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Abstract: - This paper describes a novel algorithm, 2D-FPCA, for face feature extraction and representation. The 
new algorithm fuses the two dimensional Fisherface method with the two dimensional principal component 
analysis (2DPCA). Our algorithm operates on the two dimensional image matrices. Therefore a total image 
covariance matrix can be constructed directly using the original image matrices and its eigenvectors are derived 
for feature extraction. Similarly, the between and the within image covariance matrices are constructed and 
transformed to a 2DPCA subspace. The result is that 2D-FPCA is faster and yields greater recognition accuracy. 
The ORL database is used as a benchmark. The new algorithm achieves a recognition rate of 95.50% compared 
to the recognition rate of 90.00% for the Fisherface method.  
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1   Introduction 
The early strategy for face identification was based 
on geometrical features such as nose width and 
length, mouth position and chin shape [1] almost all 
of the new approaches developed in recent years are 
based on holistic representations known as templates. 
In [2] a comparison of geometrical feature based 
matching with template (statistical features) matching 
is presented and the result favours the statistical feature 
based matching approach. 
The most commonly used statistical representation 
for face recognition is the Eigenfaces [3], which uses 
principal component analysis (PCA) for 
dimensionality reduction. The produced templates 
are not always good for discrimination among 
classes. Belhumeur et al. [4] proposed Fisherfaces 
method, which is based on Fisher’s Linear 
Discriminant and produces well separated classes in a 
low-dimensional subspace. Nonlinear   PCA-related 
methods such as independent component analysis 
(ICA) and kernel principal component analysis 
(Kernel PCA) have been proposed for feature 
extraction [5-6]. These methods are superior to 
representations based on PCA.  However, Kernel 
PCA and ICA are both computationally more 
expensive than PCA. 
In all the PCA-based related techniques above, the 
2D face image matrices must be transformed into 1D 
image vectors. The resulting image vectors of faces 
usually lead to a high dimensional image vector 
space, where it is difficult to evaluate the covariance 

matrix accurately due to its large size and the 
relatively small number of training samples. Yang et 
al. [7] proposed a straightforward image projection 
technique, called the image principal component 
analysis, which is directly based on analysis of 
original image matrices. Based on the idea of the 
image matrix Li et al. [8] proposed the two 
dimensional linear discriminant analysis where the 
Fisher linear projection criterion is used to find a 
good projection for better feature extraction. 
In this paper, a straightforward image projection 
technique called two dimensional Fisherface 
Principal Component Analysis, 2D-FPCA, for 
feature extraction is presented. Our method uses 
Fisher linear projection criterion to find a good 
projection in the 2DPCA subspace. Performing 
2DFLD in this new subspace has three important 
advantages over Fisherface. Firstly, it is easier to 
evaluate the covariance matrices accurately. 
Secondly, less time is required to determine the 
corresponding eigenvectors. Finaly, the face 
recognition accuracy increases significantly. 

 
2 2D-FPCA 
2.1 Idea and Algorithm 
Suppose that there are C pattern classes in training 
set, { }NjjA 1=

, where denotes the size of training set. 

The class  has samples, thus .The 

mean image of all training set is 

N
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−
A and denotes the mean image of class . 
The  class and  training image is denoted by 

 an image matrix. denotes an 
-dimensional unitary column vector. Our novel 

idea is to project the image, , onto X  to the 
2DPCA subspace by the following linear 
transformation [7], [9]: 

CiAi ,....,1, =
−

iC

ith jth
i
jA nm × X

n
jth jA

                                                                    (1) XAY jj =

We obtain a m dimensional projected vector which 
is the feature vector of the image . We need to 

determine a good projection vector . By definition, 
PCA finds a projection direction , onto which all 
samples are projected, so that the total scatter of the 
resulting projected samples is maximized. The total 
covariance (scatter) matrix of the projected samples 
is characterized by the trace of the covariance 
matrix of the projected feature vectors as follows: 
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We define the total image covariance matrix as: 
                                         (4) )]()[( j

T
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Therefore, (2) can be written as, 

                                                          (5) XGXStr t
T

t =)(
The unitary projection vector, , that maximizes (5) 
is called the optimal projection axis,( ) which is 
the eigenvector of . It is not enough to have only 
one optimal projection axis. We need to select a set of 
projection axes, , in such a way that not 
much discriminant information is lost while noise is 
reduced. The selected eigenvectors, , 
contain principal components (PCs) which retain 
both the within variations (unwanted information) 
and between variations (important discriminant 
information).  

X
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Once the 2DPCA subspace has been created we use 
the Fisher’s linear projection criterion in this new 
space to find a good projection that maximizes the 
ratio of the scatter among the face classes to the 
scatter within the face of the same class. The between 
image class covariance (scatter) matrix and the 
within image class covariance (scatter) matrix in 
the input space can be transformed to the 2DPCA 
subspace as  and  by,  
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We refer to and  as the between feature and 
within feature class covariance (scatter) matrices 
with dimensions of

BBS WWS

dd × , where  is the number of 
eigenvectors of that we choose. The main idea at 
this stage is to project  onto the unitary column 
vector as follows: 

d
tG

jY

Z
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To measure the class separability of the projected 
samples, , we determine the trace of the 
between  and within matrix of the 
projected samples as follows: 

NjR j ,......2,1, =
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Using a similar idea as in (2), and is 
expressed as: 
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This is the Fisher linear projection criterion. The 
unitary vector Z  that maximizes (15) is called the 
Fisher optimal projection axis ( ). It means that 
the projected image samples on the direction Z  has 
the minimal within image class scatter and the 

optZ
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maximal between image class scatter in the subspace 
spanned by . If  is nonsingular, the solution to 
above optimization problem is to solve the 
generalized eigenvalue problem [3-4]: 

Z WWS

                                              (16) optWWoptBB ZSZS λ=

                           optoptBBWW ZZSS λ=−1

In (16), λ is the eigenvalue of . In the 
traditional LDA, we were faced with the singularity 
problem. However, 2D-FPCA overcomes this 
problem successfully. Li et al. [8] showed that the 
within image class covariance (scatter) matrix is 
non-singular in real situation. In general, it is not 
enough to have only one Fisher optimal projection 
axis. We usually need to select a set of projection 
axis, , subject to the orthonormal constraints.  

BBWW SS 1−

WS

gZZ ........,1

 
2.2  Feature Extraction 
The optimal projection vectors of 2DPCA, 

 , are used for the first feature extraction. 
For a given image sample , 

dXX ...........,1

jA

                                           (17) .,........1, dkXAY kjj ==

The principal component vectors obtained are used to 
form an matrix , which is called 

the feature matrix or feature image of the image 
sample . We refer to as the principal component 

(vectors) of the sample . Here we can think of 
as a smaller image matrix with less noise from 

sample image . The Fisher feature 
vectors , form a 

dm× ]...........[ ,1 dj BBY =

jth
jA kB
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gTT ...........,1 gm× Fisher feature matrix 

for the image sample  as 
follows: 

],........[ 1 gj TTR = jth jA

                                            (18) .,........1, gpZYR pjj ==

It should be noted that each Fisher feature of 
Fisherface is a scalar, whereas the Fisher feature of 
2D-FPCA is a vector.  

 
2.3 Classification Method 
After a transformation by , a Fisher feature matrix is 
obtained for each image. Then, a nearest neighbour 
classifier is used for classification. Here, the distance 
between two feature matrices, and 

is defined as 
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Where 21 pp TT − denotes the Euclidean distance 
between the two principal component vectors 

and . Given a test sample , if 
and , we decide that . 

1pT 2
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Fig. 1 Five sample images of one subject in the ORL 
database 
 
3 Image Reconstruction  
Image reconstruction for the 2D-FPCA can be 
performed in the following way. The original image 
can be reconstructed using (17) and (18). 
From (17),  .,........1, dkXAY kjj ==

Let , then (17) can be written as  ]...........[ ,1 dXXU =

                                                                    (20) UAY jj =

Since are orthonormal, it is easy to obtain 
the reconstructed image of the sample :  
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But needs to be obtained from (18), let . 
We can rewrite (18) as: 
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Hence, , which is the same size as the 
image sample  and represents the 

reconstructed sub images . That is, the image 
 can be approximately reconstructed by adding up 

the first 

TT
jj UVRA =

~

jth jA

jA jth
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g and first d  sub images. In particular, 
when the selected number of principal component 

vectors dg = and nd = , we have , i.e., the 
image is completely reconstructed by its principal 
component vectors without any loss of information. 
Otherwise, if either 

jj AA =
~

dg < or , the reconstructed 

image  is an approximation for .  

nd <
~

jA jA

 
4 Analysis 
The new 2D-FPCA method was used for face 
recognition. The performance of our proposed 
algorithm was tested on a well-known face image 
database from the Olivetti Research Laboratory 
(ORL database). The ORL database [10] was used to 
evaluate the performance of the 2D-FPCA under 
conditions where the pose and number of 2DPCA 
eigenvectors varied.  
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4.1 Analysis using the ORL benchmark 

Database 
This publicly available database comprises of 40 
individuals, each providing 10 different images. For 
some subjects, the images were taken at different 
times. Furthermore, other within class variations 
such as facial expression e.g. eyes open, eyes closed, 
smiling, not smiling varied. Occlusion due to other 
accessories e.g. glasses was used for some subjects. 
All the images were taken against a dark background 
with the subjects in an upright, frontal position with 
tolerance for some side movement. The images were 
taken with a tolerance for tilting and rotation of the 
face of up to 20 degrees. The size of each image is 

pixels, with 256 grey levels per pixel. Five 
samples from the ORL database are shown in Fig. 1 

92112×

First, a face recognition experiment was performed 
using five image samples per class for training, and 
the remaining images for testing. The images were 
normalized to pixels. A total number of 
training samples and testing samples were both 200. 
The 2D-FPCA algorithm was used for feature 
extraction. Here, the size of the total image 
covariance , within image covariance , and 
between image covariance  is matrix, so it 
was relatively easy to evaluate the eigenvectors of . 
We chose the eigenvectors corresponding to the nine 
( = 9) largest eigenvalues, , as projection 

axis. After the projection of the image sample  
onto these axes using (17), we obtain nine principal 
component vectors . We then transformed 

and with the same eigenvectors using (6) and 
(7) to obtain and in the 2DPCA subspace. 

These new covariance matrices are called the 
within feature and between feature class covariance 
matrices, and . It is therefore relatively 
easier to calculate the eigenvectors of and 

compared to and . This results in faster 
and more accurate evaluation of and . The 
evaluation of  does not have to be as accurate as 
the evaluation of and , rather it is important 
to be able to keep a set of eigenvectors, , 
that will optimize the evaluation of (16) without a 
loss of much information. The eigenvectors of (16) 
contain discriminant information which is essential 
in face classification. In this analysis we kept only 

five eigenvectors, , from (16) corresponding 
to the five (

4656×

tG WS
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WS BS
dd ×

WWS BBS
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g = 5) largest eigenvalues. Finally, the 
Fisher features vectors are extracted using (18) and 
are used to form a gm × matrix .  jR

The magnitude of the eigenvalues obtained for the 
2DPCA and for the 2DFLD in the subspace is plotted 
in decreasing order in Fig. 2 and Fig. 3. 
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Fig. 2 The magnitude of the eigenvalues of 2DPCA 
in descending order  
 
Fig. 2 shows that the magnitude of the eigenvalues 
quickly converges to zero, which is exactly 
consistent with the results in [3, 4, and 7]. Fig. 3 
shows similar characteristics although it does not 
converge to zero in this case. Therefore, we can 
conclude that the energy of an image is concentrated 
on its first small number of component vectors. It is 
reasonable to use these component vectors to 
represent the image for identity recognition purposes.  

1 2 3 4 5 6 7 8 9
0

5

10

15

No. of eigenvalues

M
ag

ni
tu

de
 o

f e
ig
en

va
lu
es

 
Fig. 3 The magnitude of the eigenvalues for 2DFLD 
in descending order  
 
We evaluated the performance of 2D-FPCA under 
conditions where the number of eigenvectors for 
2DPCA ( ) is varied e.g. = 5, 7, 9, 11, 13. 
The recognition results are shown in Fig. 4. The 
graphs indicates that the performance of 2D-FPCA is 
optimized when d = 9. The accuracy decreases for 
values of d > 9 and d < 9. 2D-FPCA achieves a top 
recognition of 95.50 % at it’s optimum value ( =9) 
using five Fisher feature vectors. The lowest top 
recognition accuracy of 92.50 % was obtained when 

= 5 using five Fisher feature vectors.   

dXX ...........,1 d

d

d
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Fig. 4 The plot of the recognition accuracy (%) 
versus the dimension of the feature vector using in 
classification for varying d .  
 
We further compared the performance of Fisherface 
and 2D-FPCA for d = 9. 2D-FPCA and the 
Fisherface method were used for feature extraction. 
Finally, a nearest neighbour classifier was employed 
for classification. For 2D-FPCA, (19) was used to 
calculate the distance between two feature matrices. 
In Fisherface, the common Euclidean distance 
measure is adopted. Fig. 5 presents the recognition 
accuracy plotted against the dimensions of the feature 
matrix used in classification for 2D-FPCA and for the 
Fisherface approach. 2D-FPCA performed better 
than the Fisherface method. A top recognition 
accuracy of 95.50 % for the 2D-FPCA was achieved 
and 90.00 % for the Fisherface. The 2D-FPCA 
method is also superior to Fisherface in terms of 
computational efficiency for feature extraction since 
in the Fisherface approach is a matrix 
compared to a n  matrix for the 2D-FPCA. It is 
hard work to calculate the eigenvectors of a 

matrix where  and in this 
case. 
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Fig. 5 Perfomance of 2D-FPCA and Fisherface.  
 
Furthermore, the Fisherface approach selects 

= eigenvectors ( is the number of training 

images and C is the number of classes) from  to 
make non-singular whereas in 2D-FPCA we seek 
a value of d that optimizes the recognition accuracy 
while maintaining a faster speed. In the Fisherface 
approach and  are of the order 

=

d CN − N

tG

WS

BBS WWS

d CN − which can still be a large number depending 
on the size of the training sample compared to the 
optimal value of for 2D-FPCA. In this analysis the 
former was a 160

d
× 160 matrix compared to a 9 × 9 

matrix for 2D-FPCA. When compared to recently 
published results [7-13], 2D-FPCA has superior 
performance.  
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4   Conclusion 
A novel technique for image feature extraction and 
representation was developed using the two 
dimensional Fisher’s Linear Discriminant (2DFLD) 
combined with 2DPCA subspace. 2D-FPCA has 
many advantages over Fisherface. Firstly, since 
2D-FPCA is based on the image matrix, it is simpler 
and more straightforward to use for image feature 
extraction. Secondly, 2D-FPCA outperforms 
Fisherface in terms of recognition accuracy as it 
achieves a high recognition accuracy of 95.50% 
compared to 90.00% for Fisherface. Thirdly, 
2D-FPCA selects a smaller set of 2DPCA’s 
eigenvectors that optimizes the accuracy and speed. 
Finally, 2D-FPCA is computationally more efficient 
than the Fisherface and it improves the speed of 
image feature generation significantly.  
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