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Abstract: - We describe “GW4,” an efficient video segmentation algorithm designed for FPGA implementation. The algorithm 
detects moving foreground objects against a multimodal background; it is motivated by two well-known adaptive background 
differencing algorithms, Grimson's algorithm and W4. GW4 is designed specifically for implementation on reconfigurable 
FPGA hardware, avoiding the use of floating point numbers and transcendental operations, and operates at real-time frame rates 
on 640x480 video streams. We present experimental results indicating processing speeds, and superior segmentation 
performance to Grimson's algorithm. 
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1   Introduction 
Video segmentation algorithms process large amount of data, 
and are consequently processor and memory hungry [11, 15]. 
Typically they can be broke down into three major stages [3]: 
early processing, implemented by local pixel-level functions; 
intermediate processing, which includes segmentation, 
motion estimation and feature extraction; late processing, 
including interpretation and using statistical and artificial 
intelligence algorithms. Typically algorithmic sophistication 
is concentrated in the later stages, but processing demands 
are dominated by the early stages. Limitations on processing 
power force us to use extremely simple algorithms for early 
processing, limiting performance.  
     This article demonstrates how real-time early digital 
vision can be accomplished with the use of data and 
instruction parallelism. Our approach spans the early and 
intermediate levels described above. Most image 
segmentation algorithms are computationally expensive and 
require significant storage space; however, they are also 
often inherently parallelisable. Field Programmable Gate 
Array (FPGA) systems are ideal for the implementation of 
such algorithms, providing that algorithms are designed with 
the limitations of FPGA in mind (in particular, avoidance of 
floating point arithmetic is recommended). Modern FPGAs 
provide a very appealing platform for rapid, low-cost 
development of specialized algorithms, due to their 
reconfigurable nature, as opposed to older Application 
Specific Integrated Circuit (ASIC) designs, which have a 
very long and error-prone design cycle [1]. 
     This article presents part of a vision system for monitoring 
suspicious human activities in a risk prone environment. 

Today's technology makes it possible for a single human 
operator to potentially monitor multiple cameras relaying 
images from sites like large industrial parks and residential 
areas separated by great distances. The increase in numbers 
of these cameras makes it very hard for the operator to 
successfully identify behaviour of interest, leading to a 
research interest in automated monitoring [5]. A number of 
algorithms for segmentation of moving objects have already 
been developed, and successfully implemented in software, 
at least for individual video streams at low frame rates and 
resolutions. Very few of these algorithms have been 
incorporated into today's video surveillance systems, partly 
due to computational complexity, cost and lack of real-time 
capability. This makes the development of such algorithms 
on specialized hardware timely. 
     Multimodal background differencing segmentation 
algorithms are practical, reasonably fast and can handle some 
typical problems, such as camera jitter, moving foliage, water 
and lighting changes. They require a significant amount of 
floating point processing, and thus when implemented in 
software running on general-purpose computers are limited 
to low frame rates and small frame sizes. They typically 
absorb 80% to 90% of the entire processing time, which 
makes them unattractive for real-time purposes. 
     We present here a new multimodal background 
differencing segmentation algorithm, which is very simple, 
robust and can easily be implemented in computer hardware 
with maximum efficiency in terms of speed and hardware 
area. Our algorithm is a hybrid of two robust and well-known 
image segmentation algorithms (Grimson's, and W4), which 
illustrates how simple algorithms can be designed for 
efficient FPGA implementation. 
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2   Previous Work 
The first stage in processing for many video applications is 
the segmentation of (usually) moving objects. Where the 
camera is stationary, a natural approach is to model the 
background and detect foreground objects by differencing the 
current frame with the background. A wide and increasing 
variety of techniques for background modelling have been 
described; a good comparison is given by Gutchess et al [7]. 
     The most popular method is unimodal background 
modelling, in which a single value is used to represent a 
pixel, which has been widely used due to its relatively low 
computational cost and memory requirements [8, 13]. This 
technique gives poor results when used in modelling non-
stationary background scenarios like waving trees, rain and 
snow. A more powerful alternative is to use a multimodal 
background representation, the most common variant of 
which is a mixture of Gaussians [6, 12]. However, the 
computational demands make such techniques unpopular for 
real-time purposes; there are also disadvantages in 
multimodal techniques [6, 12, 13] including the blending 
effect, where a pixel attains an intensity value which has 
never occurred at that position (a side-effect of the smoothing 
used in these techniques). Other techniques rely heavily on 
the assumption that the most frequent intensity value during 
the training period represents the background. This 
assumption may well be false, causing the output to have a 
large error level. 
 
 
2.1 Grimson’s Algorithm 
Grimson et al [12] introduced a multimodal approach, 
modelling the values of each pixel as a mixture of Gaussians. 
The background is modelled with the most persistent 
intensity values. The algorithm has two variants, colour and 
gray-scale: in this paper, we concentrate on the gray-scale 
version. The probability of observing the current pixel value 
is given as: 
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A new pixel value is generally consistent with one of the 
major components of the mixture model and used to update 
the model. For every new pixel value, . t, a check is 
conducted to match it to one of the K Gaussian distributions. 
A match is found when . t is within 2.5 standard deviations of 
a distribution. If none of the K distributions match . t, the 

least weighed distribution is replaced with a new distribution 
having . t as mean, high variance and very low weight. The 
weights are updated as follows: 
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α
1  defines the time constant which determines the speed at 

which the distribution's parameters change. Only the matched 
distribution will have its mean and variance updated, using 
the equations: 
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The first B distributions (ordered by k. ) are used as a model 
of the background, where 
 

)min(arg
1
∑

=

>=
b

k
kb TB .    (8) 

 
The threshold T is a measure of the minimum portion of the 
data that should be accounted for by the background. 
 
 
2.1 The W4 Algorithm 
Haritaoglu et al [8] introduced the W4 algorithm, which uses 
a single distribution with three integer values to model the 
background. Their background model requires manual 
initialisation; the three parameters (Maximum, Minimum and 
maximum inter-frame difference values) are acquired over a 
period of time (a few seconds) when there is no activity in 
the scene. 
     After the initialisation period, each pixel is classified as 
either a background or a foreground pixel using the 
background model. Given the maximum (M), minimum (m) 
and the largest inter-frame absolute difference (D) of the 
images collected over the initialisation period, a new pixel x 
from an image sequence It is a foreground pixel if: 
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or 
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     The W4 algorithm is attractive in maintaining all values 
without floating point numbers, but its unimodal and cannot 
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model multi-modal background. If the background model is 
not updated over time to incorporate newly introduced 
background objects there will be accumulated errors. In 
contrast, Grimson's algorithm [12] is robust to outdoor 
environments where lighting intensity can suddenly change 
and handles multi-modal backgrounds without manual 
initialisation. Unfortunately, the use of floating-point 
numbers in all its update parameters makes it 
computationally expensive, and unsuitable for hardware 
implementation [2]. 
 
 
3   The GW4 Algorithm 
We present here a novel hybrid image segmentation 
algorithm, GW4, that combines the attractive features of 
Grimson's algorithm and W4 [8, 12], with appropriate 
modifications to improve segmentation of the foreground 
image, and to allow an efficient implementation on a 
reconfigurable hardware platform, Field Programmable Gate 
Array (FPGA). 
     Following Grimson [12], we maintain a number of 
clusters, each with weight k. , where Kk ==1 , for K 
clusters. Rather than modelling a Gaussian distribution, we 
maintain a model with a central value, kc . We use an implied 
range, [ 15,15 +− kk cc ], rather than explicitly modelling a 
range as in W4 [8]. The choice of 30 as the width of the 
clusters was based on the maximum inter-frame absolute 
difference obtained for some randomly selected test data 
(outdoor and indoor scenes) using the algorithm presented in 
[8]. The weights of all the clusters are initialised to 10, and 
the total weight remains constant. 
     A pixel ),( jiI=.  from an image I is said to match a 
cluster, k, if 15−= kc.  and 15+= kc. . The highest 
weight matching cluster is updated, if and only if its weight 
does not exceed 50% of the total weight of all K clusters (i.e. 

15<k. , given K=3). The update is as follows: 





−
−+

=
−

−

otherwise           1
cluster  winningfor the  )1(

1,

1,
,

tk

tk
ti

K
.
.

.  

         (11) 
     If no matching cluster is found, then the least weighted 
cluster's central value, kc , is replaced with X; its weight stays 
the same. The way we construct and maintain clusters make 
our approach free from the blending effect. This is because 
for every cluster, the central value kc  represents an intensity 
value which has occurred at that pixel location. 
     The K distributions are ordered by weight, with the most 
likely background distribution on top. Similar to [12], the 
first B clusters are chosen as the background model, where 
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The threshold T is a measure of the minimum portion of the 
data that should be accounted for by the background. The 
choice of T is very important, as a small T usually models a 
unimodal background while a higher T models a multi-modal 
background. 
     We classify a pixel as foreground based on the following 
two conditions: 

1. If the intensity value of the pixel matches none 
of the K clusters.  

2. If the intensity value is assigned to the same 
cluster for two successive frames, and the 
intensity values X(t) and X(t-1) are both outside 
the 40% mid-range. 

     The second condition is needed to enable us to detect 
targets with low contrast against the background, while 
maintaining the concept of multi-modal backgrounds. A 
typical example is a moving object with gray-scale intensity 
close to that of the background, which would be classified as 
background in [12]. This requires the maintenance of an extra 
frame, with values representing the recently processed 
background intensities, but the memory requirement is not 
excessive due to the use of integer values in our overall 
computations. 
     The resulting foreground image is cleaned up by 
morphological opening using a 3 x 3 structuring element; we 
use the same procedure with Grimson's algorithm. 
 
 
4   Hardware Implementation 
Our segmentation algorithm, described in section 3, has the 
advantage of being computationally simple, making it 
suitable for hardware implementation. The mixture of 
Gaussian models maintained for each pixel in [12] poses a 
large computational and storage problem. Jiang et al [9] 
report an implementation on an SGI 02 with a R10000 
processor, which can process only 11-13 frames per second 
with a frame size of 160 x 120. The pixel-level processing 
used in our GW4 algorithm makes it a good candidate for 
parallel and pipeline processing. 
     Efficient hardware implementation of any Digital Signal 
Processing (DSP) algorithm can be achieved in two distinct 
and important domains: speed and hardware area. Many DSP 
implementations tend to focus on one of these and ignore the 
other, either partially or totally. Typical general purpose-
processors run at a speed of 2 to 3 GHz as compared to high-
end reconfigurable computers like FPGA, which can run at a 
maximum speed of 200 to 500 MHz but can support parallel 
execution. DSP processors perform better than FPGAs when 
the algorithm relies heavily on floating-point numbers, since 
the hardware area consumed by floating point accumulators 
limits the parallel nature of FPGAs [2]. 
     Real-time image processing on FPGA has three major 
constraints [10]: timing, bandwidth and resource constraints. 
These constraints have been dealt with in our implementation 
with the use of fixed-point numbers from the onset of the 
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design. The reduced hardware area makes it possible to meet 
the timing constraints and hence real-time processing needs. 
All morphological operations are conducted on BlockRAM, 
as a means of reducing the bandwidth constraints. In addition 
to the use of fixed-point numbers, our implementation 
minimizes resource requirements. As compared to [12], 
where the weight, variance and mean of each pixel is 
maintained for all K distributions, our approach only 
maintains the central value and weight for each pixel, thus 
reducing the storage requirement by a factor of 3K for each 
pixel. Other implementations tend to convert floating-point 
based algorithms into fixed-point [1] as a means of making 
hardware implementation feasible, but without redesign of 
the algorithm. The end result is accumulated error. In 
contrast, our algorithm is designed “from the ground up” to 
use fixed point arithmetic. 
     Our design is a fully parallel and pipelined architecture 
based on FPGA, which reads, processes and store a pixel 
every clock cycle. 
There are six distinct blocks running in parallel with each 
other. These are: 
Input Block; This block reads pixels from the camera in 24-
bit RGB format at PAL frame rate (25 fps) for processing. A 
special mechanism had to be introduced to deal with the high 
disparity in frequency of the design and the camera. This 
block iterates several times until the expected pixel value is 
transmitted from the camera. Thus in effect this block runs at 
a maximum frequency of 25Hz. 
Pixel Processing Block; This is a 6 stage pipelined block. 
The first stage identifies the pixel read by the input block. 
The memory address corresponding to the storage location of 
its background parameters is computed. The stored 
parameters are then retrieved from memory in the second 
pipelined stage. The third pipeline stage involves the 
conversion of the 24-bit RGB pixel value from the camera 
into 8-bit gray-scale intensity. To reduce computational cost, 
the well-known Craig's formula for converting RGB to Gray-
scale, 

BGRY *11.0*59.0*3.0 ++=             (13) 
has been modified as follows 

BGRY *25.0*50.0*25.0 ++=             (14) 
This can be accomplished in a single clock-cycle with two-
hardware adders and two shift operations. The fourth pipeline 
stage is used for pixel classification and the last two stages 
are used for updating the parameters of that pixel stored in 
external memory. The nature of the external RAM calls for 
two blocks of RAM to be used in parallel. Thus while the 
background data is been read from one block the updated 
data is written to the other. These blocks are then 
interchanged after processing a full frame. 
Erosion Block; This block is use for morphological erosion. 
The binary foreground extracted in the Pixel Processing 
block is stored on a dual-port BlockRAM for erosion.  
Dilation Block; This block is use for morphological dilation. 
The binary foreground obtained after erosion in the erosion 

block is further dilated and stored in another dual-port 
BlockRAM for the external VGA.  
Pixel Output Block; This block makes data available to the 
VGA at its refresh rate. This is the foreground obtained after 
dilation.  
Memory Control Block; This controls the RAM block for 
reading and writing. Since the external RAM is not dual-port 
and we need to read from and write to RAM every clock 
cycle, we maintain two RAM blocks, which are swapped 
after processing each frame. 
     The development of these blocks has been accomplished 
using Celoxica's DK3 design suite and Xilinx ISE 7.1i place 
and route (PAR) tool. The hardware platform is composed of 
a Xilinx Virtex II XC2V6000 FPGA, with equivalent of 6 
million logic gates and 2,592KB of dual-port selectRAM 
[14]. This FPGA has been packaged with 4 banks (36-bit 
addressable) of external ZBT SRAM totalling 32Mbytes on 
the RC300 [4]. Table 1 is a summary of the resource 
utilization of the hardware implementation, using device 
xc2v6000, and package ff1152 and speed grade 6. 
 

Resource Total Used Per.  
Flip Flops 1,479 out of 67,584 2% 
4 input LUTs 3,200 out of  67,584 4% 
Block RAMs 57 out of  144 39% 
bonded IOBs 335 out of 824 40% 
GCLKs 4 out of 16 25% 
DCMs 1 out of 12 8% 
Occupied Slices 2,022 out of 33,792 5% 

Table 1: Resource utilization on the implementation 
 
 
 
5   Experimental Results 
To evaluate the performance of our approach (GW4) against 
Grimson's algorithm [12] we use four video sequences, two 
each from outdoor and indoor scenes. The experiments were 
conducted using K=3 for both algorithms. We have 
constructed reference standard segmentations on these 
sequences by using manually marked frames; results of the 
algorithms are compared to this reference standard. Fig. 1 
shows some sample frames of the sequences and their 
corresponding manually marked frames. 
     We report pixel-wise errors against the reference standard, 
in terms of true positive, true negative, false negative and 
false positive pixels. Table 2 shows the sensitivity (SENS.), 
specificity (SPEC.) and the positive predictive values (PPV) 
of Grimson and GW4. Each of the image sequences has 
thirty-five frames, but the first three frames are ignored in 
our evaluation as they are used by the algorithms to calibrate 
their parameters. 
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Fig. 1: Sample images with manually mark-out frames. 
 
 

          Grimson (%) Scene 
SENS. SPEC. PPV 

Indoor1 72.14 99.82 97.92 
Outdoor1 70.35 99.96 98.93 
Indoor2 83.76 92.69 53.57 
Outdoor2 66.13 99.81 98.55 
             GW4 (%) 
Indoor1 75.77 99.73 97.08 
Outdoor1 74.06 99.95 98.84 
Indoor2 86.39 90.38 47.46 
Outdoor2 70.47 99.76 98.31 

Table 2: Sensitivity, Specificity and Positive Predictive 
Values (PPV) of Grimson and GW4. 
 
The evaluation parameters used are defined as follows: 
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Where TP is True Positive, FN is False Negative, TN is True 
Negative and FP is False Positive. 
Table 2 clearly indicates the superiority of our algorithm in 
detecting foreground pixels (higher sensitivity than Grimson) 
and hence suitable for our target application. The algorithm 
does sometimes produce more false positive errors; this is a 
side-effect of the sensitivity of the model in detecting moving 
targets with low contrast against the background, which may 
lead to detection of the shadows of moving targets which 
Grimson's algorithm would ignore. Nonetheless, overall the 
error rate is lower than Grimson's [12]. 
     To show that this result is statistically significant we 
combine the results of all four sequences, and consider the 
total number of error pixels (both false negative and false 
positive). A chi-square test is then conducted to test the null-

hypothesis that both algorithms have equal error rates; see 
table 3. The chi-square value is defined by 
 

∑ −=
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 False pos False neg overall
Grimson better 99 0 24 
GW4 better 29 128 107 
. 2 38.3 128 52.6 

Table 3: Chi-square significance test 
 
As it can be seen, the . 2 value exceeds the 99% significance 
threshold of 6.63 for false positives, false negatives and 
overall errors, indicating a statistically significant 
performance improvement in GW4. Fig. 2 shows some 
sample output images from the two algorithms. 
 

 

 
Fig. 2: Sample output of the two algorithms.  
Top: Grimson's, Bottom: GW4 
 
It is worth noting that Grimson's algorithm [12] although 
more sophisticated than ours, failed to perform better with 
the test data presented here, for K=3. This is due to the 
additional condition (condition 2) we use in extracting 
foreground pixels, thereby resolving the foreground aperture 
problem. From fig. 2, it becomes clear where Grimson's 
algorithm fails to perform better than GW4 due to foreground 
aperture. Again the low specificity of GW4 as compared to 
Grimson's shows GW4's sensitivity in detecting targets with 
low contrast to the background as well as reflections from 
moving objects. Clearly any form of error is undesirable. 
However, in our target application FP errors of the type 
reported are more acceptable than FN errors, as subsystem 
tracking stages can discard distracters such as shadows. 
     Timing analysis generated by the Place and Route (PAR) 
tool shows that the design can run at a maximum speed of 
39.72ns, meaning every stage in the design can be clocked at 
25.17MHz. Hence for a standard frame size of 640x480, the 
design can process at least 80fps (ignoring access to external 
RAM), when the pipeline is full. Comparing to real-time 
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application requirement of 30fps, the implemented design, as 
it stands, meets the real-timing requirement. The efficient 
resource utilization of our design makes it possible to add 
new image processing functions, like object tracking and 
action interpretation to the system. 
 
 
6   Conclusion 
In this paper we have shown a real-time adaptive background 
scene modelling and maintenance technique suitable for 
tracking people in both indoor and outdoor environments, 
implemented as a System-on-Chip (SoC) using FPGA 
technology. 
     Instead of using a complicated already existing 
background subtraction technique, our algorithm is a hybrid 
version of the W4 [8] and Grimson's [12] techniques, with 
some modification to enhance the sensitivity in detecting 
targets with low contrast against the background. The system 
learns and models the background scene over time to detect 
foreground objects, in the presence of multimodal 
background objects like tree branches. The algorithm has 
been implemented in Handel-C and runs on Xilinx Virtex II 
FPGA. Currently, for an image size of 640x480, the system 
operates at real-time (30fps). This performance level cannot 
be easily reached without parallel processing. 
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