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Abstract – The advancement in computer technology has reinforced the development of Artificial Neural 
Networks (ANN), so that they are used in a wide area of application fields. Medicine is one of these fields. 
ANNs are suitable for disease prognosis since there is no need to provide diagnosis rules to identify the 
disease, but a set of examples that represents the variations of disease. This study explores the use of various 
ANN architectures in vesicoureteral reflux (VUR) prognosis. It is resulted that the performance of an ANN 
with a hidden layer with hyperbolic tangent sigmoid transfer function and an output layer with saturating 
linear transfer function is remarkably better against other more complicated structures. The proposed ANN 
prognoses 100% of the pathological cases (true positive). The aim of proposed network is not to replace the 
specialists, but to assist general physicians and specialists in predicting VUR in order to avoid the unnecessary 
exposure of children in voiding cystourethrogram. 
 
Key-Words: - Artificial Neural Networks, Backpropagation Training, Multi-Layer Perceptron, Vesicoureteral 
Reflux Prognosis 
 
1 Introduction 
The increased power of computers and the desire of 
solving problems without prior knowledge and 
symbolic representation of their rules conduced to 
the growth of non symbolic learning approaches. 
One of these approaches is ANNs. The huge mass of 
applications [1, 2], in which ANNs can be used, is 
the essential element of such a growth. ANNs 
simulate the function of human biological neurons 
and have implementation in many application areas, 
such as robotics, aerospace, defense, medicine [3-5], 
electronics, image processing and other fields [6, 7]. 

Physicians use medical techniques in order to 
diagnose diseases. ANNs have been used in many 
areas in medicine, successfully, such as cardiology, 
oncology [8], pathology, endocrinology [9], 
radiology [10], urology [11-14] pneumonology [15], 
gastroenterology, pediatrics and neurology [3, 16-
19]. Medicine is a field that ANNs can be proven as 
a powerful tool to enhance current medical 
techniques [3-5, 20, 21]. 

On the other hand, the selection of the 
appropriate ANN architecture is critical in some 
applications. The use of an ANN with few neurons 
implies inadequate lore, while the use of a big one 
leads to inadequate generalization ability. The most 
common way to specify the architecture of an ANN 
is by trial and error. 

Utilization of available attributes in 
vesicoureteral reflux (VUR) diagnosis, as they 
proposed by physicians, combining with the 
engineers’ knowledge in ANNs architectures, leads 

to the development of an ANN for prediction / 
prognosis of VUR. The specified ANN and the 
results obtained are presented in this paper. 
 
 
2 Artificial Neural Network 
Architectures 
An ANN is a parallel computational system, 
consisting of simple processing elements, called 
neurons, fully interconnected to each other, and has 
the ability to use storing experimental knowledge 
[22, 23]. The parallel action is a difference between 
von Neuman computer and ANNs [24]. The 
acquired knowledge of an ANN through a learning 
process, the use of interneuron connection strengths, 
known as synaptic weights, for storing this 
knowledge and the generalization ability, based on 
the information from the input data, are evidences 
that an ANN resembles the human brain [23] from 
structural as well as functional point of view. 

The object of an ANN is to perform a particular 
function, combining an input set and corresponding 
correct outputs, called targets, forcing ANN to 
perform the indispensable calculations in order to 
modify the values of synaptic weights between 
artificial neurons [3, 22]. The process that ensures 
each neuron computes the correct output in all 
known situations is called training [25] and it is 
based on learning laws [7]. The training categories 
and learning laws are described in [7, 12, 26]. 

Beyond the learning laws, there are many ANN 
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architectures [6, 27]. The most usual architectures 
are: 

 perceptron networks, which includes one layer 
of neurons, 

 feed-forward architecture, which consists of 
more than one layer neurons, 

 radial basis function networks, which two 
variants of them are Generalized Regression 
Networks (GRNN) and Probabilistic Neural 
Networks (PNN), 

 self-organizing, 
 Learning Vector Quantization (LVQ) 

networks and 
 recurrent networks, which includes Hopfield 

and Elman networks. 
Each of aforementioned architectures [1, 2, 7, 

25-27] is not advisable for all application fields. 
Each one application specifies the appropriate and 
more suitable ANN architecture [3]. 

This study attempts to propose an ANN structure 
that will predict the vesicoureteral reflux disease.  

 
 

3 Materials and Methods 
 
 

3.1 Data Collection 
The normal flow of urine begins in the collecting 
system of each kidney. Urine then flows out of each 
kidney and into a tube called ureter. Each ureter 
leads into the bladder, where the urine collects until 
it is passed out of the body. Normally, urine should 
flow only in this direction. In vesicoureteral reflux 
(VUR), however, urine that has already been 
collected in the bladder is able to flow backwards 
from the bladder, along the ureter, and back into the 
collecting system of the kidney. VUR may be 
present in either one or both ureters. The VUR is an 
anatomical and functional disorder with potentially 
serious consequences because the bacteria have 
direct access to the kidneys and cause a kidney 
infection (pyelonephritis) [28]. In children, 
particularly, those in the first 6 years of life, urinary 
infection can cause kidney damage [29]. A 25% to 
40% of children with urinary tract infection have 
VUR [30]. 

The detection of VUR is achieved via 
hemaotologic and urine exams as well as using 
imaging techniques. The used depicted methods are 
voiding cystourethrogram and DMSA kidneys’ 
scintigraphy. Both these imaging techniques are 
based on radiation absorption from the patient. At 
the same time, the voiding cystourethrogram emits 
tenfold radiation than DMSA kidneys’ scintigraphy, 

and it maltreats the patient’s genitals, so it is not 
recommended for all urine tract infection’s patients. 

The VUR data, which are used at the design of 
proposed ANN structure, are obtained from the 
Pediatric Clinical Information System of 
Alexandroupolis’ University Hospital, Greece. 

The clinical and laboratorial parameters that 
were considered for VUR diagnosis were 21. These 
parameters were: sex, age, brothers, utsymp, 
systsymp, WBC, WBC type, hematocrit, 
hemoglobin, platelets, ESR, CRP, bacteria, 
sensitivity, ultrasound, DMSA scintigraphy, 
symptoms duration, start treatment, risk factor, 
collect and resistance. Both of utsymp and DMSA 
scintigraphy were not known for all cases, so they 
were dropped from the data set, thus reducing the 
number of parameters to 19. It is emphasized that 
some of the parameters may take more than one 
values simultaneously. For example, the parameter 
age can have a value between 1 and 3, depending on 
the child’s age, less than 1 year old, or between 1 
and 5 years old, or greater than 5 years old. In the 
other hand, the parameter sensitivity has 6 available 
values, penic, cephal2, chephal3, aminogl, 
sulfonamides and other, and it is possible the 
patient’s clinical results of this parameter to be 
simoultaneouly cephal3 and aminogl. The insertion 
of sensitivity’s values to ANN demands the division 
of this parameter to 6 independent sub-parameters 
instead of a universal parameter. Similar process is 
applied at systsymp and risk factor. As a result, the 
number of parameters for ANN was extended to 35. 

The present study is based on data set consisted 
of 197 cases (children patients with urinary tract 
infection). Some of these patients are infected with 
VUR. This data set was divided into a set of 155 
records and another set of 42 records. The former 
was used for training of the ANN, while the latter 
for testing. 

 
 

3.2 Proposed Artificial Neural Network 
Structure 
A multi-layer feed-forward network with 
backpropagation learning rule is the most widely 
used architecture for prediction [5, 22, 25, 27]. The 
multi-layer perceptron (MLP) network’s ability to 
correlate both dependent and independent variables 
and find out the nonlinear cohesion between them is 
an important advantage in clinical data processing. 
This advantage has indicated the MLP for 
prognostic and diagnostic procedures in clinical 
medicine [3, 23]. 

Multi-layer feed-forward networks transmit the 
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provided data from input layer towards their output 
layer [2, 27]. The architecture of a multi-layer feed-
forward network is not completely constrained by 
the problem to be solved. The number of neurons in 
the input and output layer is constrained by the 
number of inputs and outputs, respectively, required 
by the problem [1]. As it was explained in section 
3.1, the total number of input parameters is 35; 
therefore this is also the number of input nodes in 
the input layer of ANN. Moreover, as the prognosis 
is based on the existence or absence of VUR, there 
is a neuron in output layer that indicates it. 
However, the number and the size of layers between 
input and output layers are up to the design method. 

The determination of number of hidden layers, 
hidden neurons, connections and transfer functions, 
which represents the ANN structure, was achieved 
by trial and error. The used transfer functions were 
five, nominally, log sigmoid, positive linear, hard 
limit, saturating linear and hyperbolic tangent 
sigmoid [7, 26]. Mathematical equations of these 
transfer functions are depicted in Table 1. 

During the MLP training process, a variant of 
learning algorithms, based on backpropagation 
algorithm, was used. Specifically, the Levenberg-
Marquardt backpropagation, the gradient descent 
with momentum backpropagation and the gradient 
descent with adaptive learning rate backpropagation 
algorithms are selected for ANNs’ training [7].  

As evaluation criterion of performance of 
ANNs, the mean squared error (MSE) [7] was used, 
which mathematical notation is given by:  

 
where N is the number of patterns-cases, t(k), a(k) 
and e(k) are the desired, the ANN’s calculated and 
the error value for each pattern, respectively. 

 
 

4 Experimental Results 
The MATLAB Neural Networks Toolbox [7] 

was used to train the different architectures in order 
to predict VUR. This program was selected due to 
its effectiveness as well as its user-friendly interface.  

In Table 2, the results of best-implemented 
ANNs for the VUR prediction problem are 
summarized. The implemented ANN architectures, 
the transfer function for each of architecture, the 
mean square error (MSE) for training and testing set 
and the performance over the test set are presented 
in the five first columns. The 6th column of Table 2 
presents the percentage of successful prognosis over 

the 42 children patients, which are the test set; while 
the 7th column depicts the detected pathological 
situations against overall pathological situations of 
test set. 

 
Transfer 
Function 

Mathematical 
Equation 

Hard limit 
(hardlim) 

 

Hyperbolic tangent 
sigmoid (tansig) 

  

Log sigmoid 
(logsig) 

 

Positive linear 
(poslin) 

 

Saturating linear 
(satlin) 

 
Table 1. Transfer Functions 

 
The ANN that has the best performance over the 

overall test set (95.2%) as well as the pathological 
cases of the test set (100%) is the 12th with 3 layers 
whereof the one is the hidden layer consisting of 4 
neurons. The output layer contains one neuron, 
which generates an output value 0, meaning 
existence of a pathological case, or 1, meaning 
absence of VUR. The ANN structure used in VUR 
prediction is depicted in Fig. 1. 

The hyperbolic tangent sigmoid transfer function 
is used on hidden layer and the saturating linear 
transfer function is applied to output neuron, as the 
output values are 0 and 1. Although the saturating 
linear transfer function has a linear area between 
zero and one, the existence of saturating areas is 
utilized. Both of the transfer functions are 
differentiable throughout its domain. The weights 
and the biases of the neurons were adjusted 
according to gradient descent with momentum 
backpropagation learning algorithm [7], with 
learning rate equals to 0.1. The term 
backpropagation refers to the manner in which the 
gradient is computed for multilayer networks. 
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The Levenberg-Marquardt backpropagation 
algorithm was used for training ANNs from no.1 to 
no.7 and no.10. Their transfer functions were 
contributed to different obtained results of ANNs. 
The gradient descent with momentum 
backpropagation algorithm is the training method 
for the 8th, the 9th, the 11th and the 12th ANN. The 
biased learning rate results the modification of 
neural networks’ performance. The 13th and the 14th 
ANNs were trained by gradient descent with 
adaptive learning rate backpropagation algorithm. 
The last algorithm adapts the learning rate during 
training phase; however the appropriate 
modification of learning rate demands the precise 
adjustment of algorithm’s parameters. The 
conclusion of analysis is that the used learning 
algorithm and its parameters specify the neural 
network’s performance. 

From Table 2, it is obvious that the smaller the 
MSE in training set, the worse performance of ANN 
exists, keeping the other parameters constant. This 
situation results from the overfitting problem, which  

Fig. 1. Artificial Neural Network Architecture 
Used For Vesicoureteral Reflux Prediction 

 
is related to the occurrence of very small error 
during the training phase, but large error during the 
testing phase [1, 23, 25]. The network has 
memorized the training patterns, but it has not learnt 
to generalize to new data. The 1st, 2nd, 5th and 8th 
ANNs have overfitting problem.  

It is common the error of ANN after training to 

 

Architecture of 
Artificial 
Neural 

Network 

Transfer 
Function 

MSE Over the 
Training 

MSE Over 
the Test 

Set 

Percentage of 
Successful Prognosis 

Over the Test Set 

Percentage of 
Successful Prognosis 

Over Pathological 
Cases of the Test Set 

1 35 – 4 – 7 – 1 
tansig 
logsig 
poslin 

9.54E-10 3.7443 69.1 25 

2 35 – 4 – 7 – 1 
tansig 
logsig 
poslin 

5.20E-10 3.7074 73.8 25 

3 35 – 4 – 7 – 1 
tansig 
logsig 

hardlim 
0.2166672 0.0952 90.5 0 

4 35 – 2 – 4 – 1 
tansig 
logsig 
satlin 

0.1417000 0.0627 92.9 75 

5 35 – 4 – 7 – 1 
tansig 
logsig 
satlin 

2.30E-25 0.2866 64.5 50 

6 35 – 4 – 7 – 1 
tansig 
logsig 
satlin 

0.0001499 0.2879 73.8 75 

7 35 – 4 – 1 tansig 
satlin 4.83E-25 0.0607 91.7 75 

8 35 – 4 – 1 tansig 
satlin 1.80E-18 0.1302 79.3 75 

9 35 – 4 – 1 tansig 
satlin 0.0899749 0.0819 92.8 75 

10 35 – 4 – 1 tansig 
satlin 0.0516000 0.2059 78.6 50 

11 35 – 4 – 1 tansig 
satlin 0.0129060 0.1702 78.6 50 

12 35 – 4 – 1 tansig 
satlin 0.0129032 0.0801 95.2 100 

13 35 – 4 – 1 tansig 
satlin 8.56E-12 0.1472 80.9 75 

14 35 – 4 – 1 tansig 
satlin 0.0004875 0.1393 83.3 75 

Table 2. Experimental results using different artificial neural network architectures. 

Input
Layer

Hidden
Layer

Output
Layer

1

4

3

35

2

0 or 1
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be smaller than the error at testing phase [1], as the 
ANN does not know the test patterns a priori. The 
3rd, 4th and 9th ANNs diverge from the 
aforementioned mode. 

Although, the 3rd ANN, which is presented in 
Table 2, has 90.5% for overall prediction of test set, 
it has difficulty in recognizing pathological patterns 
and sorting them in appropriate classification area. 
This ANN has not the ability to learn from 
pathological input data, due to its structure which 
must be modified. 

 
 

5 Discussion 
ANN is a non-symbolic, adaptive learning method 
to correlate input data to desired output values. It is 
not a symbolic descriptive procedural approach, but 
instead ANNs incorporate knowledge within their 
structure. 

ANNs have been applied in many medical 
applications. In the present work, various ANN 
architectures were tested over the problem of VUR 
prognosis. The aim of the proposed approach is to 
assist general physicians and specialists in 
predicting VUR in order to avoid the unnecessary 
exposure of children in x-ray radiation and not to 
replace the specialists. 

Numerous computer experiments were 
performed testing various ANN architectures and 
functional learning algorithms. From the obtained 
results, presented in Table 2, can be concluded that 
the proposed method faces the problem of VUR 
prognosis quite satisfactory, giving successful 
prognostic results. The method succeeded up to 
100% successful prognosis over pathological cases 
and up to 95.2% over the test set which consisted of 
both normal and pathological cases. We have to 
emphasize that the proposed method is able to detect 
all the pathological (true positive) cases and fail to 
classify less than 5% of the total number of cases. 
Namely, a less than 5% of normal cases were 
misclassified as pathological (false positive). 
Compared to the usual clinical routine where all the 
cases (100%) are proceed to further medical 
examinations, with the use of the proposed method 
only a small portion (5%) will be referred to further 
examinations and will be exposed to x-ray radiation 
of the voiding cystourethrogram. 

In future work, it will be applied principal 
component analysis and artificial intelligent 
techniques, to insulate the major parameters for 
VUR disease. This will be done in order to search 
for possible elimination of some of the input 
parameters of the ANN, thus achieving to simpler, 

pruned and more efficient ANN network 
architectures that give high performance in terms of 
VUR prognosis. 
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