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Abstract: - In this paper, we propose a nonuniform DFT based on nonequispaced sampling in the 
frequency domain. It is useful to detect some specific frequencies such as in DTMF which is 
composed on two different frequencies, main (fundamental) frequency component among lots of 
harmonics, and feature detection from noisy signals. Some trials for nonuniform data processing via 
DFT are discussed and resampling method to obtain nonlinearly spaced samples in the frequency 
domain. 
 
Key-Words: - NDFT, DFT, Resampling, HT, WDFT 
 
1 Introduction 
For signals consisting of a number of frequency 
components, the Fourier Transform (FT) effectively 
reveals their frequency contents and is generally 
able to represent the signals with an acceptable 
resolution divided by equal bandwidth in the  
frequency domain. The discrete Fourier transform 
(DFT) is an important tool in digital signal 
processing. The N-point DFT of a length-N 
sequence is given by the frequency samples of the z-
transform at N-uniformly spaced points [1]. The 
nonuniform DFT (NDFT) proposed recently [2] is 
the most general form of DFT that can be employed 
to evaluate the frequency samples at N arbitrary but 
distinct points in the z-plane. Since the unitary 
property is not inherently guaranteed, some fast 
computation algorithms have been designed by 
using the approximation algorithm [3-5]. Besides 
for developing the enhanced analysis of nonuniform 
data, the idea is applied for detecting harmonics 
related to the fundamental frequency [6] and the 
input data is warped prior to the DFT to provide 
nonuniform frequency spacing [7]. 
However the main problem in this nonuniform 
processing is to define the nonuniform sampling in 
the time or frequency domain. It must be adaptable 
to the signal property and the most featured 
components. In this paper we proposed resampling 
method in the frequency domain to obtain 
nonequispaced transformation. DFT coefficients can 
be the first criteria to approximate the main 
components. Nonuniform sampling is achieved in 
the DFT domain by interpolation using spline 

method. Final resampling is achieved by rearranging 
the interpolated samples. 
 
2 Motivation of DFT and NDFT 
 
2.1 DFT 
Let us take into consideration the definition of 
Fourier transform in the continuous domain first: 
Under certain conditions upon the function ( )s t , the 
Fourier transform of this function exists and can be 
defined as  

   (1) ( ) ( ) jwtS w s t e dt
∞ −

−∞
= ∫

 
where 2w fπ=  and f  is a temporal frequency. 
The original signal is recovered by the inverse 
Fourier transform (IFT), given by: 

 1( ) ( )
2

jwts t S w e
π

∞

−∞
= ∫ dw  (2) 

 
From the definition of FT, we consider now the 
discrete Fourier transform. In this case we have a 
finite number  of samples of the signal ( )N s t  
taken at regular intervals of durat n io sT  (which can 
be considered a sampling interval). In practical 
cases the signal ( )s t  has not an infinite duration, 
but its total duration is sT NT=  and we have et 
{ }n

 a s
s of samples of the signal ( )s t  taken at regular 
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intervals. We can ( )define n n s s t , wh nTere n st = , 
1− , is the sampling coordinafor n N= te. 

)

0,1,...,

In the case of the discrete Fourier transform, not 
only we want the signal to be discrete and not 
continuous, but we also want the Fourier transform, 
which is a function of the temporal frequency, to be 
defined only at regular points of the frequency 
domain. Thus the function  is not defined for 
every value of w  but only for certain values . 
We want the samples to be regularly spaced 
as well, so that all the samples  are multiples of a 

dominant frequency 

( )S w

mw
( mS w

mw
1
T

, that is to say 2
mw m

T
π⎛ ⎞= ⎜ ⎟

⎝ ⎠
, 

for . Let us note now that T  is 
equal to the finite duration of the signal ( )

0,1,..., 1m N= −
s t  from 

which we want to define its discrete Fourier 
transform. Note also that we assume the number of 
samples in frequency to be equal to the number of 
samples in the temporal domain, that is N . This is 
not a necessary condition, but it simplifies the 
notation.  

tension of Eq. (1) to the discrete 
domain is:  

 

The direct ex

1

0

( ) ( ) m n

N
jw t

m n
n

S w s t e
−

−

=

=∑   (3) 

hat  is defined as onl

values 

 
Considering t mw y discrete 

2m
T
π⎛ ⎞  is also defined as only 

ete values

⎜ ⎟
⎝ ⎠

nt

discr

 and 

 snT , it is possible to rewrite Eq. (3) 
as:  

( )( ) ( )( )221 1

0 0

( ) ( ) ( ) sNTsT s
N N mj nTj nTmS w s t e s t e

ππ− − −−= =∑ ∑  

4) 

s
of  In  way the 

final definition of the DFT is:  

 

m n n
n n= =

      (

 
It is now possible to simplify and express the 
dependence on mw only in term  of m  and the 
dependence on nt only in terms  n .  that

2 21 1

0 0
n n N N

n n

( ) ,N N

N N
j mn jmnS m s e s W where W e

π π− −
−= = =∑ ∑

      (5) 

−

= =

 
 And the inverse of the discrete Fourier transform 
(IDFT) as:  

21 1

0 0

( ) ( )N

N N
j nm nm

n N
m m

s S m e S m W
π− −

−

= =

= =∑ ∑  (6) 

 
2.2 NDFT 
Now we want to generalize the definition and the 
computation of the Fourier transform from the 
regular sampling to the irregular sampling domain. 
In the general case, the definition of the Nonuniform 
Discrete Fourier Transform is the same as the one 
given by Eq. (3), taking into consideration that the 
samples can be taken at irregular intervals both in 
time ( ) and/or in frequency ( ).  nt mw

However, in practice, we want to take into 
consideration a more restricted case, which is the 
case where the samples are irregularly taken in the 
time domain t but regularly taken in the frequency 
domain. That is to say that the samples ( )s t  of the 
irregular Fourier transform are taken at multiples of 
a quantity k∆ , which is a fixed quantity in the 
Fourier domain. The fixed quantity k∆  in the 

regular case corresponds to 2
T
π . The extension 

from regular to irregular sampling, therefore, 
depends on the duration of the signal ( )s t  and not 
on the fact that the samples  are taken at regular or 
irregular intervals.  

nt

The definition of the nonuniform discrete Fourier 
transform is as follows:  

 
1

0

( ) n

N
j m k t

n
n

S m s e
−

− ∆

=

= ∑   (7) 

 It is common practice to set 2k
T
π

∆ =  where T  is 

the range of extension for the samples . In that 
case the formulation of the NDFT is very similar to 
the one of the DFT except of the presence of the 
spatial coordinates  instead of the index n. In this 
case, the NDFT is defined as:  

nt

nt

21

0
( ) n

N j m t
T

n
n

S m s e
π− −

=

=∑   (8) 

 From a computational point of view, two 
differences have to be noticed between DFT and 
NDFT. The first difference is that samples in 

frequency are taken at intervals 2
T
π in the irregular 
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case instead of 2
N
π in the regular case (T being the 

duration of the signal ( )s t [0, ]T∈
( )

, with t , and N  is 
the number of samples of the signal s t

N

t

). The 
second difference is that, instead of the integer 
index n in the regular case, in the irregular case the 
irregular sampling coordinate  appears in the 
exponent. However in a practical view point, the 
time duration T  should be replaced with the number 
of samples  in the discrete case. Thus we assume 
the difference between NDFT and DFT is the time 
interval among samples in the time domain. 

nt

 

2.3 HT 

Based on the fact that the time-varying harmonic 
signal generally contains the fundamental and a 
number of harmonics, the harmonic transform (HT) 
is defined by [6] 

  (9) ( )'
( ) ( ) ( ) ( ) u

u

jw t
t uS w s t t e dφ

φ φ
+∞ −

−∞
= ∫

where ( )u tφ  is the unit phase function of the 
fundamental divided by its nominal instantaneous 
frequency and  is the first-order derivative. We 
assume a signal 

' ( )u tφ
( )hs t  consisting of the fundamental 

and harmonics as 

 ( 1) ( )

0

( ) j k t
h k

k

s t a e α
∞

+

=

= ∑   (10) 

where  is the amplitude of the k th harmonic and ka
( )tα  is the phase function of the fundamental. Note 

that the derivative of the phase function is 
equivalent to the instantaneous frequency, i.e., 

. If '
0( ) ( )t c tα = ( ) ( )ut tα φ=  in Eq. (9), the HT of 

( )hs t  is 

[ ]

( 1) ( ) ' ( )
( )

0

( 1) ( ) ( )

0

( 1) ( ) ( )

0

( 1) ( )

0

0

( ) ( )

( )

( )

2 ( 1)
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k

j k t jw t
k

k

j k t jw t
k

k

j k t
k

k

k
k

S w a e t e dt

d ta e e dt
dt

a e e d t

a F e

a w k

α α
α

α α

α α

α

α

α

α

π δ

∞+∞ + −

−∞
=
∞+∞ + −

−∞
=

∞ +∞ + −

−∞
=
∞

+

=
∞

=

=

=

=

=
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∑∫
∑∫

∑ ∫
∑

∑

         (11) 

which is an impulse-train for arbitrary  
frequency. Thus, the HT can provide an impulse-
train spectrum instead of the all-pass spectrum in the 

DFT. 

0 ( )c t

The phase function in the HT is not uniformly 
defined, but should be available before calculating 
the HT. Hence, it is a kind of nonuniform DFT and 
the method to define the phase function is absolutely 
important. 

2.3 WDFT 

The warped DFT (WDFT) is a special case of the 
general NDFT. As suggested by Makur and Mitra, 
the N-point WDFT  of a length-  sequence ( )S m N

ns  is given by  equally spaced frequency samples 
of a modified z-transform by applying some 
transforming technique, e.g., an 

N

M -th order real 
coefficient allpass function [7]. 

The simplest example of a nontrivial mapping is 
obtained using a first-order allpass function having 
the zero coefficients, 1ˆ( ) ˆA z a z−= − +  and the 
corresponding mirror-image polynomial of ˆ( )A z , 

1ˆ( ) 1 ˆA z az−= −  for the pole coefficients. That is, the 
allpass function is 

 
1

1
1

ˆ
ˆ1

a zz
az

−
−

−

− +
=

−
   (12) 

where 1a <  for stability. Replacing jwz e=  and 
ˆˆ jwz e=  to define frequency warping on the unit 

circle, where the original angular frequency is w  
and the warped frequency is , Eq. (12) is rewritten 
as 

ŵ

 
( )( )
( )( )

( )2ˆ ˆ ˆ ˆ ˆ/ 2 / 2

ˆ 2ˆ ˆ ˆ

1
1 1 1 1

jw jw jw jw jw
jw

jw jw jw jw

a e a e ae e aee
ae ae ae ae

− − −
−

− − −

− + − + − −= = =
− − − −

     (13) 

Taking the square root of each side, we get 

 ( )ˆ ˆ/ 2 / 2
/ 2

ˆ1

jw jw
jw

jw

e aee
ae

−
−

−

−=
−

  (14) 

Again taking the ratio of the imaginary part to the 
real part of each side, the frequency mapping is 
obtained to be 

 ˆ1tan tan
12 2

aw
a

+⎛ ⎞⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
w  (15) 

Thus, the original frequency spacing w  and the 
warped one  are not linearly dependent, revealing 
that the allpass transformation warps the frequency 

ŵ
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scale and uniformly spaced points on the unit circle 
are mapped onto nonuniformly spaced points on the 
unit circle in the z-plane. 
However the WDFT has some drawbacks. First, the 
NDFT result is obtained by an extra allpass filter, 
not by the pure NDFT technique. Second, we still 
have problem to define the frequency to be warped 
on the unit-circle. Besides, it is need to transform 
the frequency points out of the unit-circle. 
 
3 Realization of NDFT 
 
3.1 Forward NDFT 
The DFT can be defined as a subset of the z-
transform, since samples in the frequency domain 
are located on the unit circle. Now we expand the 
sample location to arbitrary point in the z-plane. 
Hence, the N-point NDFT is defined as the 
frequency samples of the z-transform at arbitrary N 
points and expressed in the form 

   (16) 
1

0

( )
N

n
ndft n m

n

S m s z
−

−

=

= ∑

where  is the complex points of interest that can 
be irregular spacing. 

mz

Eq. (16) can be rewritten as a matrix form S Ds=  
where the matrix D  and the vectors S  and s  are 
given as 

  

0

1

1

1 2 ( 1)
0 0 0

1 2 ( 1)
1 1 1

1 2 ( 1)
1 1 1

( ) [0]
( ) [1]

, ,

( ) [ 1]

1
1
1
1

ndft

ndft

ndft N

N

N

N
N N N

S z s
S z s

S s

S z s N

z z z
z z z

D

z z z

−

− − − −

− − − −

− − − −
− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢
⎢ ⎥
⎢⎣

⎥

⎥⎦

)

1N

Computation of the matrix multiplication requires 
 operational complexity. A recursive 

algorithm called Horner’s method can reduce 
memory size keeping only two multiplier 
coefficients. Eq. (16) can be written by 

2(O N

1
( 1) 1 ( 1)

0

( )
N

N N n N
ndft m m n m m m

n

S z z s z z A
−

− − − − − −

=

= =∑        (17) 

where 
1

1 1 2
0 1 2

0

N
N n N N

m n m m m N m
n

A s z s z s z s z s
−

− − − −
− −

=

= = + + +∑ +

. It can also be expressed as a nested structure that 
can be calculated easily in a recursive algorithm : 

( )( )0 1m m m m 1NA s z s z z s −= + + +  (18) 

The smallest nest output is  with the 
initial condition 

1 0 my y z s= + 1

00y s=  and we can express Eq.(18) 
by the recursive difference equation as 

1n n my y z s− n= + . When this algorithm has 
accumulated  times, we finally get the result N

1m NA y −= . Thus, only two multiplier coefficients 
(  and mz ( 1)

m

Nz− − ) are needed to calculate the m-th 
NDFT sample. reducing the memory size as well. 

While the z-operator provides z-points in any part of 
z-plane, we can keep them on the unit-circle by 
introducing the exponential operator, i.e., the normal 
DFT.  Computation in this case can be done by the 
Goertzel’s algorithm using trigonometric series 
interpretation, requiring only three coefficients, 

, sin , and cos mw mw ( 1) mj N we− −  for each NDFT sample. 
This method reduces the complexity down to . 
It is specialized for calculating the NDFT at points 
on the unit circle where  is the angular frequency. 
Now the z-operator in Eq. (17) is replaced with the 
exponents as 

( )O N

mw

   (19) ( 1)( ) mj N w
ndft mS m e A− −=

where m m mA B jC= +  and , 1 1cosm N m NB g w h− −= +

_ 1 sinm NC g w− m= . The intermediate operators are 
defined as 12cosi m i 1ig w g h− −= +  where 1 0g s=  and 

1i i ih s g −= −  where 1 1h s= , . 2,3,..., 1i N= −
 
3.1 Inverse NDFT 
In general there is no simple inversion formula, 
hence one deals with the following reconstruction or 
recovery problem. Given the values 

( 0,1,..., 1)js j N∈ = −

1
 at nonequispaced points 

, 0,1,...,jp j N= − , the aim is to reconstruct a 
trigonometric polynomial ( )js p  is close to the 
original sample js  as 

2( ) , . .,jj kp
j k j

k

s p S e s i eπ−= ≈∑ ≈ES s  (20) 

A standard method is to use the Moore-Penrose 
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pseudoinverse solution which solves the general 
linear least squares problem 

2 2min subject to  min→ =−S s ES  (21) 

Of course, computing the pseudoinverse problem by 
the singular value decomposition is very expensive 
and no practical way at all. 

As a more practical way, one can reduce the 
approximation error r , by using the 
weighted approximation problem 

= −s ES

1/ 21 2

0

( ) min
N

j jj
j

s s pw
−

=

⎛ ⎞−= →− ⎜ ⎟
⎝ ⎠
∑Ws ES         (22) 

where W  denotes diagonal weighting matrix. 

Another method is to use the Lagrange interpolation 
technique to convert the given NDFT coefficients 
into the corresponding z-transform of the sequence. 
If this can be achieved, then the sequence can be 
identified as the coefficients of the z-transform. 
Using the Lagrange polynomial of order 1N − , z-
transform coefficients can be expressed as 

 
1

0

( )
( ) [ ]

( )

N
m

ndft
m m m

L z
S z S m

L z

−

=

= ∑  (23) 

where . ( )1( ) , 0,1,..., 11m i
i m

L z m Nz z−

≠

= =−∏ −

 
4 Nonuniform sampling in the DFT 
domain 
 
The aim of this work is to derive nonuniform 
sampling of signal in the frequency domain 
transformed by DFT, which will be transformed by 
the NDFT. For example, a signal is assumed to be 
mixed two sinusoidal sequences, i.e., 0.2π  and 
0.7π . DFT can be obtained by using the regular 
sample intervals. To compute the NDFT, we set 
nonuniform sample intervals based on the two main 
frequencies. 

In this example, order of samples in the NDFT is 
nonlinearly allocated and concentrated on the main 
frequencies. This nonlinear resampling can be 
executed in the DFT domain as: 

1. Execute DFT with equispaced samples. 

2. Interpolate the sample intervals with 
certain ratio (more than 2) and reshape the 
amplitude spectrum based on the curve 

fitting, such as the cubic splined curvature. 

3. Resample the interpolated samples to 
obtain the same number of total samples as 
in the equispaced case based on the 
centroid concept. 

 

 

 
Fig. 1. (From top) Input sequence with 50 samples, 
DFT output, input sequence with 100 samples, and  
its DFT output 
 
In Fig. 1, two different sequences are transformed 
by the conventional DFT, in which assumes the 
samples are infinite, i.e., the time duration is 
infinitely long, resulting in infinitely short response 
in the frequency domain. Otherwise, like in general 
applications, the DFT does not show proper 
frequency analysis, e.g., broad range of spectrum 
near 0.2π  and 0.7π in Fig. 1b, while its shorter 
response with double number of samples in Fig. 1d. 
 
 As shown in Fig. 2, the DFT does not show the two 
frequencies well, i.e., two low amplitude spectrum 
is shown at around 0.7π . This is because the signal 
is band-limited in time. The NDFT results in 
optimal approximation of spectrum around the two 
frequencies by owing to dense sampling around the 
main spectra and rough sampling for other 
components. 
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Fig. 2. (From top) Input sequence, DFT output, and 
NDFT output 
 
5 Conclusion 
We discussed any arbitrary sampled data could be 
transformed into frequency domain to get enhanced 
frequency analysis by eliminating the less important 
components and focusing only meaningful spectra. 
Nonuniform DFT is called for this purpose, that is 
derived from nonequispaced data. Nevertheless it is 
much far from perfect yet, remaining problems of 
fast computation such as the FFT, orthogonality 
which is a necessary condition for possible use in 
data recognition and compression, and particularly 
how to define nonequispaced sampling, it is worth 
of implementing the general transform with the 
inclusion of conventional unitary transform. 

In this paper we proposed resampling method in the 
frequency domain to obtain nonequispaced 
transformation. DFT coefficients do not represent 
perfect spectra due to the band-limiting but can be 
utilized to approximate the main components. As for 
dense sampling at around the wanted spectrum it 
must be interpolated using spline method. Final 
resampling is achieved by rearranging the 
interpolated samples. 
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