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Abstract: This paper introduces a variable step-size adaptive algorithm for blind source separation. From
frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in each
frequency bin. This algorithm varies a step-size according to the magnitude of input at each frequency bin. This
guarantee of the regular convergence in each frequency bin would become more efficient in separation
performances than conventional fixed step-size frequency domain ICA. Computer simulation results show the
improvement of about 5 dB in signal to interference ratio(SR) and the better separation quality.
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1 Introduction

Recently, blind source separation(BSS) is a technique
for estimating origina source signas using only
observed mixtures. The adjective “blind” stresses the
fact that firstly sources are not known and secondly no
information is available about the mixing information.
A typical moddling is to record two people talking at
the same time using two microphones. The recorded
signals would then of course congist of a mixture of
the two speech sounds. The applied agorithm then
tries to estimate the inverse channel and force the
recorded signas to be independent of each other in
order to separate the signalg1]. BSS based on
independent component analysis(ICA) technique has
been found effective in signa separation comparing
other BSS methods. ICA is a statistical method that
was originadly introduced in the context of neura
network modeling [2].

Methods for constructing separation filters can be
classified into two approaches. The first one is a
time-domain  approach(TDICA)[3], where the
coefficients of the separating filters are calculated
directly in the convolved mixture model. It has an
advantage in that ICA is applied to instantaneous
mixtures, which are easier to solve than convolved
mixture in the time domain. The other is a
frequency-domain approach(FDICA)[4,5], where the

frequency responses of the separating filters are first
caculated, and then the time-domain representations
of the filters are obtained by applying an inverse
discrete Fourier transform(DFT) to them. FDICA for
convolutive mixtures can be performed efficiently,
where the anadysis is applied separately in each
frequency bin independently. Computationaly, it may
be lighter to move to the frequency domain, as
convolutions in the time domain become efficient
multiplications in the frequency domain.

This paper deds with the frequency-domain
approach. Frequency-domain approach transforms the
observed signals into the each frequency component
bin by short-time DFT frame by frame. Then optimize
the inverse of the mixing component in each
frequency bin. Finaly, the optimized weights at each
bin can reconstruct the full-band separated signals in
time-domain. In FDICA, we have to consider complex
data in genera. For this purpose Smaragdig4]
proposed acomplex-valued ICA agorithm, which was
an extension of infomax agorithm[1]. The nonlinear
function use in the extenson was based on the
Cartesan coordinates of a complex number. The
nonlinear function is applied separately in the real and
imaginary parts. This type of nonlinear function has
been widely used by other researcher6]. However,
there are disadvantages for converging to the optimal
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solution. The separation performance is saturated
before reaching a sufficient performance because the
independence assumption collapses in each frequency
bin. Secondly, the permutation among source signals
and indeterminacy of each source gain each bin. Asfor
these disadvantages, various solutions have been
aready proposed[7,8]. The separation is performed
independently bin-to-bin, the convergence of the
Separation matrix is non-uniform at each bin.

As discussed above, the non-uniform convergence

at each frequency causes pre-saturation or permutation.

Hence, in order to resolve FDICA problems, we
propose a new agorithm in which the variable
step-size is used. Proposed method is to adopt a
variable step-size which is normaized by the input
sgnal in each bin. This modified version is only
modest increase in computation about 15%[9] over the
conventional 1CA agorithm, while convergence time
is reduced in some instances by about a factor of 2.
This uniform convergence at each bin reduces the
effects of a permutation and pre-saturation problem. A
good control of step-sizeisfor faster convergence and
better separation quality.

With the results of simulations on separating speech
sgnals in a convolved mixture, we compare the
behaviors of proposed algorithm with conventional
ICA. Then this paper discusses the performance about
the efficient separation.

2 Frequency Domain ICA

In this study, the number of microphoneis K and the
number of multiple sound sources isL . When the
multiple sound sources are linearly mixed, the

observed signals are expressed as
x(t) = & a(ns(t- n) = A(Is() @

where (t) =[s(t), ...,s. )] is the source signal
vector, and x(t) = [x,(t), ... ,x, (®)]" isthe observed
signal vector. Also, a(n) :[a1<| (n)]kI is the mixing
filter matrix with the length of N
A(2) = gN.élaM (n)z'”g is the ztransform of a(n),
€n=0 Uy
where z'! isused asthe unit-delay operator, i.e, 2 ".
X(t) =x(t- n), a,(n) is the impulse response

between the k -th microphone and the | -th sound
source, and [X]ij denotes the matrix which includes

the element X inthe i-th row and the j -th column.

Heresafter, we only deal with the case of K = L inthis
paper.

A conventiona mixture in the time doman
corresponds to instantaneous mixtures in the
frequency domain. Hereafter, the convolutive BSS
problem is considered in the frequency domain unless
stated otherwise. Note that digital signa processing in
the time and frequency domains are essentidly
identical, and al discussions here in the frequency
domain are aso essentiadly true for the time-domain
convolutive BSS problem. Therefore, we can apply an
ordinary ICA algorithm in the frequency domain to
solve BSS problem in a reverberant environment.
Smaragdig4] exploited the transform of convolved
mixing into smple multiplicative operation and
proposed the application of a short-time discrete
Fourier transform(STDFT) for (1), and then to
separate independent components in every frequency
bin.

Thus, in the frequency domain, the entire process of
convolved signal separation is transformed into the
computation of the separation matrix in each
frequency bin for each source.

Applying the modd in the frequency domain
introduces a new problem: the frequency bins are
treated as being mutually independent. As aresult, the
estimated source signal components are recovered
with a different order in the frequency bins. Andin
FDICA, the scaling problem also become nontrivial,
i.e, the estimated source signa components are
recovered with a different gain in the different
frequency bins.

Also it is easy to converge to the separation filter in an
iterative ICA learning with a high stability. However,
the separation performance is saturated before
reeching a sufficient performance because the
independent assumption collapses in each narrowband
[8]. Thisis because we transform the full-band signals
into narrow band signals especialy when the umber of
sub-band is large. This is a serious and inherent
problem, and this prevent us from applying FDICA in
area acoustic environment with along reverberation.
The signd modd in the frequency domain is the
following form.

X(w,t)=H(Ww)S(w,t) 2
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where, W is the angular frequency, and t represents
the frame index. The separating process can be
formulated in each frequency bin as:

Y(w,t)=W(Ww)X(w,t) ©)

where Sw,t)=[SW;t), -, S W,t)]" is the
source  signa  in frequency bin w
Xw,t)=[X,w,t), ..., X (W,t)]" denotes the
observed signals.

Next, Y(w,t) =[Y,w,t),....,Y. (w,t)]" is the
estimated source signal vector, and W (w) represents
the separating matrix. W (w) is determined so that
Y, (w,t) and Y, (w,t ) become mutually independent.
For the simple notation, we will annihilate the terms
wandt .

To calculate the separating matrix W (w) , we use

an optimization agorithm based on the minimization
of the mutua information of mixed signals. Different
theories, such as informax approach, maximum
likelihood, negentropy maximization nonlinear
principd component analysis (PCA) and Bussgang
cost function based agorithm, for ICA lead to the
same iterative learning rule for BSS[7].

To ded with complex signas in ICA a each
frequency, the separating matrix was updated using
the following learning rules.

Wiy (W) = W, (W) + mDOW, (w) 4

where DW =nl - F (Y)Y" \w,
F(Y) =tanh[re(Y)]+ j tanh[im(Y)]

where sub i means the iteration number and w is
frequency bin. Y " represents the conjugate transpose
of Y, and re[Y] and im[Y] are the rea and
imaginary parts of Y , respectively. In the nonlinear
functional F (Y,), tanh(:) isapplied separately in the
rea and imaginary parts. The matrix | is an identity
matrix. The constant I is termed the learning rate or

step-9ze. Fig. 1 represents the total processing of the
FDICA agorithm.

Generdly, fixed value of i isused in conventional
ICA agorithm. However, in general, we can observe
that the characteristics of the speech signals have a

large energy in low frequency band. Thus the
convergence is irregular with each frequency bin in
adapting the FDICA adgorithm. This irregularity
would cause the problem of the FDICA. If adjusting
this converging rate regularly, we would expect better
result. It would be the solution to the problems of the
FDICA.
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Fig. 1. Block diagram of the frequency domain
algorithm

3 Proposed Variable Step-size ICA

This paper proposes a variable step-size algorithm at
each frequency bin component for improving the
separation performance based on FDICA. The
step-sizes are various to each input component
differently. In equation (4), m is (fixed) step-size
parameter that ranged with 0 < 1r <1. Generally, this
parameter controls the speed of convergence. Since
the convergencetimeisinversely proportiona to 1, a
large nm is selected for fast convergence in
applications with non-stationary input signals. This
selection, however, results in increased excess mean
squared error (MSE). And small i causes aslowness
of convergence to the weak input signas.

We need to normalize the step-size to the input
signals. Especidly, in FDICA method, a different
input a each frequency component could have
exhibited irregular convergence speeds among the
different frequency bins. This irregularity could have
caused to mislead to the local minimums.

A modified verson of the ICA update agorithm will
be proposed and we will show the characteristic of the
input speech signal in frequency domain. The
step-size parameter is variable to the input magnitude
by normalizing the input signads. The step-size
changes at each frame as well as a each bin. The
variable step-size algorithm is shown in (5).
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Wiy (W) =W, W) +m W) XD, (w) )
where m(w) = m/ max |X, (W), [X, W[l

Theterm m(w)istime-varying step-size, thisterm
m(w) is regularized for the updating equation at
different bin.

There are various methods to normalize the
step-size. A method using the norm of the input
signds frame by frame may have large perturbation in
case of radical changes of inter-frame frequency bin.
So we divide the magnitude of the input signal by ten
levels as shown in Fig. 2. The Fig. 2 represents a
normaized histogram of the 1024-tap frequency
components of the mixing data. We can observe that
the lower frequency component below than about
400" bin has a more dominant energy than the higher
one.

Then we endow the stepsize with inversdy
proportioned values between 0.1 and 1. This 10-step
quantizing method copes with the perturbation of
separating matrix by the small changes of input.
Moreover, this technique has an effect as like the
adopting of low pass filter which help the separating
matrix for stable convergence, too.
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Fig. 2. Histogram of input data and step-Sze
normalization

4 Simulation Results

To examine the effectiveness of the proposed method,
we carried out computer smulations using dry speech
signals with 8 kHz sampling rate. It is assumed that
two omni-directional  microphones with an

inter-element spacing of 4-cm. The dep sSze
parameter I in (4) affectsthe separation performance
of BSS when the convolved mixing channel changes.
We chose ' to optimize the performance for each
mixing channel.

To test the agorithms, we used mixing systems as
followsin ztransform domain,

Y
Al(z)=§L2 i ©)

The mixing system of (6) shows an instantaneous
(nonreverberant) mixing case.

é 09+05z'+03z*
A(Z)=(:3 79 710 711
& 07Z°- 03z%°- Q22

05z°+03z7+02z°%0
a ()
08-Q1z* 4

The mixing sysem of (7) is a convolutive
(reverberant) mixture, and has a minimum phase with
all its zeros inside the unit circle used in [10].

We assumed the straight component vy, (t) asasgnd,
and the cross-channel component ;. (t) a

interference.
We define the output signakto-interference ratio

(SRy) for y;(t) as:

a |y
SR, ° 10log— _
éammg

-3

>(dB) ®

SR isused as an average of SR, and SR, in
order to measure the performance. This measurement
is consistent with the performance evaluation of BSS
in which the crosstak component assumed as
interference. We measured SIR with six combinations
of source sgnads using two maes and two femdes

speakers, and averaged them.

Table 1. Comparison of the SIR results

Algorithm Inst. case | Conv.case | Max.SIR | Min.SIR
FDICA(dB) 25 15 32 12
Proposed 25 21 32 17
FDICA(dB)

Table 1 shows the mean SIR values. It is obvious that
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SIR improvements for instantaneous mixing cases are
amost the same for both fixed step-size algorithm and
variable step-size algorithm. However, for reverberant
condition, proposed method gives good result in the
performance about 4-6 dB. Furthermore, this table
shows a maximum SIR and minimum SIR. In the
comparing of minimum SIR’ s, ours outperformed to
conventional 1CA about 5 dB above.

And second measure is a performance matrix. After
the data pass the estimate unmixing FIR matrix was
multiplied with the corresponding mixing matrix to
obtain a performance matrix. This matrix is an
indication of how well the inputs were separated, and
has to be close to the unit FIR matrix (a matrix where
the diagonal elements are delta function and therest is
zero) to denote success. The performance matrix is
shownin (9).

M =WA » | 9

Now, we compare the separation qualities by Fig
3.and Fig. 4. These two figures show the performance
matrix. The Fig. 3 represents the result of the
conventional ICA and proposed algorithm result isin
Fig. 4. In this Fig. 4, the mixture was separated with
more conservative adaptation parameter selection and
by using the influence factor described in the previous.
Resulting separation of Fig. 4 was amost inaudiblein
this case.
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Fig. 3. Performance matrix for FDICA

As shown in Fig. 2, it is clear that separation will be
better especialy in low frequency range below 2 kHz.
Speech signals do not have significant high frequency
content so training of the high frequency network is

usudly bad. This is evident in the plots where the
interfering signals are seen as high-pass filters, while
the cleaned signals are more impulse-like.

This can be seen better in Fig. 5 which are the
frequency domain representations of the performance
matrix using proposed method, i.e., m(f). The dashed
lines are interfering signal (m,,()) and the solid lines
are the dedred signd (M, (f) ). We can note the
seemingly poor performance at the high frequency
regions as discussed in [4]. This is however not a
problem given that thereisno excitation at these levels.
Excluding permuting problems for the frequency
range of the inputs (10 Hz — 800 HZz) the agorithm
works fine.
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Fig. 4. Performance matrix for proposed ICA
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5 Conclusion

Our work is aimed a developing the BSS agorithm
based on FDICA to the convolved mixing case. This
paper proposes a variable step-size algorithm at each
frequency bin component for improving the separation
performance based on FSICA. The different
magnitude of each frequency component causes a bad
result for successful convergence. The regular weights
are updated by normalizing the step-size with the
magnitude of input signal at each frequency bin. The
performance of this method has been verified by
subjective listening tests and by quantitative
measurements.
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