

A Methodology for Dynamic Scheduling of Divisible
Workloads in Grid Environments

SAID ELNAFFAR‡ and NGUYEN THE LOC†

‡College of Information Technology, UAE University, Al-Ain, UAE
 elnaffar@uaeu.ac.ae http://faculty.uaeu.ac.ae/elnaffar

†Japan Advance Institute of Science and Technology, Japan

Abstract: Scheduling divisible workloads in distributed systems has been one of the interesting research
problems over the last few years. Most of the scheduling algorithms previously introduced are based on the
master-worker paradigm. However, the majority of these algorithms assume that workers are dedicated
machines, which is a wrong assumption in distributed environments such as Grids. In this work, we propose a
dynamic scheduling methodology that takes into account the two prominent aspects of Grids: heterogeneity and
dynamicity. The premise of our methodology is to use a prediction strategy to estimate the CPU speed of each
Grid resource and subsequently feed this estimation to a static scheduling algorithm in order to divide the
workload into suitable chunks in light of the available computational power. Such integration can produce
dynamic scheduling algorithms that can handle the constantly changing properties of Grid resources.

Key-Words: Grid Computing, Divisible Workload, Dynamic Scheduling Algorithm, CPU Speed Prediction.

1 Introduction
Grid computing is the computation model that
combines all distributed computing resources and
allocates them as needed for applications [20]. A
critical issue for the performance of a Grid is the
task-scheduling problem, that is, the problem of how
to divide an application workload into many parts and
assign them to computers of the Grid, here thereafter
called workers, so that the execution time or
makespan is minimum.

There are many algorithms [1, 2, 3, 7] for scheduling
divisible workloads (workloads that can be
partitioned by the scheduler into arbitrary tasks or
‘chunks’) that assume that computational resources
are dedicated. This assumption renders these
algorithms impractical in distributed environments
such as Grids where computational resources are
expected to serve local tasks in addition to the Grid
tasks (i.e., non-dedicated workers). Another
shortcoming of these algorithms is that they do not
take the dynamicity of Grids into account. In reality,
the CPU and bandwidth utilization of workers vary
over time. An efficient scheduling algorithm should
factor in such changes in CPU and bandwidth
capacity. Our main contribution in this work is a
dynamic scheduling methodology that takes into
account the heterogeneity of computational powers
and their dynamicity over time.

As depicted in Fig. 1, the Grid application (master)
submits its divisible workload [7] to a scheduler for

processing. In order for the scheduler to decide how
to divide up the workload and decide on the size of
the chuncks to be disseminated to each worker, it
needs to know the available computational power
(CPU speed) of each worker. Therefore, the
scheduler queries a prediction component that
performs short-term forecasting by collecting and
analyzing a series of CPU utilization values. The
modularity of this approach provides the flexibility of
trying any scheduling algorithm integrated with any
prediction mechanism.

The rest of the paper is organized as follows. Section
2 reviews some of the static and dynamic scheduling
algorithms. Section 3 describes our heterogeneous
computation platform. Section 4 briefly describes the
static scheduling algorithm used in this work. The
prediction mechanism that we use to predict the
processor speed is explained in Section 5. We
conclude and sketch future work in Section 6.

2 Related work
Single round algorithms [3, 15] are the early and
simple way of scheduling and sharing workloads
among workers. As shown in [3], for a large
workload, the single-round approach is inefficient
due to the idleness that the last worker incurs until it
receives its chunk. The first multi-round scheduling
algorithm was introduced in [7] but computation and
communication startup costs were overlooked, which
made this algorithm less realistic.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

Some studies in distributed systems [1, 2, 3, 8] focus
on affine models that account for computation and
communication startup times. However, these
algorithms are deemed static scheduling algorithms
as they assume fixed and guaranteed availability of
computational power of Grid workers, which is an
impractical assumption because workers are typically
non-dedicated processors. The RUMR algorithm [8]
is designed to tolerate performance prediction errors
by using the Factoring technique [15], however, all of
the parameters are initially set and remain fixed
throughout the scheduling process, which makes
RUMR non-adaptive.

Some researches such as [5, 6] have been aware of the
importance of capturing the dynamic aspects of
resources. However, they do not integrate their
dynamic models with scheduling algorithms. In [4],
the author uses an M/M/1 system to model the
performance of a non-dedicated Grid worker as it
processes local and Grid applications. However, this
work does not handle divisible workloads.

Our work presents a methodology in which we can
predict the computational capacity of Grid workers
and feed this information to a scheduling algorithm in
order to process divisible workloads.

3 Workload and Platform Models
Our methodology assumes the master-worker
paradigm for the Computational Grid. The platform
topology we deal with consists of heterogeneous
workers (processors) connected to a master by
heterogeneous network links. We consider a Grid
application (master) that generates a divisible
workload [7], Wtotal, that needs to be split into chunks
and disseminated to N workers for processing. One

of the important assumptions in our computational
model is that workers are non-dedicated processors;
an assumption which is closer to reality with respect
to Grid environments. A worker should process local
tasks as well as external Grid tasks. Consequently,
the computational power of a worker available to
Grid tasks may vary over time due to the competition
with local tasks. We assume that the time needed to
process a chunk is proportional to its size. We assume
that the master does not send chunks to workers
simultaneously, although some pipelining of
communication can occur [17]. An initial
investigation of simultaneous transfers (e.g., WAN)
is presented in [1]. We also assume that a worker can
receive data from the network and perform
computation simultaneously.

We model the time required to process the workload
chunki on workeri, 1≤ i ≤ N, as

i

i
ii ES

chunkcLatTcomp +=

where cLati is an initial overhead, in seconds,
incurred by the processor, and ESi is the estimated
computational speed of the worker in units of
workload performed per second. The communication
time of sending chunki to workeri is

i
i

i
ii tLat

B
chunknLatTcomm ++=

where nLati is the initial cost (in seconds) of
establishing a connection between the master and
worker i; Bi is workeri’s bandwidth measured in units
of workload per second; tLati is the post cost (in
seconds) of terminating the connection (the master
finishes pushing data on the network to worker i plus
the time when worker i receives the last byte of data).

Divisible
Workload

Measured Utilization

Workload chunk

Predicted
CPU Speed

Scheduler CPU Speed
Predictor

A Worker

Master

Fig. 1. Predicting worker’s performance helps scheduling algorithms be dynamic

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

We assume that the nLati and chunki/Bi portions of
the transfer are not overlappable with other data
transfer. However, tLati is overlappable. This model
is flexible and can accommodate different
computational scenarios used in previous research
related to scheduling divisible workloads.

4 The UMR Scheduling Algorithm
Our work is an augmentation to the static UMR
(Uniform Multi-Round) algorithm that is explained
in detail in [1, 2]. The UMR algorithm outperforms
its two competitors, the Multi-installment (MI) [7]
and One-Batch [17] algorithms, in an overwhelming
majority of the cases. Here we briefly describe the
UMR algorithm and explain how we propose to make
it dynamic. Fig. 2 shows how UMR dispatches
chunks of workloads in multiple rounds, so we have

∑
=

=
M

i
jtotal roundW

1

∑
=

=
N

i
ijj chunkround

1
,

where

- roundj: amount of workload the master delivers
during round j,

- chunkj,i: the fraction of the total workload, Wtotal ,
that the master delivers to worker i in round j (1≤ i ≤
N ; 1≤ j ≤ M). M is the number of rounds required to
dispatch all chunks to workers.

The generic heterogeneous version of UMR splits the
workload into chunks in such a way that each worker
in roundj finishes its computation in a constant time,
constj . That is:

)..1(, Niconst
ES

chunk
cLat j

i

ij
i =∀=+

By combining the last two equations, we obtain a
simple induction relation on the chunk sizes,

ijiij roundchunk βα +×=,

such that

()∑
∑

∑

=

=

=

×−×=

=

N

k
iikkN

k
k

i
i

N

k
k

i
i

cLatEScLatES
ES

ES

ES

ES

1

1

1

β

α

where M (number of rounds) and chunk0 are
unknown. ESi is the estimated speed of worker i.
Typically, this speed fluctuates and varies over time.
In order to handle this dynamicity, we predict the
available CPU speed as explained in the next section.
In light of the predicted CPU speed for each worker,
the scheduling algorithm determines the sizes of
workload chunks in each round.

The next step in the UMR development is that we
frame the problem as a constrained optimization
problem: the objective is to minimize the makespan
(total execution time) of a Grid application subject to
the constraint that all the chunks sum up to the total
workload. Using the Lagrange Multiplier method
[18] we can obtain a system of two equations with M
and chunk0 as unknowns. Full details of the solution
for this optimization problem can be found in [2].

5 Worker Speed Prediction
Most static scheduling algorithms [1, 2, 3, 7] rely on
accurate estimation of the execution time of a task at
a worker based on the assumption that the worker is a
dedicated machine. This assumption is usually
unrealistic in a Grid environment where workers are
responsible for executing their local tasks and, if they
become underutilized, they can handle incoming Grid
tasks. Typically, the priority is given to local tasks.
Consequently, and depending on the local load, we
cannot always assume the availability of the full
processing speed, S, to Grid tasks. Based on the
measured CPU utilization, the ActualSpeed that is
available for Grid tasks can be computed as follows:

ActualSpeed = S * (100%-Utilization)

Therefore, if we predict the Utilization of a worker,
we can compute and send the anticipated processing
speed (ES) to the scheduling algorithm. In this
section, we use a time series prediction approach that
has been empirically effective in predicting CPU load
and utilization [5, 6]. It predicts a one-step-ahead
value of utilization based on a fixed number of
immediately preceding historical data measured at a
constant-width time interval. We use the following
notation:

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

UT: the measured utilization at measurement T,

PT+1: the predicted utilization for measurement value
UT+1,

H: the number of historical data points used in the
prediction, also called the window size.

Mixed tendency-based prediction strategy
The idea of this prediction strategy is based on the
assumption that if the current value increases, the
next value will also increase, and if the current value
decreases, the next value will also decrease.
Formally, we can write:

if (UT-1 < UT) // Tendency is increase

{

IncrementValue Adaptation process;

PT+1 = UT + IncrementValue;

}

else if (UT-1 > UT)

{ // Tendency is decrease

DecrementFactor Adaptation process;

PT+1 = UT × DecrementFactor;

}

Worker
1

Worker
2

Worker
3

Worker
N

round j round j+1

chunk j,1 / B1

Transfer

Compute chunk j,1 / ES1

chunk j+1,1 / B1

chunk j+1,1 / ES1

Transfer

Compute chunk j,2 / ES2 chunk j+1,2 / ES2

Transfer

Compute chunk j,3 / ES3 chunk j+1,3 / ES3

Transfer

Compute chunk j,N / ESN

chunk j,N / BN

nLat3

cLat3

Time

Fig. 2. UMR dispatches workload chunks in rounds

TC TA TB

chunk j+1,N / BN

.

.

.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

The tendency-based strategy has a possible source of
error when the time series is going to a turning point
and changes its direction, that is, when an increasing
time series becomes decreasing one, or vice versa. To
minimize this kind of error, we use the Mean as the
threshold value. Let us consider the increasing time
series, if the current value UT+1 is smaller than the
threshold value, the variation will be adapted
normally. If UT+1 is bigger than the threshold value, it
is possible that the next step is a turning point. We
calculate the value of PastGreater by the percentage
of the history data that is greater than UT and use this
value as the possibility of the event that T is not a
turning point.

The adaptation process in both of Increase and
Decrease are similar. For example, the adaptation
process for the IncrementValue can be described as
follows

Mean = ∑
=

×
n

i
in

1
)/1(

RealIncValue =UT – UT-1 ;

NormalInc = IncrementValue +
(RealIncValue – IncrementValue) × AdaptDegree;

if (UT < Mean) //Normal adaptation

 IncrementValue = NormalInc;

Else {

 PastGreater = (number of past data points > UT) / H;

 TurningPointInc = IncrementValue × PastGreater;

 IncrementValue = Min(NormalInc, TurningPointInc);

}

AdaptDegree can range from 0 to 1 and expresses the
adaptation degree of the variation. The best values for
input parameters such as AdaptDegree and
DecrementFactor are determined empirically.

6 Conclusion and Future Work

In this paper we propose a methodology that can
render a static scheduling algorithm dynamic by
augmenting it with a prediction component that can
forecast how the characteristics, such as the
computational power, of a Grid resource change over
time. Based on the estimated performance of Grid
resources, the scheduling algorithm can decide how
to divide and distribute workload chunks. We use the
UMR as the static scheduling algorithm and the
tendency-based time series prediction as a prediction
method. In the majority of experiments the
performance of UMR is superior to its competitors

[1]. The tendency-based prediction method manifests
its success empirically too [5, 6]. We extrapolate that
their integration can lead to a similar success with
respect to capturing the dynamicity of the Grid. We
are presently in the experimentation phase. In
addition to the artificially generated data, we will use
trace-driven simulation to validate our methodology.
Real data will be obtained from the Network Weather
Service (NWS) [19].

As a sketch of future work, it is interesting to:

- develop models that allow the master to establish
simultaneous connections with the workers (e.g.
WAN).

- incorporate the cost of shipping the results from the
workers back to the master. Most of the existing
studies [1, 2, 3, 7, 8], including ours, assume this cost
negligible.

- study the performance of the Grid application when
the computational cost is not directly proportional to
the size of its workload.

- predict changes in the bandwidth of each Grid
worker and pass on such information to the scheduler.

Finally, the proposed methodology is flexible enough
to incorporate different static scheduling algorithms
(e.g., [1, 2, 3]) with different prediction techniques
(of various degrees of complexity). Therefore, we
would like to experiment with a number of
scheduling algorithms that collaborate with different
types of predictors.

Acknowledgement
We would like to express our sincere appreciation to
Yang Yang for his cooperation with respect to the
UMR algorithm. We also would like to thank Wendy
Powley for proofreading our paper.

References:
[1]Yang Yang and Henri Casanova, UMR: A

Multi-Round Algorithm for Scheduling Divisible
Workloads, Proceeding of the International
Parallel and Distributed Processing Symposium
(IPDPS’03), Nice, France, April 2003.

[2] Yang Yang and Henri Casanova, A Multi-Round
Algorithm for Scheduling Divisible Workload
Applications: Analysis and Experimental
Evaluation, Technical Report CS2002-0721,
Dept. of Computer Science and Engineering,
University of California, 2002.

[3] O. Beaumont, A. Legrand, and Y. Robert,
Scheduling Divisible Workloads on

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

Heterogeneous Platforms, Parallel Computing,
Volume 29 , Issue 9 September 2003.

[4]Y. Zhang, Y. Inoguchi, and H. Shen, A Dynamic
Task Scheduling Algorithm for Grid Computing
System, Second International Symposium on
Parallel and Distributed Processing and
Applications (ISPA'2004), Hong Kong Dec.
2004.

[5] L. Yang, J.M. Schopf, and I. Foster, Conservative
Scheduling: Using Predicted Variance to Improve
Scheduling Decision in Dynamic Environments,
SuperComputing 2003, Phoenix, Arizona USA
November 2003.

[6] L.Yang, I. Foster, and J.M. Schopf, Homeostatic
and Tendency-Based CPU Load Predictions,
International Parallel and Distributed
Processing Symposium (IPDPS'03), Nice,
France, April 2003.

[7] V. Bharadwaj, D. Ghose, V. Mani, and T.G.
Robertazzi, Scheduling Divisible Loads in
Parallel and Distributed Systems, IEEE Computer
Society Press, 1996.

[8] Yang Yang and Henri Casanova, RUMR: Robust
Scheduling for Divisible Workloads, 12th IEEE
International Symposium on High Performance
Distributed Computing (HPDC'03), Seattle,
Washington, USA 2003.

[9] A. Papoulis and S.U. Pillai, Probbility, Random
Variables and Stochastic Processes, Fourth
Edition McGraw-Hill , 2002.

[10] R. Wolski, Dynamically Forecasting Network
Performance Using the Network Weather
Service, Journal of Cluster Computing, 1998

[11] H.J. Dail, A Modular Framework for Adaptive
Scheduling in Grid Application Development
Environments, Computer Science, University of
California, California, San Diego, 2001.

[12] C. Liu, L. Yang, I. Foster and D. Angulo,
Design and Evaluation of a Resource Selection
Framework for Grid Applications, 11th IEEE
International Symposium on High-Performance
Distributed Computing (HPDC 11), Edinburgh,
Scotland, 2002.

[13] H. Casanova, A. Legrand, D. Zagorodnov, and
F. Berman, Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments,
Proceeding of the 9th Heterogeneous Computing
Workshop (HCW’2000), May 2000.

[14] T. Braun, H. Siegel, and N.Beck, A Comparison
of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous
Distributed Computing Systems, Journal of
Parallel and Distributed Computing, 61:810-837,
2001.

[15] J. Błazewicz, M. Drozdowski, and M.
Markiewicz, Divisible Task Scheduling-Concept
and Verification, Parallel Computing, 25:87-98,
1999.

[16] S. Flynn Hummel, Factoring : a Method for
Scheduling Parallel Loops, Communications of
the ACM, 35(8):90–101, August 1992.

[17] A. L. Rosenberg, Sharing Partitionable
Workloads in Heterogeneous NOWs: Greedier Is
Not Better, Proceedings of the 3rd IEEE
International Conference on Cluster Computing
(Cluster 2001), pages 124–131,2001.

[18] D. Bertsekas, Constrained Optimization and
Lagrange Multiplier Methods, Athena Scientific,
Belmont, Mass., 1996.

[19] R. Wolski, N. Spring, and J. Hayes, The
Network Weather Service: A Distributed
Resource Performance Forecasting Service for
Metacomputing, Journal of Future Generation
Computing Systems, pp. 757-768, 1998.

[20] I. Foster and C. Kesselman (eds.), The Grid 2:
Blueprint for a new Computing Infrastructure,
Morgan Kaufmann, 2004.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp49-54)

