
GW4: An FPGA-driven Image Segmentation Algorithm

KOFI APPIAH† ANDREW HUNTER† TINO KLUGE‡
Department of Computing and Informatics†

University of Lincoln
Lincoln, LN6 7TS

UK
OCIAM, Mathematical Institute‡

University of Oxford
Oxford, OX1 3LB

UK
 http://facs.lincoln.ac.uk/Research/Vision

Abstract: - We describe “GW4,” an efficient video segmentation algorithm designed for FPGA implementation. The algorithm
detects moving foreground objects against a multimodal background; it is motivated by two well-known adaptive background
differencing algorithms, Grimson's algorithm and W4. GW4 is designed specifically for implementation on reconfigurable
FPGA hardware, avoiding the use of floating point numbers and transcendental operations, and operates at real-time frame rates
on 640x480 video streams. We present experimental results indicating processing speeds, and superior segmentation
performance to Grimson's algorithm.

Key-Words: - FPGA, Multimodal background, Real-time processing, Reconfigurable hardware

1 Introduction
Video segmentation algorithms process large amount of data,
and are consequently processor and memory hungry [11, 15].
Typically they can be broke down into three major stages [3]:
early processing, implemented by local pixel-level functions;
intermediate processing, which includes segmentation,
motion estimation and feature extraction; late processing,
including interpretation and using statistical and artificial
intelligence algorithms. Typically algorithmic sophistication
is concentrated in the later stages, but processing demands
are dominated by the early stages. Limitations on processing
power force us to use extremely simple algorithms for early
processing, limiting performance.
 This article demonstrates how real-time early digital
vision can be accomplished with the use of data and
instruction parallelism. Our approach spans the early and
intermediate levels described above. Most image
segmentation algorithms are computationally expensive and
require significant storage space; however, they are also
often inherently parallelisable. Field Programmable Gate
Array (FPGA) systems are ideal for the implementation of
such algorithms, providing that algorithms are designed with
the limitations of FPGA in mind (in particular, avoidance of
floating point arithmetic is recommended). Modern FPGAs
provide a very appealing platform for rapid, low-cost
development of specialized algorithms, due to their
reconfigurable nature, as opposed to older Application
Specific Integrated Circuit (ASIC) designs, which have a
very long and error-prone design cycle [1].
 This article presents part of a vision system for monitoring
suspicious human activities in a risk prone environment.

Today's technology makes it possible for a single human
operator to potentially monitor multiple cameras relaying
images from sites like large industrial parks and residential
areas separated by great distances. The increase in numbers
of these cameras makes it very hard for the operator to
successfully identify behaviour of interest, leading to a
research interest in automated monitoring [5]. A number of
algorithms for segmentation of moving objects have already
been developed, and successfully implemented in software,
at least for individual video streams at low frame rates and
resolutions. Very few of these algorithms have been
incorporated into today's video surveillance systems, partly
due to computational complexity, cost and lack of real-time
capability. This makes the development of such algorithms
on specialized hardware timely.
 Multimodal background differencing segmentation
algorithms are practical, reasonably fast and can handle some
typical problems, such as camera jitter, moving foliage, water
and lighting changes. They require a significant amount of
floating point processing, and thus when implemented in
software running on general-purpose computers are limited
to low frame rates and small frame sizes. They typically
absorb 80% to 90% of the entire processing time, which
makes them unattractive for real-time purposes.
 We present here a new multimodal background
differencing segmentation algorithm, which is very simple,
robust and can easily be implemented in computer hardware
with maximum efficiency in terms of speed and hardware
area. Our algorithm is a hybrid of two robust and well-known
image segmentation algorithms (Grimson's, and W4), which
illustrates how simple algorithms can be designed for
efficient FPGA implementation.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

2 Previous Work
The first stage in processing for many video applications is
the segmentation of (usually) moving objects. Where the
camera is stationary, a natural approach is to model the
background and detect foreground objects by differencing the
current frame with the background. A wide and increasing
variety of techniques for background modelling have been
described; a good comparison is given by Gutchess et al [7].
 The most popular method is unimodal background
modelling, in which a single value is used to represent a
pixel, which has been widely used due to its relatively low
computational cost and memory requirements [8, 13]. This
technique gives poor results when used in modelling non-
stationary background scenarios like waving trees, rain and
snow. A more powerful alternative is to use a multimodal
background representation, the most common variant of
which is a mixture of Gaussians [6, 12]. However, the
computational demands make such techniques unpopular for
real-time purposes; there are also disadvantages in
multimodal techniques [6, 12, 13] including the blending
effect, where a pixel attains an intensity value which has
never occurred at that position (a side-effect of the smoothing
used in these techniques). Other techniques rely heavily on
the assumption that the most frequent intensity value during
the training period represents the background. This
assumption may well be false, causing the output to have a
large error level.

2.1 Grimson’s Algorithm
Grimson et al [12] introduced a multimodal approach,
modelling the values of each pixel as a mixture of Gaussians.
The background is modelled with the most persistent
intensity values. The algorithm has two variants, colour and
gray-scale: in this paper, we concentrate on the gray-scale
version. The probability of observing the current pixel value
is given as:

∑
=

∑=.
k

i
titittit

1
,,,),,()(∝.... (1)

Where ∝i,t, Σi,t and . i,t are the respective mean, variance and
weight parameters of the ith Gaussian component of pixel . at
time t, and . is a Gaussian probability density function

ti

tit

e
ti

titit
,

2
,

2
)(

,
,, 2

1),,(∑

−

∑
=∑

∝.

π
∝.. (2)

A new pixel value is generally consistent with one of the
major components of the mixture model and used to update
the model. For every new pixel value, . t, a check is
conducted to match it to one of the K Gaussian distributions.
A match is found when . t is within 2.5 standard deviations of
a distribution. If none of the K distributions match . t, the

least weighed distribution is replaced with a new distribution
having . t as mean, high variance and very low weight. The
weights are updated as follows:

)(1,,1,, −− −+= titititi m .α.. (3)
where α is the learning rate and

=
otherwise 0

match a is thereif 1
,tim (4)

α
1 defines the time constant which determines the speed at

which the distribution's parameters change. Only the matched
distribution will have its mean and variance updated, using
the equations:

)(1 tttt ∝..∝∝ −−= − (5)

)(*)()1(1 tt
T

tttt ∝.∝... −−+∑−=∑ − (6)
),|(ttt σ∝.α.. = (7)

The first B distributions (ordered by k.) are used as a model
of the background, where

)min(arg
1
∑

=

>=
b

k
kb TB . (8)

The threshold T is a measure of the minimum portion of the
data that should be accounted for by the background.

2.1 The W4 Algorithm
Haritaoglu et al [8] introduced the W4 algorithm, which uses
a single distribution with three integer values to model the
background. Their background model requires manual
initialisation; the three parameters (Maximum, Minimum and
maximum inter-frame difference values) are acquired over a
period of time (a few seconds) when there is no activity in
the scene.
 After the initialisation period, each pixel is classified as
either a background or a foreground pixel using the
background model. Given the maximum (M), minimum (m)
and the largest inter-frame absolute difference (D) of the
images collected over the initialisation period, a new pixel x
from an image sequence It is a foreground pixel if:

)(|)()(| xDxIxm t >− (9)
or

)(|)()(| xDxIxM t >− (10)

 The W4 algorithm is attractive in maintaining all values
without floating point numbers, but its unimodal and cannot

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

model multi-modal background. If the background model is
not updated over time to incorporate newly introduced
background objects there will be accumulated errors. In
contrast, Grimson's algorithm [12] is robust to outdoor
environments where lighting intensity can suddenly change
and handles multi-modal backgrounds without manual
initialisation. Unfortunately, the use of floating-point
numbers in all its update parameters makes it
computationally expensive, and unsuitable for hardware
implementation [2].

3 The GW4 Algorithm
We present here a novel hybrid image segmentation
algorithm, GW4, that combines the attractive features of
Grimson's algorithm and W4 [8, 12], with appropriate
modifications to improve segmentation of the foreground
image, and to allow an efficient implementation on a
reconfigurable hardware platform, Field Programmable Gate
Array (FPGA).
 Following Grimson [12], we maintain a number of
clusters, each with weight k. , where Kk ==1 , for K
clusters. Rather than modelling a Gaussian distribution, we
maintain a model with a central value, kc . We use an implied
range, [15,15 +− kk cc], rather than explicitly modelling a
range as in W4 [8]. The choice of 30 as the width of the
clusters was based on the maximum inter-frame absolute
difference obtained for some randomly selected test data
(outdoor and indoor scenes) using the algorithm presented in
[8]. The weights of all the clusters are initialised to 10, and
the total weight remains constant.
 A pixel),(jiI=. from an image I is said to match a
cluster, k, if 15−= kc. and 15+= kc. . The highest
weight matching cluster is updated, if and only if its weight
does not exceed 50% of the total weight of all K clusters (i.e.

15<k. , given K=3). The update is as follows:

−
−+

=
−

−

otherwise 1
cluster winningfor the)1(

1,

1,
,

tk

tk
ti

K
.
.

.

 (11)
 If no matching cluster is found, then the least weighted
cluster's central value, kc , is replaced with X; its weight stays
the same. The way we construct and maintain clusters make
our approach free from the blending effect. This is because
for every cluster, the central value kc represents an intensity
value which has occurred at that pixel location.
 The K distributions are ordered by weight, with the most
likely background distribution on top. Similar to [12], the
first B clusters are chosen as the background model, where

)min(arg
1
∑

=

>=
b

k
kb TB . (12)

The threshold T is a measure of the minimum portion of the
data that should be accounted for by the background. The
choice of T is very important, as a small T usually models a
unimodal background while a higher T models a multi-modal
background.
 We classify a pixel as foreground based on the following
two conditions:

1. If the intensity value of the pixel matches none
of the K clusters.

2. If the intensity value is assigned to the same
cluster for two successive frames, and the
intensity values X(t) and X(t-1) are both outside
the 40% mid-range.

 The second condition is needed to enable us to detect
targets with low contrast against the background, while
maintaining the concept of multi-modal backgrounds. A
typical example is a moving object with gray-scale intensity
close to that of the background, which would be classified as
background in [12]. This requires the maintenance of an extra
frame, with values representing the recently processed
background intensities, but the memory requirement is not
excessive due to the use of integer values in our overall
computations.
 The resulting foreground image is cleaned up by
morphological opening using a 3 x 3 structuring element; we
use the same procedure with Grimson's algorithm.

4 Hardware Implementation
Our segmentation algorithm, described in section 3, has the
advantage of being computationally simple, making it
suitable for hardware implementation. The mixture of
Gaussian models maintained for each pixel in [12] poses a
large computational and storage problem. Jiang et al [9]
report an implementation on an SGI 02 with a R10000
processor, which can process only 11-13 frames per second
with a frame size of 160 x 120. The pixel-level processing
used in our GW4 algorithm makes it a good candidate for
parallel and pipeline processing.
 Efficient hardware implementation of any Digital Signal
Processing (DSP) algorithm can be achieved in two distinct
and important domains: speed and hardware area. Many DSP
implementations tend to focus on one of these and ignore the
other, either partially or totally. Typical general purpose-
processors run at a speed of 2 to 3 GHz as compared to high-
end reconfigurable computers like FPGA, which can run at a
maximum speed of 200 to 500 MHz but can support parallel
execution. DSP processors perform better than FPGAs when
the algorithm relies heavily on floating-point numbers, since
the hardware area consumed by floating point accumulators
limits the parallel nature of FPGAs [2].
 Real-time image processing on FPGA has three major
constraints [10]: timing, bandwidth and resource constraints.
These constraints have been dealt with in our implementation
with the use of fixed-point numbers from the onset of the

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

design. The reduced hardware area makes it possible to meet
the timing constraints and hence real-time processing needs.
All morphological operations are conducted on BlockRAM,
as a means of reducing the bandwidth constraints. In addition
to the use of fixed-point numbers, our implementation
minimizes resource requirements. As compared to [12],
where the weight, variance and mean of each pixel is
maintained for all K distributions, our approach only
maintains the central value and weight for each pixel, thus
reducing the storage requirement by a factor of 3K for each
pixel. Other implementations tend to convert floating-point
based algorithms into fixed-point [1] as a means of making
hardware implementation feasible, but without redesign of
the algorithm. The end result is accumulated error. In
contrast, our algorithm is designed “from the ground up” to
use fixed point arithmetic.
 Our design is a fully parallel and pipelined architecture
based on FPGA, which reads, processes and store a pixel
every clock cycle.
There are six distinct blocks running in parallel with each
other. These are:
Input Block; This block reads pixels from the camera in 24-
bit RGB format at PAL frame rate (25 fps) for processing. A
special mechanism had to be introduced to deal with the high
disparity in frequency of the design and the camera. This
block iterates several times until the expected pixel value is
transmitted from the camera. Thus in effect this block runs at
a maximum frequency of 25Hz.
Pixel Processing Block; This is a 6 stage pipelined block.
The first stage identifies the pixel read by the input block.
The memory address corresponding to the storage location of
its background parameters is computed. The stored
parameters are then retrieved from memory in the second
pipelined stage. The third pipeline stage involves the
conversion of the 24-bit RGB pixel value from the camera
into 8-bit gray-scale intensity. To reduce computational cost,
the well-known Craig's formula for converting RGB to Gray-
scale,

BGRY *11.0*59.0*3.0 ++= (13)
has been modified as follows

BGRY *25.0*50.0*25.0 ++= (14)
This can be accomplished in a single clock-cycle with two-
hardware adders and two shift operations. The fourth pipeline
stage is used for pixel classification and the last two stages
are used for updating the parameters of that pixel stored in
external memory. The nature of the external RAM calls for
two blocks of RAM to be used in parallel. Thus while the
background data is been read from one block the updated
data is written to the other. These blocks are then
interchanged after processing a full frame.
Erosion Block; This block is use for morphological erosion.
The binary foreground extracted in the Pixel Processing
block is stored on a dual-port BlockRAM for erosion.
Dilation Block; This block is use for morphological dilation.
The binary foreground obtained after erosion in the erosion

block is further dilated and stored in another dual-port
BlockRAM for the external VGA.
Pixel Output Block; This block makes data available to the
VGA at its refresh rate. This is the foreground obtained after
dilation.
Memory Control Block; This controls the RAM block for
reading and writing. Since the external RAM is not dual-port
and we need to read from and write to RAM every clock
cycle, we maintain two RAM blocks, which are swapped
after processing each frame.
 The development of these blocks has been accomplished
using Celoxica's DK3 design suite and Xilinx ISE 7.1i place
and route (PAR) tool. The hardware platform is composed of
a Xilinx Virtex II XC2V6000 FPGA, with equivalent of 6
million logic gates and 2,592KB of dual-port selectRAM
[14]. This FPGA has been packaged with 4 banks (36-bit
addressable) of external ZBT SRAM totalling 32Mbytes on
the RC300 [4]. Table 1 is a summary of the resource
utilization of the hardware implementation, using device
xc2v6000, and package ff1152 and speed grade 6.

Resource Total Used Per.
Flip Flops 1,479 out of 67,584 2%
4 input LUTs 3,200 out of 67,584 4%
Block RAMs 57 out of 144 39%
bonded IOBs 335 out of 824 40%
GCLKs 4 out of 16 25%
DCMs 1 out of 12 8%
Occupied Slices 2,022 out of 33,792 5%

Table 1: Resource utilization on the implementation

5 Experimental Results
To evaluate the performance of our approach (GW4) against
Grimson's algorithm [12] we use four video sequences, two
each from outdoor and indoor scenes. The experiments were
conducted using K=3 for both algorithms. We have
constructed reference standard segmentations on these
sequences by using manually marked frames; results of the
algorithms are compared to this reference standard. Fig. 1
shows some sample frames of the sequences and their
corresponding manually marked frames.
 We report pixel-wise errors against the reference standard,
in terms of true positive, true negative, false negative and
false positive pixels. Table 2 shows the sensitivity (SENS.),
specificity (SPEC.) and the positive predictive values (PPV)
of Grimson and GW4. Each of the image sequences has
thirty-five frames, but the first three frames are ignored in
our evaluation as they are used by the algorithms to calibrate
their parameters.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

Fig. 1: Sample images with manually mark-out frames.

 Grimson (%) Scene
SENS. SPEC. PPV

Indoor1 72.14 99.82 97.92
Outdoor1 70.35 99.96 98.93
Indoor2 83.76 92.69 53.57
Outdoor2 66.13 99.81 98.55
 GW4 (%)
Indoor1 75.77 99.73 97.08
Outdoor1 74.06 99.95 98.84
Indoor2 86.39 90.38 47.46
Outdoor2 70.47 99.76 98.31

Table 2: Sensitivity, Specificity and Positive Predictive
Values (PPV) of Grimson and GW4.

The evaluation parameters used are defined as follows:

FNTP
TPSENSySensitivit
+

=.)(

FPTN
TNSPECySpecificit
+

=.)(

FPTP
TPPPV
+

=

Where TP is True Positive, FN is False Negative, TN is True
Negative and FP is False Positive.
Table 2 clearly indicates the superiority of our algorithm in
detecting foreground pixels (higher sensitivity than Grimson)
and hence suitable for our target application. The algorithm
does sometimes produce more false positive errors; this is a
side-effect of the sensitivity of the model in detecting moving
targets with low contrast against the background, which may
lead to detection of the shadows of moving targets which
Grimson's algorithm would ignore. Nonetheless, overall the
error rate is lower than Grimson's [12].
 To show that this result is statistically significant we
combine the results of all four sequences, and consider the
total number of error pixels (both false negative and false
positive). A chi-square test is then conducted to test the null-

hypothesis that both algorithms have equal error rates; see
table 3. The chi-square value is defined by

∑ −=
ected

ectedobserved
exp

)exp(2
2. (15)

 False pos False neg overall
Grimson better 99 0 24
GW4 better 29 128 107
. 2 38.3 128 52.6

Table 3: Chi-square significance test

As it can be seen, the . 2 value exceeds the 99% significance
threshold of 6.63 for false positives, false negatives and
overall errors, indicating a statistically significant
performance improvement in GW4. Fig. 2 shows some
sample output images from the two algorithms.

Fig. 2: Sample output of the two algorithms.
Top: Grimson's, Bottom: GW4

It is worth noting that Grimson's algorithm [12] although
more sophisticated than ours, failed to perform better with
the test data presented here, for K=3. This is due to the
additional condition (condition 2) we use in extracting
foreground pixels, thereby resolving the foreground aperture
problem. From fig. 2, it becomes clear where Grimson's
algorithm fails to perform better than GW4 due to foreground
aperture. Again the low specificity of GW4 as compared to
Grimson's shows GW4's sensitivity in detecting targets with
low contrast to the background as well as reflections from
moving objects. Clearly any form of error is undesirable.
However, in our target application FP errors of the type
reported are more acceptable than FN errors, as subsystem
tracking stages can discard distracters such as shadows.
 Timing analysis generated by the Place and Route (PAR)
tool shows that the design can run at a maximum speed of
39.72ns, meaning every stage in the design can be clocked at
25.17MHz. Hence for a standard frame size of 640x480, the
design can process at least 80fps (ignoring access to external
RAM), when the pipeline is full. Comparing to real-time

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

application requirement of 30fps, the implemented design, as
it stands, meets the real-timing requirement. The efficient
resource utilization of our design makes it possible to add
new image processing functions, like object tracking and
action interpretation to the system.

6 Conclusion
In this paper we have shown a real-time adaptive background
scene modelling and maintenance technique suitable for
tracking people in both indoor and outdoor environments,
implemented as a System-on-Chip (SoC) using FPGA
technology.
 Instead of using a complicated already existing
background subtraction technique, our algorithm is a hybrid
version of the W4 [8] and Grimson's [12] techniques, with
some modification to enhance the sensitivity in detecting
targets with low contrast against the background. The system
learns and models the background scene over time to detect
foreground objects, in the presence of multimodal
background objects like tree branches. The algorithm has
been implemented in Handel-C and runs on Xilinx Virtex II
FPGA. Currently, for an image size of 640x480, the system
operates at real-time (30fps). This performance level cannot
be easily reached without parallel processing.

References:
[1] AccelChip, Comparison of Methods for Implementing

DSP Algorithms, SoC Central, 2003
[2] Elham Ashari and Richard Hornsey, FPGA

implementation of real-time adaptive image thresholding,
SPIE-International Society for Optical Engineering, Dec.
2004.

[3] J. Batlle, J. Martin, P. Ridao and J. Amat, A New
FPGA/DSP-Based Parallel Architecture for Real-Time
Image Processing, Elsevier Science Ltd., 2002

[4] Celoxica, Video and Imaging solution,
http://www.celoxica.com, 2004.

[5] M. Ekinci and E. Gedikli, Real Time Background model
initialization and maintenance for video surveillance, IJCI
Proceedings of Intl. XII.Turkish Symposium on Artificial
Intelligence and Neural Networks, 2003

[6] Ahmed Elgammel, David Harwood, and Larry Davis,
Non-parametric Model for Background Subtraction,
Proceedings of the 6th European Conference on Computer
Vision, Dublin, Ireland, 2000

[7] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons and
K. Jain, A Background Model Initialization Algorithm for
video Surveillance, IEEE, International Conference on
Computer Vision, 2001.

[8] I. Haritaoglu, D. Harwood and L. Davis, W4: Who?
When? Where? What? A real time system for detecting
and tracking people, IEEE Third International
Conference on Automatic Face and Gesture, 1998

[9] Hongtu Jiang and Viktor Owall, Controller Synthesis in
Hardware Accelerator Design for Video Segmentation,
SSoCC, 2004.

[10] K. Johnston, D. Gribbon and D. Bailey, Implementing
mage Processing Algorithms on FPGAs, Proceedings of
the Eleventh Electronics New Zealand Conference,
Palmerston North, Nov. 2004.

[11]Craig Sanderson and Dave Shad, FPGAs Supplant
Processors and ASICs in Advanced Imaging
Applications, FPGA and Programmable Logic Journal,
2005.

[12] C. Stauffer and W. E. L. Grimson, Adaptive background
mixture models for real-time tracking, IEEE Conference
on Computer Vision and Pattern Recognition, 1999.

[13] C. Wren, A. Azarbayejani, T. Darrel and A. Pentland,
Pfinder: Real-time tracking of human body, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 1997.

[14]Inc. Xilinx, Virtex II Platform Field Programmable Gate
Arrays Data sheet,
http://direct.xilinx.com/bvdocs/publications, March 2005.

[15]Pavel Zemeik, Hardware Acceleration of Graphics and
Imaging Algorithms using FPGAs. Proceedings of Spring
Conference on Computer Graphics, 2002.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp282-287)

