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Abstract:-In the paper we study a new class of Takagi-Sugeno fuzzy systems. Due to incorporation of various 
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results are illustrated on a typical benchmark problem. 
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11..  IInnttrroodduuccttiioonn  
The construction of most neuro-fuzzy structures 
[2, 3, 4, 6-8] is based on the Mamdani-type 
reasoning, describing by a t-norm, e.g. product or 
min. An alternative approach [1, 10-13, 17] is based 
on the logical method. Another method is based on 
the Takagi-Sugeno scheme [15] which involves a 
functional dependence between IF and THEN parts 
of the rules in the form 

 ( ) ( )( )n
rrrr xxxfyisR ,,,THENIF: 21 K=Ax  (1) 

where [ ] Xx ∈= nxx ,,1 K , Y∈y , 
r

n
rrr AAAA ×××= K21 , r

n
rr AAA ,,, 21 K  are fuzzy 

sets characterized by membership functions ( )iA
xr

i
µ , 

ni ,,1K= , Nr ,,1K= . The aggregation in the 
Takagi-Sugeno model is described by formula 
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where ( ) ( ){ }iAi

n

A
xTµ r

i
r µ

1=
=x  and T  is a t-norm. 

  Model (2) has been extensively studied in many 
papers (see e.g. [3]). In this paper we propose an 
extension of formula (2). Due to incorporation of 
various parameters and weights into construction of 
Takagi-Sugeno system the performance of our 
structure is significantly improved comparing with 
previous results [5, 9, 10]. 

22..  FFlleexxiibbiilliittyy  iinn  FFuuzzzzyy  SSyysstteemmss  
2.1. Weighted triangular norms 

We will explain the idea of weighted triangular 
norms. The weighted t-norm in the two-dimensional 
case is defined as follows 

 { } { } { }{ } ,1,,1 22112121 awSawST,w;w,aaT −−=∗  (3) 

Parameters 1a  and 2a  can be interpreted as 

antecedents of the rule. The weights 1w  and 2w  are 
corresponding certainties (credibilities) of both 
antecedents in (3). Observe that 
• If 121 == ww  then the weighted t-norm is 

reduced to the standard t-norm. In the context 
of linguistic values we assign the truth to both 
antecedents 1a  and 2a  of the rule. 

• If 01 =w  then 
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Therefore, antecedent 1a  is discarded since its 

certainty is equal to 0. Similarly if 02 =w  then 

antecedent 2a  vanishes, i.e. 

 
{ } { } { }{ }

{ }{ }
{ }11

11

211121

1

11

110

,awS

,,awST

,a,S,awST,;w,aaT

−=
−=
−=∗

 (5) 

If 10 1 << w  and 10 2 << w  then we assume a partial 

certainty of antecedents 1a  and 2a . It is easily seen 
that formula (3) can be applied to the evaluation of 
an importance of input linguistic values. The values 
of weights will be depicted in the form of diagrams. 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp274-277)



 

In Fig. 1 we show an example of a diagram for 
a linear Takagi-Sugeno system having three rules 
( 3=N ) and two inputs ( 2=n ) which is given by 
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where τ
riw , , ni ,,2,1 K= , Nr ,,2,1 K= , def

rw , 

Nr ,,2,1 K= , and τ
ric , , ni ,,2,0 K= , Nr ,,2,1 K= , 

are certainty weights of antecedents, certainty 
weights of rules and parameters of consequences, 
respectively. 

2,,1K=i

3,
,1

K

=
k

defwτw

 

Fig. 1. Exemplary weights representation in a fuzzy 
system with three rules and two inputs (dark areas 

correspond to low values of weights and vice versa) 

Observe that the second rule is “weaker” than the 
others and the linguistic value 1

2A  corresponds to 

a low value of τ
1,2w . 

Example 1. The algebraic t-norm with weighted 
arguments is given as follows 

{ } ( )( ) ( )( )22112121 1111,, awaww;waaTP −−−−=∗  (7) 

The 3D plots of function (7) are depicted in Fig. 2. 
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Fig. 2. 3D plots of function (7) for 5001 .w =  and  

a) 0002 .w = , b) 5002 .w = , c) 7502 .w = , d) 0012 .w =  

2.2. Soft triangular norms 

In this paper we apply the concept of soft fuzzy 
norms proposed by Yager and Filev [17] to the 
construction of Takagi-Sugeno systems. Let 

naa ,,1 K  be numbers in the unit interval that are to 

be aggregated. The soft version of a t-norm is given 
by 
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where [ ] 1,0∈α . Formula (8) allows to balance 
between the arithmetic average aggregator and the 
triangular norm aggregator depending on 
parameter α . 
Example 2. The soft algebraic t-norm is described as 
follows 
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The 3D plots of function (9) are depicted in Fig. 3. 
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Fig. 3. 3D plots of function (9) 
for a) 000.=α , b) 500.=α , c) 750.=α , d) 001.=α  
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2.3. Parameterized triangular norms 

Most fuzzy systems are based on non-parameterized 
triangular norms, e.g. algebraic or Łukasiewicz. In 
this paper we suggest an application of 
parameterized t-norms [4], denoted by 

{ }paaaT n ;,,, 21 K

t

, for the construction of 

Takagi-Sugeno systems. The hyperplanes 
corresponding to them can be adjusted in the process 
of learning of parameter p . 
Example 3. The parameterized t-norm of Yager’s is 
given as follows ( 0>p ) 

 { } ( ) ( ){ }p pp aa;paaT 2121 11,1min1, −+−−=
t

 (10) 

The 3D plots of function (10) are depicted in Fig. 4. 
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Fig. 4. 3D plots of function (10) 
for a) 1.0=p , b) 5.0=p , c) 0.1=p , d) 0.10=p  

33..  FFlleexxiibbllee  FFuuzzzzyy  SSyysstteemmss  
We will now incorporate flexibility parameters and 
weights described in section 2 to the construction of 
flexible Takagi-Sugeno neuro-fuzzy systems. We 
consider multi-input, single-output fuzzy system 
mapping YX → , where nRX ⊂  and RY ⊂ . 
Assume the following the rule base 
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where Nr ,,2,1 K= . The construction of a new 
Takagi-Sugeno systems will be based on the 
following parameters and weights: 
• fuzzy sets k

n
kk AAA ,,, 21 K  characterized by 

membership functions ( )iA
xk

i
µ  with unknown 

parameters to be learnt; 

• parameters f
rc ,0 , f

ric , , ni ,,2,1 K= , 

Nr ,,2,1 K= , in linear models describing 
consequences; 

• certainty weights τ
riw , , ni ,,2,1 K= , 

Nr ,,2,1 K= , describing importance of 
antecedents in the rules; 

• parameters τ
rp , Nr ,,2,1 K= , of 

parameterized families of t-norms; 
• softness parameters τα r , Nr ,,2,1 K= , in 

connectives of antecedents; 
• certainty weights def

rw , Nr ,,2,1 K= , 
describing importance of the rules. 

Consequently, the general architecture of flexible 
Takagi-Sugeno systems studied in the paper can be 
presented in the form 
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and depicted in Fig. 5. 
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Fig. 5. The scheme of system (12) 

44..  SSiimmuullaattiioonn  RReessuullttss  
The flexible Takagi-Sugeno system, described by 
formula (12), is simulated on the Chemical Plant 
problem [14]. 
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  We deal with a model of an operator's control of 
a chemical plant. The plant produces polymers by 
polymerisating some monomers. Since the start-up 
of the plant is very complicated, men have to 
perform the manual operations at the plant. Three 
continuous inputs are chosen for controlling the 
system: monomer concentration, change of monomer 
concentration and monomer flow rate. The output is 
the set point for the monomer flow rate. 
  The experimental results for the Chemical Plant 
problem are depicted in Tables 1 and 2 for the 
not-parameterised (algebraic) and parameterised 
(Yager) t-norms, respectively. The final values (after 
learning) of weights [ ] 10,wτ

i,r ∈  and [ ] 10def ,wr ∈ , 

3,,1K=i , 6,,1K=r , are shown in Fig. 6. 
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Fig. 6. Weights representation in the Chemical Plant 
problem for system (12) and a)soft weighted product 

t-norm, b)soft weighted Yager t-norm 

Table 1. Values of flexible parameters  

System with  
algebraic t-norms 

System with  
Yager’s t-norms rule 

 τrα   τrα   τrp  

1 1.00 0.99 4.9952 

2 0.98 0.98 4.9617 

3 0.99 1.00 4.9882 

4 0.98 0.97 5.0290 

5 0.97 1.00 5.0064 

6 1.00 0.98 4.9973 

Table 2. Experimental results 

Type of the system 
RMSE  

(learning sequence) 

System with algebraic t-norms 0.0042 

System with Yager’s t-norms 0.0035 

Table 3. Comparison table 

Lin and Cunningham [5] 0.0079 
Pal and Chakraborty [9] 0.0092 

Rutkowski [10] 0.0042 

our result 0.0035 

55..  FFiinnaall  rreemmaarrkkss  
In the paper we studied flexible Takagi-Sugeno 
neuro-fuzzy systems. The results were illustrated on 
the Chemical Plant problem. Table 3 shows that, we 
achieved the best performance comparing with 
previous approaches. 
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