
ADAM: Architecture-Driven Multi-Agent Systems

Development Methods

HONG SOON YIM1, HABIN LEE2, SUNG JOO PARK1
1 Graduate School of Management

Korea Advanced Institute of Science and Technology
207-43 Cheongryangri2-dong, Dongdaemoon-gu, Seoul, 130-722

KOREA
2Intelligent Systems Research & Innovation Centre

British Telecommunications plc.
PP12/MLB1 B62 Adastral Park, Ipswich, IP5 3RE,

UNITED KINGDOM

Abstract: This paper introduces ADAM: an Architecture-Driven multi-Agent systems development Method.
ADAM addresses structural issues such as the structuring of domains, the agent’s organization with roles, the
agent’s interaction with control mechanisms, and the reusability of the model. These issues help in the design of
reusable and well-structured MAS based on multi-agent architecture. ADAM extends UML (Unified Modeling
Language) to support a set of concepts specific to MAS, such as loosely coupled agent organization and
protocol-based agent interaction, and also the formal semantics of extensions. The extension allows one to use
the original object-oriented method for ADAM without syntactic or semantic changes.

Key-Words: - multi-agent systems, architecture, object-oriented development methods, interaction pattern,
UML, agent oriented software engineering

1 Introduction
As the number of agents increases in a Multi-agetn
system (MAS), the system becomes more complex
with increased interactions between agents within the
system. The interaction or dependency does not only
make the analysis difficult, but also becomes an
obstacle to the reusability, extensibility, and
maintainability of the system. Given this, the main
design problem is specifying an overall agent
structure rather than the properties and capabilities of
individual agents [4]. The structural issues of the
MAS include structuring a group of agents,
role-based agent organization, control mechanisms
for agent collaborations, and model transferability
across other systems. Addressing these issues help
one to construct a well-defined agent structure that
improves reusability, extensibility, and
maintainability, and also increases analyzability of
the system.
This paper details ADAM (Architecture Driven
Multi-agent Methodology) as a MAS development
methodology wherein interaction pattern is a key
concept through all sub phases of it. For this,
software architecture concept is used as a means to
model interaction patterns. The methodology shows
how interaction patterns can be modeled using
architecture concept in analysis and design phases.

This paper is composed as follows: in section 2,
related works are reviewed. Section 3 gives an
overview of the main concepts used in ADAM.
Section 4 gives illustrative examples, and the
contribution of the paper is summarized in section 5.

2 Literature Review
Software architecture description is a high-level
model of software systems with a collection of
computational components and their interactions
which are the connectors such as procedure calls,
event broadcasts, database queries and pipes. The
advantages of software architecture lay within
providing mutual communications, early design
decisions, and transferable abstractions of a system
[4]. In addition, it provides a clean separation
between components and their interactions in the
system. The separation makes complex systems more
tractable, analyzable, and reusable [11].
For the design of an architectural model of MAS,
ADL (Architecture Description Languages) and
techniques such as a design pattern can be used. The
ADL, however, focuses only on architectural
description without mentioning development
artifacts such as the modeling of the system
development [4, 11]. An exception is the work of

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

Robbins et al. [11] which integrates the ADL with the
development methodology, UML.
The research on agent architecture can be classified
into two categories: internal architecture of a single
agent and the architecture of a multi-agent system.
Kinny et al. [9] considers a logical model, BDI
(Belief, Desire, and Intention), as an architecture of a
single agent. In MAS, multi-agent architecture plays
an important role in defining relationships and
collaboration among agents [1]. The multi-agent
architecture, as used in most MAS, is outlined in
informal diagrams [1, 13] which focus on
implementation rather than the analysis, design, and
evaluation of the architecture.
Due to the similarities between an object and an
agent, most of the current AOMs use the notations
and techniques of classical OOMs (Object-Oriented
Methodologies) with a slight extension of modeling
elements [2,6,7,9]. The classical OOM include the
OMT (Object Modeling Technique) [12] and the
OOSE (Object-Oriented Software Engineering) [7].
The agent not only has attributes and methods, but
also a mental state and concepts such as a plan, a
goal, and an intention. It communicates with other
agents by structured or meaningful messages and
uses protocols to collaborate, while messages
between objects are passed simply for the purposes of
method invocation in the normal object-oriented
approach [5].
Burmeister [2] and Kinny et al. [9] extended the
OMT. Kendall et al. combined the OOSE and IDEF
(Integration DEfinition for Function modeling) for
agent system modeling. Iglesias et al. [6] suggested
the MAS-CommonKADS that is an integrated AOM
of the OMT and the CommonKADS, a methodology
for the development of knowledge-based systems.
Since the extensions fail to adequately capture the
characteristics of MAS such as the agent’s
autonomous behavior and the complexity of the
organizational structure, the Gaia [15] and the MaSE
(Multi-agent Systems Engineering) [3]
methodologies proposed their own special notations
and semantics for agent-oriented systems. Recently,
an agent-specific extension of UML, the AUML
(Agent Unified Modeling Language), has been
suggested [10]. It focuses on the representation of the
agent’s behavior based on agent interaction protocol
and introduces techniques for representing the
characteristics of MAS using UML diagrams, such as
the behavior of the agent role and physical
distribution.

3 ADAM (Architecture-Driven multi-Agent
systems development Method)
ADAM models can be classified into two categories
of layers, i.e. the architecture and application layers.
The generic models of ADAM reside in the
architecture layer. The models in the application
layer can be considered as instantiations of the
models in the architecture layer. The generic models
of ADAM include the models for problem structure,
the agent organization, the agent interactions and the
control states which extend UML. In particular, the
semantics of ADAM modeling constraints and
elements are represented by the OCL (Object
Constraints Language) of UML. The semantics are
restricted by constraints, tagged values, and
stereotypes. Constraints place restrictions on design
elements. Tagged values allow new attributes to be
added to particular elements of the model.
Stereotypes allow the addition of new elements
representing a subclass of an existing element. Table
1 shows the overall model and modeling elements of
ADAM.

3.1 The Problem Structure Model
 The Problem Structure model represents how the
overall problem is divided into sub- problems and
how they are related to each other. A sub-problem is
represented by a MAA (Multi-Agent Architecture).
The Problem Structure model consists of a set of use
cases and MAAs represented by collaboration that is
a modeling element to describe a general
arrangement of classes that interact within a context
to implement a behavior such as use case or operation
[1]. There are semantic restrictions in the problem
structure model as follows:
The Stereotype MAA is an instance of meta-class
Collaboration. (1) Parameters of MAA are ArRole
and ArCollaboration. (2) Parameters of MAA should
have one or more ArRole. (3) Parameters of MAA
should have one or more ArCollaboration.
The Stereotype Problem Structure model is an
instance of a meta-class Model. (1) Problem
Structure model is tagged for identifying
corresponding abstraction level. (2) The Problem
Structure model contains the stereotyped
collaboration, MAA.
The MAA consists of three sub models: the agent
organization, the agent interaction, and the control
state models.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

Table 1. Abstracts of ADAM model and modeling elements
Stereotyped Modeling Elements

Models Diagrams
Architecture View Application View

Semantic
Restrictions

Problem Structure Use Case MAA Use Case MAA, Model

Agent Organization Class
ArRole,
ArCollaboration,
ArParticipate

ArAgent,
ArRole
ArCollaboration,
ArParticipate,
ArPlay

Interface,
Component,
Connector,
Relationship,
Model

Agent Interaction Sequence or
Collaboration

ArRole,
ArCollaboration,
ArMessage

ArAgent,
ArCollaboration,
ArMessage

Message,
Model

Control State State-Transition ArMessage ArMessage Model

3.2 The Agent Organization Model
The Agent Organization model captures architectural
aspect of the MAA or use case using a class diagram.
For representing agent’s organization, the Agent
Organization model introduces a collaboration class
as a connector class that connects between
components such as agent or role classes. The
collaboration class controls interactions among
participating role classes according to the interaction
protocol employed in the MAA. An agent role
defines the responsibility of an agent in the
organization. All the agent classes take charge of
roles for the protocol and should interact with other
agent classes through the collaboration class. This
leads to the separation of agents and their
interactions, which eliminates the dependencies
between agents and makes ADAM more analyzable,
reusable, and tractable.
The first restriction for the agent organization model
is about agent's responsible functions. An agent is
responsible for a message with a communicative act
received from other agents. In ADAM, the behaviors
of agents and their internal objects are abstracted as
an interface with which agents interact.
Stereotype ArOperation for an instance of meta-class
Operation. (1) ArOperatons are tagged to identify
corresponding performatives of a message. (2)
ArOperations have no return values.
Stereotypes, ArRole and ArAgent, are an instance of
meta-class Class. (1)All ArRole operations
correspond to stereotype ArOperations. (2)The
Mental state of an agent has a tagged value either
agreement or disagreement. (3)ArAgent has
ArOperations corresponding to the ArOperation of
ArRole.
In ADAM, agents communicate with each other
maintaining independence through a collaboration
that is a connector class. The collaboration class has
interaction protocols and states for representing
collaboration states between agents.

Stereotype ArCollaboration is an instance of the
meta-class Class. (1)ArCollaboration has tagged
value identifying protocol types. (2)ArCollaboration
has tagged value identifying collaboration states in a
protocol.
Stereotype ArParticipate is an instance of meta-class
Association. (1)ArParticipate is binary association.
(2)The first end of the association must be to an
ArRole. (3)The second end of the association must be
to an ArCollaboration. (4)Multiplicity of ArPtotocol
that participate ArParticipate is at minimum one and
at maximum one. (5)Multiplicity of ArRole that
participate ArParticipate is at minimum one and at
maximum many.
Stereotype ArPlay is an instance of meta-class
Association. The same as for the restrictions of the
ArParticipate, but the ArAgent should substitute for
ArCollaboration except that the multiplicity of
ArAgent participating in ArPlay is “1..M”.
Finally, semantic restriction restricts a spectrum of
modeling elements in the agent organization model.
The Stereotype agent organization model is an
instance of the meta-class Model. (1)The Agent
organization model contains architectural
components. (2)Each ArRole must participate in at
least one ArPlay. (3)There are the same restrictions
between ArAgent and ArPlay, ArRole and
ArParticipate, ArAgent and ArParticipate, and
ArCollaboration and ArParticipate

3.3 The Agent Interaction Model
The agent interaction model captures a behavioral
aspect of a group of agents using a collaboration or
sequence diagram. It represents chronic sequences of
messages among agents (or roles) according to an
interaction protocol. Semantic restrictions for the
constructs of the agent interaction model are shown
as follows.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

Stereotype ArMessage for an instance of meta-class
Message. (1)ArMessages are tagged identifying
performatives of a protocol.
Stereotype agent interaction model is an instance of
meta-class Model. (1)Agent interaction model
contains architectural components.

3.4 The Collaboration State Model
The collaboration state model captures a dynamic
aspect of a MAA using state-transition diagrams. The
state transition diagrams capture state transition
processes of the component and connector classes. In
particular, the state transition diagram of the agent
collaboration class, which is a connector class,
provides an analysis mechanism of collaboration
states between agents because it controls all the agent
interactions in a MAA.
The stereotype, Collaboration State model, is an
instance of meta-class Model. (1)Collaboration State
model contains architectural components.

3.4 Development Processes
Compared to the development processes of the
traditional object-oriented system such as
incremental and iterative processes, the processes of
ADAM give a clean separation between architectural
model and agent model. An architectural model
focuses on a logical model consisting of roles, while
agent model specifies a physical model based on the
architectural model. Thus, this separation helps
designer in constructing well-structured models.
The development process of ADAM consists of three
major phases: requirement analysis, architectural
analysis and design, and system analysis and design
as shown in Fig. 1.
Activities of an architectural analysis and design are
centered to construct role specifications based on
requirement models in units of collaboration. In this
phase, properties and capabilities of roles are
specified by modeling, refining, and complementing
between role organization and interaction models.
These phases are looped in activities until role
specification is completed. Then, the development
goes to the agent system analysis and design phase.
In agent system analysis and design, the first activity
is to map roles to agents. A cardinality of mapping
between roles and agents depends on the
environments of system. For example, various roles
are mapped to an agent in reasons such as physical
distribution of agents or performance of the overall
system. In results, agents have properties and
capabilities of corresponding roles. Additional
properties and capabilities can be specified by

modeling agent organization and interaction models.
The final result of development process is a set of
agent specifications. Note that role specifications are
independent in implementing the system, while the
implementation is to realize agent specifications.

Goal
Specifications

Collaboration
Identification

Design
Initial Roles

Interaction
Model

Role
Organization

Model

Role
Interaction

Model

Role
Specifications

Mapping Roles
To Agents

Agent
Organization

Model

Agent
Interaction

Model

Agent
Specifications

Requirement
Analysis

Architectural
Analysis and

Design

System
Analysis and

Design

Integrate,
and decision about

next step

Integrate,
and decision about

next step

Fig. 1 Development process of ADAM

4 Case Study
This section briefly illustrates ADAM with a case
study of the analysis and design of MAS for the
traveler’s ticketing assistance.

Member

Continuously
Reserve Seat

Interactively
Reserve Seat

Automatically
Reserve Seat

<<include>>

<<extend>>

Automatically
Reserve Seat

Interactively
Reserve Seat

<<MAA>>
Goal and Task
Specification

Member

Continuously
Reserve Seat<<include>>

<<MAA>>
Integrate

Information

(a) Use case diagram of the GilBot System

(b) Integrated model showing the relationship b/w use case and MAA

<<extend>>

Fig. 2 The Problem Structure Model of the GilBot
System

The GilBot system is an integrated ticketing system
with intelligent agents. The goal of the system is to
aggregate the fragmented ticket information of two
transportation systems: express bus and train; and to
provide integrated ticket information for reservations
and confirmations. In addition, the system can
continuously monitor and reserve tickets where they
are available. The system includes agents such as
GBHoster agent for interacting with users, GBBus

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

agent for providing and reserving an express bus
ticket, and GBTrain agent for a train ticket.

<<MAA>>

Integrate Information

<<ArCollaboration>>Integration
<<ArCollaboration >>Initiator
<<ArRole>>Initiator
<<ArRole>>Info_Provider

GBContReserve

GBIntReserve GBAutoReserve

Integration GBBus

Initiator
Info- Provider

Info- Provider

(a) Integrate Information MAA

(b) Realization of the Continuous Reservation by the Integrate Information

GBTrain

Initiator

<<MAA>>

Integrate Information

<<ArCollaboration >>Integration
<<ArCollaboration >>Initiator
<<ArRole>>Initiator
<<ArRole>>Info_Provider

Fig. 3 Realization of a use case from the MAA

Part (a) of Fig. 2 depicts a problem structure model of
the GilBot system. A user can reserve a seat
automatically or interactively. The use case,
“Automatically Reserve Seat”, represents a
subsystem that automatically reserves a seat with
information of departure/arrival time and city while
the use case, “Interactively Reserve Seat”, is used to
reserve a seat by a user. The “Continuously Reserve
Seat” is a special use case for constantly monitoring
the availability of seats when they are sold out and
then reserving them, once they become available.
Part (b) of Fig. 2 shows that the use cases of part (a)
are the instantiations of MAAs, “Integrate
Information” and “Goal and Task Specifications”.
This means that the structure and behavior of use
cases are defined by the MAA. For example, the
“Continuously Reserve Seat” use case has agents that
are in charge of roles that are defined in the “Integrate
Information” MAA. The participating agents of the
“Continuously Reserve Seat” use case comply with
the patterns that defined in the “Integrate
Information” MAA.
ADAM integrates the use case and MAA for the
implementation of requirements. The MAA is
parameterized in terms of agent roles and
collaborations. Part (a) of Fig. 3 depicts “Integrate
Information” MAA having initiator and information
provider roles and integration collaboration. This
means that the “Integrate Information” MAA
consists of the roles such as an initiator and an
information provider, a collaboration to integrate a
set of partial information, and their relationships and
interactions. Part (b) of Fig. 3 depicts a realization of
the “Continuously Reserve Seat” use case from the
“Integrate Information” MAA by mapping agents to

corresponding roles. Note that the “Integrate
Information” MAA can be initiated by roles or other
agent collaborations.

<< ArCollaboration >>
GBAutoReserve << ArParticipate >>

is-attached-to

<<ArAgent>>
GBTrain

<< ArCollaboration >>
GBContReserve

<< ArCollaboration >>
GBIntReserve

or initiator

information
provider

integrator

<< ArParticipate >>
is-attached-to

<< ArParticipate >>
is-attached-to

<< ArParticipate >>
is-attached-to

<<ArAgent>>
GBBus

information
provider

<< ArParticipate >>
is-attached-to

<< ArParticipate >>
is-attached-to

<<ArAgent>>
GBTrain

<<ArAgent>>
GBBus<<ArPlay>>

play
<<ArPlay>>

play

<<ArRole>>
Information

Provider

<<ArParticipate>>
is-attached-to

<<ArRole>>
Information

Provider
<< ArCollaboration >>

Integration
o
r

initiator

information
provider

integrator

<< ArParticipate >>
is-attached-to

<< ArParticipate >>
is-attached-to

<< ArParticipate >>
is-attached-to

<<ArCollaboration>>
Initiator

<<ArRole>>
Initiator initiator

(a) Agent Organization Model of Integrate Information MAA in Architecture Layer

(b) Agent Organization Model of Continuous Reservation Use Case in Application Layer

Fig. 4 Agent Organization Models of ADAM

An agent organization model of the GilBot system is
shown in Fig. 4. Part (a) describes an agent
organization model of the “Integrate Information”
MAA in the architecture layer. In this model, there
are role and collaboration classes as stereotyped
classes such as integration collaboration, initiator
role and information provider role classes. They are
associated with <<ArParticipate>> as a stereotyped
relationship. Part (b) shows how the “Integrate
Information” MAA is instantiated for the
“Continuously Reserve Seat” use case. GBBus and
GBTrain are stereotyped classes representing agents
with the information provider role while
GBContReserve is a stereotyped class representing
the integration collaboration. The model describes an
overall structure of the MAA and use case with
satisfying the topology rule. This means that a
relationship between agents is defined by roles that
the agents are in charge of and agents are temporally
related in a given collaboration with an interaction
protocol.
Fig. 5 shows interaction models of the GilBot system.
Part (a) describes an agent interaction model of the
“Integrate Information” MAA. In the model, there
are <<ArMessages>> as a stereotyped message and
the message passing between roles is represented.
Part (b) is an interaction model of the “Continuously
Reserve Seat” use case as a result of instantiation
from part (a) like an agent organization model in Fig.
4.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

a:Information
Provider:Integration:Initiator

<<ArMessage>>
ask_info

<<ArMessage>>
tell_integrated_i

nfo

<<ArMessage>> ask

<<ArMessage>> tell

:Member
Goal or Task
Specification

Result

b:Information
Provider

<<ArMessage>> ask

<<ArMessage>> tell
Integrate_info()

:GBTrain
/Info_Provider

:GBContReserve
/integration

:GBAutoReserve
/initiator

<<ArMessage>>
ask_info[departure/arrival

time/location]

[satisfied]
<<ArMessage>>

tell_integrated_info
[ticket]

<<ArMessage>>
ask[departure/arrival

time/location]
<<ArMessage>> tell[ticket]

:GBTrain
/Info_Provider

<<ArMessage>>
tell[ticket]

Integrate_info()

(a) Agent Interaction Model of Integrate Information MAA in Architecture Layer

(b) Agent Interaction Model of Continuous Reservation Use Case in Application Layer

<<ArMessage>>
ask[departure/arrival

time/location]

[unsatisfied]
rework()

Fig. 5 Agent Interaction Models of ADAM

Finally, modeling a collaboration as a class in
ADAM enables one to derive and analyze a
state-transition model for each collaboration rather
than an overall system collaboration when there are
many collaborations in the system.

5 Summary and conclusion
In this paper, an Architecture-Driven multi-Agent
systems development Method (ADAM) is
introduced. ADAM adopts an architecture- driven
approach to handle the architectural issues of MAS
design such as problem structuring, agent
organization with roles, and agent interaction with
control. In particular, it recognizes collaborations
with interaction protocols as a modeling element.
This approach provides a clean separation between
individual agents and their interaction. The
separation makes the system more analyzable,
tractable, and reusable which helps to construct a
well-defined MAS.
All of models and modeling elements of ADAM
extend ones of UML (Unified Modeling Language)
using extension mechanisms of UML without
syntactic and semantic changes to the original
models, which increases the availability of
developers and tools. Semantics of models and
modeling elements of ADAM can be formalized by
OCL.
The usefulness of ADAM has been illustrated by the
specific case of the GilBot which is a MAS for the
traveler’s integrated ticketing system.

References:
[1] Brenner, W., Zarnekow, R., and Wittig, H.,

Intelligent Software Agents: Foundations and
Applications, Springer-Verlag, 1998.

[2] Burmeister, B., “Models and Methodology for
Agent-Oriented Analysis and Design”, K. Fischer,
editor, Working Notes of the KI’96 Workshop on
Agent-Oriented Programming and Distributed
Systems, Germany, 1996.

[3] DeLoach, S., Wood, M., and Sparkman, C.,
“Multiagent Systems Engineering”, International
Journal of Software Engineering and Knowledge
Engineering, Vol. 11, No.3, World Science
Publishing, 2001, pp. 231-258

[4] Garlan, D. and Shaw, M., “An Introduction to
Software Architecture”, International Journal of
Software Engineering and Knowledge Engineering,
Vol. 1, World Science Publishing, 1993.

[5] Iglesias, C.A., Garijo, M., and Gonzalez, J.C., “A
Survey of Agent-Oriented Methodologies”,
ATAL’98, Paris, France, 1998, pp. 185 – 198.

[6] Iglesias, C.A., Garijo, M., Gonzalez, J.C., and
Velasco, J.R., “Analysis and Design of Multi-Agent
Systems Using MAS-CommonKADS”, Intelligent
Agent IV(ATAL’97), LNAI 1365, Springer-Verlag,
Berlin, Germany, 1998, pp. 314 – 327.

[7] Jacobson, I., M. Christerson, P. Jonsson, G.
Overgaard, Object-Oriented Software Engineering.
A Use Case Driven Approach, Addison-Wesley,
1992.

[8] Kendall, E. A., M. Malkoun, and C. H. Jiang, "A
Methodology for Developing Agent Based Systems
for Enterprise Integration", Modeling and
Methodologies for Enterprise Integration, Chapman
and Hall, P. Bernus and L. Nemes, Editors, 1996.

[9] Kinny, D., Georgeff, M., and Rao, A., “A
Methodology and Modeling Technique for Systems
of BDI Agents”, LNAI 1038, Springer-Verlag,
Germany, 1996, pp. 56-71.

[10] Odell J., Van Dyke Parunak H. and Bauer B.
"Extending UML for Agents". AOIS Worshop at
AAAI 2000, Austin, TX, 2000.

[11] Robbins, J.E., Medvidovic, N., Redmiles, D.F.,
and Rosenblum, D.S., “Integrating Architecture
Description Languages with a Standard Design
Method”, ICSE, Japan, 1998, pp. 209 – 218.

[12] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling &
Design, Prentice-Hall, 1991.

[13] Sycara, K., Decker, K., Pannu, A., Williamson, M.
and Zeng, D., “Distributed Intelligent Agents”,
IEEE Expert, December 1996.

 [15] Wooldridge, M., Jennings, N.R., Kinny, D., “The
Gaia Methodology for Agent-Oriented Analysis and
Design,” Autonomous Agents and Multi-Agent
Systems, Vol.3, No. 3, pp. 285-312, 2000.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp313-318)

