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Abstract: This paper introduces a variable step-size adaptive algorithm for blind source separation. From 
frequency characteristics of mixed input signals, we need to adjust the convergence speed regularly in each 
frequency bin. This algorithm varies a step-size according to the magnitude of input at each frequency bin. This 
guarantee of the regular convergence in each frequency bin would become more efficient in separation 
performances than conventional fixed step-size frequency domain ICA. Computer simulation results show the 
improvement of about 5 dB in signal to interference ratio(SIR) and the better separation quality. 
 
Key-Words: Blind source separation, Independent component analysis, Adaptive algorithm, Variable step-size, 
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1   Introduction 
Recently, blind source separation(BSS) is a technique 
for estimating original source signals using only 
observed mixtures. The adjective “blind” stresses the 
fact that firstly sources are not known and secondly no 
information is available about the mixing information. 
A typical modeling is to record two people talking at 
the same time using two microphones. The recorded 
signals would then of course consist of a mixture of 
the two speech sounds. The applied algorithm then 
tries to estimate the inverse channel and force the 
recorded signals to be independent of each other in 
order to separate the signals[1]. BSS based on 
independent component analysis(ICA) technique has 
been found effective in signal separation comparing 
other BSS methods. ICA is a statistical method that 
was originally introduced in the context of neural 
network modeling [2]. 

Methods for constructing separation filters can be 
classified into two approaches. The first one is a 
time-domain approach(TDICA)[3], where the 
coefficients of the separating filters are calculated 
directly in the convolved mixture model. It has an 
advantage in that ICA is applied to instantaneous 
mixtures, which are easier to solve than convolved 
mixture in the time domain. The other is a 
frequency-domain approach(FDICA)[4,5], where the 

frequency responses of the separating filters are first 
calculated, and then the time-domain representations 
of the filters are obtained by applying an inverse 
discrete Fourier transform(DFT) to them. FDICA for 
convolutive mixtures can be performed efficiently, 
where the analysis is applied separately in each 
frequency bin independently. Computationally , it may 
be lighter to move to the frequency domain, as 
convolutions in the time domain become efficient 
multiplications in the frequency domain. 

This paper deals with the frequency-domain 
approach. Frequency-domain approach transforms the 
observed signals into the each frequency component 
bin by short-time DFT frame by frame. Then optimize 
the inverse of the mixing component in each 
frequency bin. Finally, the optimized weights at each 
bin can reconstruct the full-band separated signals in 
time-domain. In FDICA, we have to consider complex 
data in general. For this purpose Smaragdis[4] 
proposed a complex-valued ICA algorithm, which was 
an extension of infomax algorithm[1]. The nonlinear 
function use in the extension was based on the 
Cartesian coordinates of a complex number. The 
nonlinear function is applied separately in the real and 
imaginary parts. This type of nonlinear function has 
been widely used by other researchers[6]. However, 
there are disadvantages for converging to the optimal 
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solution. The separation performance is saturated 
before reaching a sufficient performance because the 
independence assumption collapses in each frequency 
bin. Secondly, the permutation among source signals 
and indeterminacy of each source gain each bin. As for 
these disadvantages, various solutions have been 
already proposed[7,8]. The separation is performed 
independently bin-to-bin, the convergence of the 
separation matrix is non-uniform at each bin. 

As discussed above, the non-uniform convergence 
at each frequency causes pre-saturation or permutation. 
Hence, in order to resolve FDICA problems, we 
propose a new algorithm in which the variable 
step-size is used. Proposed method is to adopt a 
variable step-size which is normalized by the input 
signal in each bin. This modified version is only 
modest increase in computation about 15%[9] over the 
conventional ICA algorithm, while convergence time 
is reduced in some instances by about a factor of 2. 
This uniform convergence at each bin reduces the 
effects of a permutation and pre-saturation problem. A 
good control of step-size is for faster convergence and 
better separation quality.  

With the results of simulations on separating speech 
signals in a convolved mixture, we compare the 
behaviors of proposed algorithm with conventional 
ICA. Then this paper discusses the performance about 
the efficient separation.  
 
 
2   Frequency Domain ICA 
In this study, the number of microphone is K  and the 
number of multiple sound sources is L . When the 
multiple sound sources are linearly mixed, the 
observed signals are expressed as  
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where 1−z  is used as the unit-delay operator, i.e., nz − . 
)(),()( nantxtx kl−=  is the impulse response 

between the k -th microphone and the l -th sound 
source, and [ ]ijX  denotes the matrix which includes 

the element X  in the i -th row and the j -th column. 
Hereafter, we only deal with the case of LK =  in this 
paper. 
A conventional mixture in the time domain 
corresponds to instantaneous mixtures in the 
frequency domain. Hereafter, the convolutive BSS 
problem is considered in the frequency domain unless 
stated otherwise. Note that digital signal processing in 
the time and frequency domains are essentially 
identical, and all discussions here in the frequency 
domain are also essentially true for the time-domain 
convolutive BSS problem. Therefore, we can apply an 
ordinary ICA algorithm in the frequency domain to 
solve BSS problem in a reverberant environment. 
Smaragdis[4] exploited the transform of convolved 
mixing into simple multiplicative operation and 
proposed the application of a short-time discrete 
Fourier transform(STDFT) for (1), and then to 
separate independent components in every frequency 
bin. 
Thus, in the frequency domain, the entire process of 
convolved signal separation is transformed into the 
computation of the separation matrix in each 
frequency bin for each source. 
Applying the model in the frequency domain 
introduces a new problem: the frequency bins are 
treated as being mutually independent. As a result, the 
estimated source signal components are recovered 
with a different order in the frequency bins. And in 
FDICA, the scaling problem also become nontrivial, 
i.e., the estimated source signal components are 
recovered with a different gain in the different 
frequency bins. 
Also it is easy to converge to the separation filter in an 
iterative ICA learning with a high stability. However, 
the separation performance is saturated before 
reaching a sufficient performance because the 
independent assumption collapses in each narrowband 
[8]. This is because we transform the full-band signals 
into narrow band signals especially when the umber of 
sub-band is large. This is a serious and inherent 
problem, and this prevent us from applying FDICA in 
a real acoustic environment with a long reverberation.  
The signal model in the frequency domain is the 
following form. 
 

),()(),( τωωτω SHX =    (2) 
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where, ω  is the angular frequency, and τ  represents 
the frame index. The separating process can be 
formulated in each frequency bin as : 
 

),()(),( τωωτω XWY =    (3) 
 

where [ ]T
LSS ),(,),,(),( 1 τωτωτω L=S is the 

source signal in frequency bin ω , 
[ ]T

KXX ),(,),,(),( 1 τωτωτω K=X denotes the 
observed signals. 

Next, [ ]T
LYY ),(,),,(),( 1 τωτωτω K=Y is the 

estimated source signal vector, and )(ωW  represents 
the separating matrix. )(ωW  is determined so that 

),( τωiY and ),( τωjY become mutually independent. 
For the simple notation, we will annihilate the terms 
ω  and τ . 

  To calculate the separating matrix )(ωW , we use 
an optimization algorithm based on the minimization 
of the mutual information of mixed signals. Different 
theories, such as informax approach, maximum 
likelihood, negentropy maximization nonlinear 
principal component analysis (PCA) and Bussgang 
cost function based algorithm, for ICA lead to the 
same iterative learning rule for BSS [7]. 

To deal with complex signals in ICA at each 
frequency, the separating matrix was updated using 
the following learning rules. 
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where sub i  means the iteration number and ω  is 
frequency bin. HY represents the conjugate transpose 
of Y , and [ ]Yre  and [ ]Yim  are the real and 
imaginary parts of Y , respectively. In the nonlinear 
functional )( iYΦ , )tanh( ⋅  is applied separately in the 
real and imaginary parts. The matrix I is an identity 
matrix. The constant µ  is termed the learning rate or 
step-size. Fig. 1 represents the total processing of the 
FDICA algorithm. 

Generally, fixed value of µ  is used in conventional 
ICA algorithm. However, in general, we can observe 
that the characteristics of the speech signals have a 

large energy in low frequency band. Thus the 
convergence is irregular with each frequency bin in 
adapting the FDICA algorithm. This irregularity 
would cause the problem of the FDICA. If adjusting 
this converging rate regularly, we would expect better 
result. It would be the solution to the problems of the 
FDICA. 
 

 
Fig. 1. Block diagram of the frequency domain 
algorithm 
 
 
3 Proposed Variable Step-size ICA  
This paper proposes a variable step-size algorithm at 
each frequency bin component for improving the 
separation performance based on FDICA. The 
step-sizes are various to each input component 
differently. In equation (4), µ  is (fixed) step-size 
parameter that ranged with 10 << µ . Generally, this 
parameter controls the speed of convergence. Since 
the convergence time is inversely proportional to µ , a 
large µ  is selected for fast convergence in 
applications with non-stationary input signals. This 
selection, however, results in increased excess mean 
squared error (MSE). And small µ  causes a slowness 
of convergence to the weak input signals. 

We need to normalize the step-size to the input 
signals. Especially, in FDICA method, a different 
input at each frequency component could have 
exhibited irregular convergence speeds among the 
different frequency bins. This irregularity could have 
caused to mislead to the local minimums. 
   A modified version of the ICA update algorithm will 
be proposed and we will show the characteristic of the 
input speech signal in frequency domain. The 
step-size parameter is variable to the input magnitude 
by normalizing the input signals. The step-size 
changes at each frame as well as at each bin. The 
variable step-size algorithm is shown in (5). 
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where ])(,)(max[/)( 21 ωωµωµ XX=i . 
 

The term )(ωµi is time-varying step-size, this term 

)(ωµi  is regularized for the updating equation at 
different bin.  

There are various methods to normalize the 
step-size. A method using the norm of the input 
signals frame by frame may have large perturbation in 
case of radical changes of inter-frame frequency bin. 
So we divide the magnitude of the input signal by ten 
levels as shown in Fig. 2. The Fig. 2 represents a 
normalized histogram of the 1024-tap frequency 
components of the mixing data. We can observe that 
the lower frequency component below than about 
400th bin has a more dominant energy than the higher 
one. 

Then we endow the step-size with inversely 
proportioned values between 0.1 and 1. This 10-step 
quantizing method copes with the perturbation of 
separating matrix by the small changes of input. 
Moreover, this technique has an effect as like the 
adopting of low pass filter which help the separating 
matrix for stable convergence, too. 

 
Fig. 2. Histogram of input data and step-size 
normalization 
 
 
4   Simulation Results 
To examine the effectiveness of the proposed method, 
we carried out computer simulations using dry speech 
signals with 8 kHz sampling rate. It is assumed that 
two omni-directional microphones with an 

inter-element spacing of 4-cm. The step size 
parameter µ  in (4) affects the separation performance 
of BSS when the convolved mixing channel changes. 
We chose µ  to optimize the performance for each 
mixing channel.  

To test the algorithms, we used mixing systems as 
follows in z-transform domain, 
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The mixing system of (6) shows an instantaneous 
(nonreverberant) mixing case. 
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The mixing system of (7) is a convolutive 
(reverberant) mixture, and has a minimum phase with 
all its zeros inside the unit circle used in [10]. 
We assumed the straight component )(ty ii  as a signal, 

and the cross-channel component ( ) )(ty jiij ≠  as 
interference.  
We define the output signal-to-interference ratio 
( OiSIR ) for )(tyi  as : 
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SIR  is used as an average of 1OSIR and 2OSIR  in 
order to measure the performance. This measurement 
is consistent with the performance evaluation of BSS 
in which the crosstalk component assumed as 
interference. We measured SIR with six combinations 
of source signals using two males and two females 
speakers, and averaged them. 
 
Table 1. Comparison of the SIR results 
Algorithm Inst. case Conv. case  Max. SIR Min. SIR 

FDICA(dB) 25 15 32 12 

Proposed 
FDICA(dB) 

25 21 32 17 

 
Table 1 shows the mean SIR values. It is obvious that 
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SIR improvements for instantaneous mixing cases are 
almost the same for both fixed step-size algorithm and 
variable step-size algorithm. However, for reverberant 
condition, proposed method gives good result in the 
performance about 4-6 dB. Furthermore, this table 
shows a maximum SIR and minimum SIR. In the 
comparing of minimum SIR’s, ours outperformed to 
conventional ICA about 5 dB above. 
And second measure is a performance matrix. After 
the data pass the estimate unmixing FIR matrix was 
multiplied with the corresponding mixing matrix to 
obtain a performance matrix. This matrix is an 
indication of how well the inputs were separated, and 
has to be close to the unit FIR matrix (a matrix where 
the diagonal elements are delta function and the rest is 
zero) to denote success. The performance matrix is 
shown in (9). 
 

IWAM ≈=      (9) 
 
Now, we compare the separation qualities by Fig 
3.and Fig. 4. These two figures show the performance 
matrix. The Fig. 3 represents the result of the 
conventional ICA and proposed algorithm result is in 
Fig. 4. In this Fig. 4, the mixture was separated with 
more conservative adaptation parameter selection and 
by using the influence factor described in the previous. 
Resulting separation of Fig. 4 was almost inaudible in 
this case. 
 

 
Fig. 3. Performance matrix for FDICA 
 
As shown in Fig. 2, it is clear that separation will be 
better especially in low frequency range below 2 kHz. 
Speech signals do not have significant high frequency 
content so training of the high frequency network is 

usually bad. This is evident in the plots where the 
interfering signals are seen as high-pass filters, while 
the cleaned signals are more impulse-like. 
This can be seen better in Fig. 5 which are the 
frequency domain representations of the performance 
matrix using proposed method, i.e., ).( fM  The dashed 
lines are interfering signal ( )(12 fM ) and the solid lines 
are the desired signal ( )(11 fM ). We can note the 
seemingly poor performance at the high frequency 
regions as discussed in [4]. This is however not a 
problem given that there is no excitation at these levels. 
Excluding permuting problems for the frequency 
range of the inputs (10 Hz – 800 Hz) the algorithm 
works fine. 
 

 
Fig. 4. Performance matrix for proposed ICA 
 

Fig. 5. Frequency domain representation of the 
performance matrix 
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5   Conclusion 
Our work is aimed at developing the BSS algorithm 
based on FDICA to the convolved mixing case. This 
paper proposes a variable step-size algorithm at each 
frequency bin component for improving the separation 
performance based on FSICA. The different 
magnitude of each frequency component causes a bad 
result for successful convergence. The regular weights 
are updated by normalizing the step-size with the 
magnitude of input signal at each frequency bin. The 
performance of this method has been verified by 
subjective listening tests and by quantitative 
measurements. 
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