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Abstract:  Scheduling divisible workloads in distributed systems has been one of the interesting research 
problems over the last few years.  Most of the scheduling algorithms previously introduced are based on the 
master-worker paradigm. However, the majority of these algorithms assume that workers are dedicated 
machines, which is a wrong assumption in distributed environments such as Grids. In this work, we propose a 
dynamic scheduling methodology that takes into account the two prominent aspects of Grids: heterogeneity and 
dynamicity. The premise of our methodology is to use a prediction strategy to estimate the CPU speed of each 
Grid resource and subsequently feed this estimation to a static scheduling algorithm in order to divide the 
workload into suitable chunks in light of the available computational power. Such integration can produce 
dynamic scheduling algorithms that can handle the constantly changing properties of Grid resources.  

 

Key-Words: Grid Computing, Divisible Workload, Dynamic Scheduling Algorithm, CPU Speed Prediction.  
 
1   Introduction 
Grid computing is the computation model that 
combines all distributed computing resources and 
allocates them as needed for applications [20]. A 
critical issue for the performance of a Grid is the 
task-scheduling problem, that is, the problem of how 
to divide an application workload into many parts and 
assign them to computers of the Grid, here thereafter 
called workers, so that the execution time or 
makespan is minimum.   

There are many algorithms [1, 2, 3, 7] for scheduling 
divisible workloads (workloads that can be 
partitioned by the scheduler into arbitrary tasks or 
‘chunks’) that assume that computational resources 
are dedicated. This assumption renders these 
algorithms impractical in distributed environments 
such as Grids where computational resources are 
expected to serve local tasks in addition to the Grid 
tasks (i.e., non-dedicated workers).  Another 
shortcoming of these algorithms is that they do not 
take the dynamicity of Grids into account. In reality, 
the CPU and bandwidth utilization of workers vary 
over time. An efficient scheduling algorithm should 
factor in such changes in CPU and bandwidth 
capacity. Our main contribution in this work is a 
dynamic scheduling methodology that takes into 
account the heterogeneity of computational powers 
and their dynamicity over time.  

As depicted in Fig. 1, the Grid application (master) 
submits its divisible workload [7] to a scheduler for 

processing. In order for the scheduler to decide how 
to divide up the workload and decide on the size of 
the chuncks to be disseminated to each worker, it 
needs to know the available computational power 
(CPU speed) of each worker. Therefore, the 
scheduler queries a prediction component that 
performs short-term forecasting by collecting and 
analyzing a series of CPU utilization values. The 
modularity of this approach provides the flexibility of 
trying any scheduling algorithm integrated with any 
prediction mechanism. 

The rest of the paper is organized as follows. Section 
2 reviews some of the static and dynamic scheduling 
algorithms. Section 3 describes our heterogeneous 
computation platform. Section 4 briefly describes the 
static scheduling algorithm used in this work. The 
prediction mechanism that we use to predict the 
processor speed is explained in Section 5. We 
conclude and sketch future work in Section 6.  
 
2   Related work  
Single round algorithms [3, 15] are the early and 
simple way of scheduling and sharing workloads 
among workers. As shown in [3], for a large 
workload, the single-round approach is inefficient 
due to the idleness that the last worker incurs until it 
receives its chunk. The first multi-round scheduling 
algorithm was introduced in [7] but computation and 
communication startup costs were overlooked, which 
made this algorithm less realistic.  
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Some studies in distributed systems [1, 2, 3, 8] focus 
on affine models that account for computation and 
communication startup times. However, these 
algorithms are deemed static scheduling algorithms 
as they assume fixed and guaranteed availability of 
computational power of Grid workers, which is an 
impractical assumption because workers are typically 
non-dedicated processors. The RUMR algorithm [8] 
is designed to tolerate performance prediction errors 
by using the Factoring technique [15], however, all of 
the parameters are initially set and remain fixed 
throughout the scheduling process, which makes 
RUMR non-adaptive.  

Some researches such as [5, 6] have been aware of the 
importance of capturing the dynamic aspects of 
resources. However, they do not integrate their 
dynamic models with scheduling algorithms. In [4], 
the author uses an M/M/1 system to model the 
performance of a non-dedicated Grid worker as it 
processes local and Grid applications. However, this 
work does not handle divisible workloads.  

Our work presents a methodology in which we can 
predict the computational capacity of Grid workers 
and feed this information to a scheduling algorithm in 
order to process divisible workloads. 

3   Workload and Platform Models 
Our methodology assumes the master-worker 
paradigm for the Computational Grid. The platform 
topology we deal with consists of heterogeneous 
workers (processors) connected to a master by 
heterogeneous network links. We consider a Grid 
application (master) that generates a divisible 
workload [7], Wtotal, that needs to be split into chunks 
and disseminated to N workers for processing.  One 

of the important assumptions in our computational 
model is that workers are non-dedicated processors; 
an assumption which is closer to reality with respect 
to Grid environments. A worker should process local 
tasks as well as external Grid tasks.  Consequently, 
the computational power of a worker available to 
Grid tasks may vary over time due to the competition 
with local tasks. We assume that the time needed to 
process a chunk is proportional to its size. We assume 
that the master does not send chunks to workers 
simultaneously, although some pipelining of 
communication can occur [17]. An initial 
investigation of simultaneous transfers (e.g., WAN) 
is presented in [1]. We also assume that a worker can 
receive data from the network and perform 
computation simultaneously.  

We model the time required to process the workload 
chunki on workeri, 1≤ i ≤ N, as  
 

i

i
ii ES

chunkcLatTcomp +=  

where cLati is an initial overhead, in seconds, 
incurred by the processor, and ESi is the estimated 
computational speed of the worker in units of 
workload performed per second. The communication 
time of sending chunki to workeri  is 

i
i

i
ii tLat

B
chunknLatTcomm ++=  

where nLati is the initial cost (in seconds) of 
establishing a connection between the master and 
worker i; Bi is workeri’s bandwidth measured in units 
of workload per second; tLati is the post cost (in 
seconds) of terminating the connection (the master 
finishes pushing data on the network to worker i plus 
the time when worker i receives the last byte of data). 
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Fig. 1. Predicting worker’s performance helps scheduling algorithms be dynamic  
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We assume that the nLati and chunki/Bi portions of 
the transfer are not overlappable with other data 
transfer. However, tLati is overlappable. This model 
is flexible and can accommodate different 
computational scenarios used in previous research 
related to scheduling divisible workloads. 

 

4   The UMR Scheduling Algorithm 
Our work is an augmentation to the static UMR 
(Uniform Multi-Round ) algorithm that is explained 
in detail in [1, 2]. The UMR algorithm outperforms 
its two competitors, the Multi-installment (MI) [7] 
and One-Batch [17] algorithms, in an overwhelming 
majority of the cases. Here we briefly describe the 
UMR algorithm and explain how we propose to make 
it dynamic. Fig. 2 shows how UMR dispatches 
chunks of workloads in multiple rounds, so we have 
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where 

- roundj: amount of workload the master delivers 
during round j, 

- chunkj,i: the fraction of the total workload, Wtotal , 
that the master delivers to worker i in round j (1≤ i ≤ 
N ; 1≤ j ≤ M). M is the number of rounds required to 
dispatch all chunks to workers.  

The generic heterogeneous version of UMR splits the 
workload into chunks in such a way that each worker 
in roundj finishes its computation in a constant time, 
constj . That is: 
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By combining the last two equations, we obtain a 
simple induction relation on the chunk sizes,  
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where M (number of rounds) and chunk0 are 
unknown. ESi is the estimated speed of worker i.  
Typically, this speed fluctuates and varies over time. 
In order to handle this dynamicity, we predict the 
available CPU speed as explained in the next section. 
In light of the predicted CPU speed for each worker, 
the scheduling algorithm determines the sizes of 
workload chunks in each round. 

The next step in the UMR development is that we 
frame the problem as a constrained optimization 
problem: the objective is to minimize the makespan 
(total execution time) of a Grid application subject to 
the constraint that all the chunks sum up to the total 
workload. Using the Lagrange Multiplier method 
[18] we can obtain a system of two equations with M 
and chunk0 as unknowns. Full details of the solution 
for this optimization problem can be found in [2]. 

5   Worker Speed Prediction 
Most static scheduling algorithms [1, 2, 3, 7] rely on 
accurate estimation of the execution time of a task at 
a worker based on the assumption that the worker is a 
dedicated machine. This assumption is usually 
unrealistic in a Grid environment where workers are 
responsible for executing their local tasks and, if they 
become underutilized, they can handle incoming Grid 
tasks. Typically, the priority is given to local tasks. 
Consequently, and depending on the local load, we 
cannot always assume the availability of the full 
processing speed, S, to Grid tasks. Based on the 
measured CPU utilization, the ActualSpeed that is 
available for Grid tasks can be computed as follows: 

ActualSpeed = S * (100%-Utilization) 

Therefore, if we predict the Utilization of a worker, 
we can compute and send the anticipated processing 
speed (ES) to the scheduling algorithm. In this 
section, we use a time series prediction approach that 
has been empirically effective in predicting CPU load 
and utilization [5, 6]. It predicts a one-step-ahead 
value of utilization based on a fixed number of 
immediately preceding historical data measured at a 
constant-width time interval. We use the following 
notation: 
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UT: the measured utilization at measurement T, 

PT+1: the predicted utilization for measurement value 
UT+1, 

H: the number of historical data points used in the 
prediction, also called the window size. 

Mixed tendency-based prediction strategy  
The idea of this prediction strategy is based on the 
assumption that if the current value increases, the 
next value will also increase, and if the current value 
decreases, the next value will also decrease. 
Formally, we can write: 

if (UT-1 < UT)   // Tendency is increase 

{ 

IncrementValue Adaptation process;  

PT+1 = UT + IncrementValue; 

} 

else  if (UT-1 > UT)  

{ // Tendency is decrease 

DecrementFactor Adaptation process; 

PT+1 = UT × DecrementFactor; 

} 

 
 

Worker 
1 

Worker 
2 

Worker 
3 

Worker 
N 

round j round j+1 

chunk j,1 / B1 

Transfer 

Compute chunk j,1 / ES1 

chunk j+1,1 / B1 

chunk j+1,1 / ES1 

Transfer 

Compute chunk j,2 / ES2 chunk j+1,2 / ES2 

Transfer 

Compute chunk j,3 / ES3 chunk j+1,3 / ES3 

Transfer 

Compute chunk j,N / ESN 

chunk j,N / BN 

nLat3 

cLat3 

Time 

Fig. 2. UMR dispatches workload chunks in rounds 
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The tendency-based strategy has a possible source of 
error when the time series is going to a turning point 
and changes its direction, that is, when an increasing 
time series becomes decreasing one, or vice versa. To 
minimize this kind of error, we use the Mean as the 
threshold value. Let us consider the increasing time 
series, if the current value UT+1 is smaller than the 
threshold value, the variation will be adapted 
normally. If UT+1 is bigger than the threshold value, it 
is possible that the next step is a turning point. We 
calculate the value of PastGreater by the percentage 
of the history data that is greater than UT and use this 
value as the possibility of the event that T is not a 
turning point. 

The adaptation process in both of Increase and 
Decrease are similar. For example, the adaptation 
process for the IncrementValue can be described as 
follows 

Mean = ∑
=

×
n

i
in

1
)/1(  

RealIncValue =UT – UT-1 ; 

NormalInc = IncrementValue +  
(RealIncValue – IncrementValue) × AdaptDegree; 

if (UT < Mean)   //Normal adaptation 

 IncrementValue = NormalInc; 

Else { 

    PastGreater = (number of past data points > UT) / H; 

   TurningPointInc = IncrementValue × PastGreater; 

   IncrementValue = Min(NormalInc, TurningPointInc); 

} 

AdaptDegree can range from 0 to 1 and expresses the 
adaptation degree of the variation. The best values for 
input parameters such as AdaptDegree and 
DecrementFactor are determined empirically. 

6   Conclusion and Future Work 

In this paper we propose a methodology that can 
render a static scheduling algorithm dynamic by 
augmenting it with a prediction component that can 
forecast how the characteristics, such as the 
computational power, of a Grid resource change over 
time.  Based on the estimated performance of Grid 
resources, the scheduling algorithm can decide how 
to divide and distribute workload chunks. We use the 
UMR as the static scheduling algorithm and the 
tendency-based time series prediction as a prediction 
method. In the majority of experiments the 
performance of UMR is superior to its competitors 

[1]. The tendency-based prediction method manifests 
its success empirically too [5, 6]. We extrapolate that 
their integration can lead to a similar success with 
respect to capturing the dynamicity of the Grid. We 
are presently in the experimentation phase. In 
addition to the artificially generated data, we will use 
trace-driven simulation to validate our methodology. 
Real data will be obtained from the Network Weather 
Service (NWS) [19].  

As a sketch of future work, it is interesting to: 

- develop models that allow the master to establish 
simultaneous connections with the workers (e.g. 
WAN).  

- incorporate the cost of shipping the results from the 
workers back to the master. Most of the existing 
studies [1, 2, 3, 7, 8], including ours, assume this cost 
negligible.  

- study the performance of the Grid application when 
the computational cost is not directly proportional to 
the size of its workload.  

- predict changes in the bandwidth of each Grid 
worker and pass on such information to the scheduler.  

Finally, the proposed methodology is flexible enough 
to incorporate different static scheduling algorithms 
(e.g., [1, 2, 3]) with different prediction techniques 
(of various degrees of complexity). Therefore, we 
would like to experiment with a number of 
scheduling algorithms that collaborate with different 
types of predictors. 
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