAF in each sub-band 
first to determine if a signal is present before 
attempting to process the entire sub-band CAF.  This 
would reduce the computational complexity by 1/K 
for each band that does not contain the signal. 
 
3.4 Simulation Results 
3.4.1 Comparison of Conventional Method to 
PRFB Method 
Using the proposed method, a CAF is produced for 
each sub-band.  Figure 8 shows the CAF produced 
by coherently adding these results.  Figure 9 shows a 
comparison of the two methods by differencing the 
results of the conventional CAF (Figure 2) with the 
PRFB method (Figure 8).  At zero doppler, the 
results are identical to within numerical round-off 
error.  A small error occurs for non-zero doppler, 

since the doppler correction is essentially applied 
after the filter bank, rather than prior to the filter 
bank.  This error is small in comparison to the 
distortion from the low pass filter, and has negligible 
impact on the TDOA and FDOA estimates. 
 

Figure 8. CAF reconstructed from DFT filter bank 
 
  

 
Figure 9.  Difference between CAFs computed from 
conventional method and using filter bank  
 
3.4.2 Comparison of Over-sampled to Maximally 
Decimated Filter Banks. 
Figures 10 and 11 compare the CAFs computed 
using the maximally decimated filter bank, and the 
over sampled DFT filter bank after removal of the 
bands with most of the NB energy. Figure 10 shows 
that a significant amount of the NB interference was 
not removed with the maximally decimated filter 
bank, due to the filter’s side-lobe performance.  
Figure 11 shows the same case, with a prototype 
filter of length 2M.  A significant improvement in 
removing the NB interference can be seen. 
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Figure 10. CAF after NB interference removal with 
prototype of length N=M 
  

 
Figure 11 CAF after NB interference removal with 
prototype of length N=2M 
 
 
4.  Conclusion 
An algorithm for computing the CAF with over-
sampled DFT Filter Banks was developed, and 
compared to the conventional CAF processing, and 
to the maximally decimated CAF previously 
developed.  The performance advantage over 
conventional CAF processing for removing NB 
interference was quantified and demonstrated.  
Maximally decimated PRFB DFT filter banks can be 
used, but poor side-lobe performance results.  Side-
lobe performance of over sampled DFT filter banks 
was significantly better than the maximally 
decimated DFT filter banks, and hence, more of the 
NB interferer’s energy can be removed. 
 
The same prototype filters can be used for the over-
sampled filter bank as is used for Cosine Modulated 
PRFB prototype filters.  It increased the 
computational complexity over standard CAF 
processing by approximately two-fold.  In practice, 
however, this could be reduced by selectively 
processing each of the M*K decimated CAFs.  The 
architecture also lends itself to be more easily 
computed in a parallel fashion. 
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