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Abstract: - Frequent pattern mining as part of the data mining process can be used in many applications. The 

type of the patterns can be various regarding the problem to be solved. In several cases the problem can be 

modeled with graphs only, thus methods are needed which can discover such patterns from large databases. 

Trees are special graphs where one path exists only between two arbitrary nodes. Trees can be handled easier 

than a general graph; however trees can model several problems, thus discovering frequent trees has 

justification. In this paper a novel approach is presented for efficiently discovering frequent subtrees from a 

tree database. The main contribution of the new method is to use pushdown automaton for subtree inclusion 

testing. In order to enhance the performance of counting the support of the candidate trees, the several 

automatons are joined such that only one stack is needed for handling the joined automatons. 
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1   Introduction 
Labeled graph is an appropriate tool for modeling 

several real world data like Web links, chemical 

compounds, academically citations etc. For this 

reason the studies of pattern mining have been 

extended to process not only transactional data, like 

in frequent itemset mining, but also semi-structured 
and structured data.  

When extending the patterns to be searched to 

graphs, the patterns and the rules that can be created 
based on the patterns get more complex. Complex 

rules can describe the problem more precisely; 

however the process of discovering such rules is 

complex as well. Thus beside exploiting the benefits 

using structured data one have to be care of keeping 

the complexity of the problem as low as possible. 
Trees can be considered as the medium between 

graphs and transactional data. Handling trees is 

easier than handling general graphs, but one can 
have more complex rules when using trees than 

using flat data. Furthermore several real world 

problems can be modeled with tree data as well. 
This paper deals with the problem of discovering 

frequent subtrees in a forest. The trees are rooted, 

labeled, ordered and the algorithm presented in this 

paper searches for embedded subtrees. A new 

method is proposed which uses pushdown 

automaton in order to enhance the subtree inclusion 

testing process.  

The organization of the paper is as follows. 

Section 2 describes briefly the problem of frequent 
subtree discovery. Section 3 presents the most 

important algorithms. In Section 4 the new approach 

is presented, namely how to create pushdown 

automaton for subtree inclusion detecting. In Section 

5 the way is shown how to join the several 

pushdown automatons to create an automaton for 

detecting the subtree inclusions for all the candidate 

trees at the same time. Experimental results are 
shown in Section 6, and conclusions are in Section 

7. 

 
 

2   Problem Statement 
This section introduces the most important notations 

and definitions regarding frequent subtree discovery. 

A tree can be denoted with its set of vertices (V) 

(also called nodes) and the set of edges (E) between 

the nodes. A rooted, labeled tree is a 5-tuple π(V, E, 

λ, fλ, v0) where (i) V is the set of vertices; (ii) E 

denotes the set of edges in a tree; (iii) λ is the set of 

labels for any node v ∈ V, (iv) fλ is a function which 

maps for each node a label (∀v∈V, fλ(v) ∈ λ); (v) v0 

∈ V is a dedicated node in the tree called the root. A 

tree is ordered if it is a rooted tree and the children 

of a given node have an ordering. The size of a tree 
equals to the number of vertices in the tree. 

A tree π1(Vπ1, Eπ1) is an embedded subtree of 

π2(Vπ2, Eπ2) if Vπ1 ⊆ Vπ2 and a branch appears in π1 if 

and only if the two vertices are on the same path 

from the root to a leaf in π2. Given a database D 

containing trees, the support of a tree π is the 

number of the trees in D which has π as an 

embedded subtree. In this case the number of 

occurrences of π in a given tree is irrelevant. Given 
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a user specified minimum support threshold 

(minsup) a tree is called frequent if it is contained by 

more trees in the database than the threshold, in 

other words the support of the tree exceeds the 

minimum support threshold. 
 

 

3   Related Work 
The TreeMiner algorithm proposed in [1] is one of 
the first contributed tree miner algorithms. It 

discovers the frequent embedded subtrees in a 

forest, where a forest is a set of rooted, labeled, 

ordered trees. The main contribution of the 

algorithm is to define equivalent classes and to use 

so-called scope-lists for each frequent tree in order 

to keep track which trees contain a given frequent 

subtree. The algorithm uses a DFS traversal for 

generating the frequent trees, and using the scope-
list, the support of the subtrees can be calculated 

only by comparing the scope-lists of two subtrees 

from which the new subtree is created.  

Another algorithm called FREQT [2] discovers 

also the frequent tree patterns from a set of labeled, 

ordered trees. The algorithm uses a rightmost 

expansion technique, which means that a tree is 
created from a frequent tree by attaching new nodes 

only to the rightmost branch of the tree. FREQT 

uses a BFS approach, and during the candidate 
generation it also generates the rightmost occurrence 

list for the candidates.  

The algorithms mentioned so far use a “candidate 
generate and test” approach based on the Apriori 

hypothesis to discover frequent rooted, labeled trees. 

The Chopper [3] and XSpanner [3] algorithms use a 

new approach which is based on sequence mining. 

In Chopper the sequence mining step and the 

extraction of frequent tree patterns from the 

sequences are separated, while in XSpanner these 

two steps are integrated. 

The FreeTreeMiner [4] is a method for 
discovering free trees, which is a more complex 

problem than discovering rooted trees. Thus in case 

of free trees, the canonical center of the tree has to 
be found which is used further as the root. 

Afterwards the nodes in the tree should be ordered, 

such that the result is a rooted, ordered tree, that is, 

the canonical form. The algorithm can be 

implemented either as an Apriori-like level-wise 

search or as a depth-first search. It searches for a 

range from small trees to large trees according to the 

“issubtree-of” relation. Further tree mining 

algorithms are presented in [5, 6] and a more 
detailed overview of the different tree mining 

algorithms can be found in [7]. 

4   Pushdown Automaton Approach 
One of the most time consuming and 

computationally complex tasks is the subtree 
inclusion testing step. In case of algorithms which 

project the database into the memory like the 

TreeMiner algorithm, it can be done by using the 
scope lists of the candidate trees. However, these 

algorithms have the drawback that the memory 

requirement depends strongly on the number of 
transactions, which can be critical. Thus a level-wise 

method is needed which can test the subtree 

inclusion in an efficient way. For this reason this 

section introduces a novel method which exploits 

the benefits of using a pushdown automaton for 

detecting subtrees in an input tree. 

A pushdown automaton (PDA) is a finite 

automaton outfitted with access to a potentially 

unlimited amount of memory called the stack. The 
pushdown automaton can be defined with a 7-tuple 

as follows: P (Q, Σ, Γ, δ, q0, Z0, F), (i) the final set 

of states, Q, (ii) the alphabet of the input, Σ, (iii) the 

alphabet of the stack, Γ, (iv) the set of transition 

functions, δ (Q × (Σ ∪ε) × Γ � Q × Γ
k
), (v) the start 

state, q0 ∈ Q, (vi) the initial stack symbol, Z0 ∈ Γ 

and (vii) the set of accept states, F ⊂ Q.  

The automaton starts in its start state and the stack 

contains only the initial symbol. When reading one 
character from the input string, the set of transition 

functions are checked whether one of them can be 

used. If there is a transition rule which contains the 

state in which the automation resides, and the same 

symbol is on the top of the stack as in the rule, and 

the same character is just read, the automaton moves 

into its new state and a new symbol is pushed into 

the stack. By default the symbol from the stack is 

removed, when it is used by the transition function. 
If one wants to keep the symbol in the stack, one has 

to push it again. The ε symbol is used when no 

symbol is pushed into the stack. The input string is 

accepted if the automaton is in an accept state after 

its last character has been processed. 
The new idea is to use a pushdown automaton for 

detecting whether a tree is contained by another tree. 

Using this approach the support counting of the 
candidates can be achieved by processing the input 

tree only once. At the end of the transaction the 

counters of those candidates should be incremented 
whose automaton is in an accept state. For this 

reason the trees are represented with strings as 

follows. The string encoding τ is initialized to an 

empty sting, τ = ∅. Afterwards the tree is traversed 

in preorder manner starting at the root, and the label 
λi of the current node is added to the end of τ. 

Whenever the algorithm has to backtrack from a 
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child to its parent a {–} sign is added to τ. In this 

case it is assumed that the {–} sign is not in the label 

set of the tree. After the last label was reached the 

algorithm terminates, which means that the 

algorithm does not traverse back to the root as 
described in [1], thus the minus signs from the end 

of the string are omitted. As an example Fig. 1 

shows a tree with its string encoding.  
 

A

B

BC

D

A

A

B

BC

D

A
 τ = ABC–BA– – – D 

Fig.1. A sample tree with its string encoding 

 

The rules generating the pushdown automaton for 

detecting a subtree in an input tree is described in 

Table 2. The notations for the rules can be found in 
Table 1.  

 
Table 1. Notations for the rules 
 

 
 

Table 2. Rules for creating a pushdown automaton for a 

candidate tree 
 

 
 

As described in Table 2 each state can have two 
transitions which results in a different state. One of 

them is a forward transition and the other is a 

backward transition. The forward transition is used 
when the input tree seems to contain the candidate. 

The backward transitions are for those cases when 

the input tree does not contain the candidate yet. 

Proposition 1. Let π1 and π2 denote two trees with 

their string encodings τ and κ respectively. The PDA 

created for τ according to Table 2 accepts its inputκ  

if and only if π1 is an embedded subtree of π2.  

Proof. The proof is given constructively by 

describing the process of the algorithm. The 

pushdown automaton for detecting a tree in the input 

tree works as follows. The automaton starts in its 

start state q00. It reads the characters of the input 

string κ = κ0 κ1… κs one by one. If ·κi = τ0, the 

automaton gets into its next state (q11) and the 

symbol and the number of the start state as a 

structure (<κi,0>) are pushed into the stack. In other 

cases the automaton remains in its start state, and if 

·κj∈λ, then the character is pushed, otherwise the 

topmost symbol is popped. When the automaton is 
in an arbitrary state qij , four possibilities exist. If the 

character just read (κl) equals to the character 

expected by the given state, then the automaton 

moves in its next state, and the character and the 

state number are pushed if·κl∈λ, otherwise the 

topmost symbol is popped. In other cases when the 

input character κl was not expected, but it is in λ, 

only the character is pushed into the stack and the 

automaton stays in its state. If the input character is 

a minus sign and it is not expected, two possibilities 

exist. The backward transition is used if the topmost 
structure matches the structure assigned to the 

backward transition. In other cases the self loop is 

used. In both cases the topmost symbol is popped 
from the stack.  

In order to better understand the process of the 

pushdown automaton Fig. 2 shows a sample PDA 
for the tree τ = ABC–BA– – –D. The notations on the 

arrows are in the following form: Σ,Γ/ Γ
k
, the first 

part of the expression (before the / sign) shows 

which character has just been read and which 

symbol is on the top of the stack. The second part 
denotes the symbols that should be pushed into the 

stack. The * denotes any symbol from the stack. 

 

 
Fig.2. Sample pushdown automaton for the candidate tree 

ABC – BA – – D 

 

 

5   PD-Tree Approach 
Because of the possible large number of candidate 
trees on each level, it is worth joining the several 

automatons of the candidates in order to reduce 

computational cost. However it is not trivial how to 
join two pushdown automatons. It is expected that 

the resulting object needs less memory and its 

operation should be more efficient than that of the 
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separated automatons. One of the most important 

consideration is the number of the stack which have 

to be used. If this cannot be decreased the benefits of 

joining the PDA-s is questionable. In the sequel it is 

shown how the pushdown automatons can be joined 
such that the execution time is reduced. Furthermore 

the number of the stacks to be used remains one. Let 

two pushdown automatons be given P1(Q1, Σ1, Γ1, 
δ1, q01, Z01, F1) and P2(Q2, Σ2, Γ2, δ2, q02, Z02, F2). 

The join operation on P1 and P2 results in a so-called 

Pushdown Automaton-Tree (PD-Tree) which is 

defined as follows: P3(Q3, Σ3, Γ3, δ3, q03, Z03, F3) 

where (i) Q3 = Q1 ∪ Q2, (ii) Σ3 = Σ1 = Σ2, (iii) Γ3 = 

extended Γ1, as described later (iv) δ3 (Q3 × (Σ3 ∪ ε) 

× Γ3 � Q3
2 × Γ3

k), (v) q03 = q01 = q02 (vi) Z03 = Z01 = 

Z02 and (vii) F3 = F1 ∪ F2.  
The main problem one faces when joining two 

pushdown automatons originates from the fact that 

during the process not only one accept state exists 
but several, and using the tree all accept states have 

to be accessed, i.e. all counters for those trees have 

to be incremented which are contained by the input 

tree. The other problematic fact is that because of 

space saving only one stack has to be used, thus the 

characters pushed into the stack are mixed up 

regarding the different candidate trees. Furthermore 

because not only one active state exists at the same 

time, but several, also when pushing a character into 
the stack not only one state has to be inserted into 

the structure but all from which a new state is 

reached.  
For this reason the definition of the stack symbols 

has to be modified as follows. Let Γ3 = Z0 ∪ λ ∪ < 
λ,qi1,qi2,…,qip> denote the stack symbols of the PD-

Tree, where < λ,qi1,qi2,…,qip> is a structure where 

{qi1,qi2,…,qip} (called state list) is the list of all the 
states from which λ causes a forward transition in 

the PD-Tree. 

Proposition 2. The PD-Tree created for several 
candidate trees increments the counters of a 

candidate tree if and only if the candidate is 

contained by the input. Furthermore the counters of 

all these candidates are incremented by processing 

the characters of the input string exactly once only.  

Proof. The modified definition of the stack 

symbols means that for each label those states are 

stored in the stack from which a transition were 

proceeded. This is necessary because of the 
following. A state in the PDTree can have one 

forward transition and one backward transition. The 

forward transition is used independently of the 
content of the stack. The backward transition is 

followed only when the stack contains the same 

label as the label in the transition rule is. However 

this is not the only condition, because the backward 

transition has to be followed only, if using a 

backtracking in the tree such a node is reached 

which causes that the candidate is not possible to be 

contained by the input. In this case the automaton 
gets in its previous state. Thus we have to know 

which label has caused the forward step in order to 

know which has to be caused the backward as well. 
This is marked with the state in the simple PDA in 

case of single subtree inclusion testing, and with a 

state list in case of the joined PDAs.  

Thus when processing the PD-Tree, when the 

automaton reads a {-} character, for each state, the 

possible state for a backward transition has to be 

calculated, and it has to be checked whether it is 

contained in the topmost state list of the stack. If it is 

contained, the automaton must step back, otherwise 

it remains in the current state or it also steps forward 
as well. 

As an example Fig. 3 shows a PD-Tree when 

joining the following trees: ABC – B, ABC – –B,  

BA – AB and ABCD. The figure does not contain the 

self-loops in order to have a clearer view of the 

relevant part of the automaton. 

 
Fig.3 Sample PD-Tree 

 
 

6   Experimental Results 
In order to show the efficiency of the PD-Tree 

algorithm several experimental results were created. 
The simulations were executed on a Pentium 4 CPU, 

2.4GHz, and 1GB of RAM computer. The 

algorithms were implemented in C#.  

The two algorithms are the PD-Tree and the Stack 

Automatons where the latter is an implementation of 

the pushdown automatons for each candidate 

without joining them. The algorithm works as 

follows. A separate pushdown automaton is created 

for each candidate. When a transaction is processed, 
all the automatons are checked for each item of the 

transaction, whether it can take a transition into a 

new state.  
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Two types of datasets were used in the 

experiments. One of them contains the candidates 

that are to be checked whether they are contained by 

the transaction. The transaction database belongs to 

the second type of dataset. The meaning of the 
notations is as follows: D stands for the maximum 

depth, F means the number of fan-out, L is the 

number of labels, T stands for the number of 
transactions and K means thousands.  

Fig. 4 shows the execution time of the two 

algorithms when using the candidate dataset 

D4F3L10T10K, and D5F3L10Tx as the transaction 

database, where x is in the range of 100 and 10000. 

It can be seen well that the PD-Tree algorithm is an 

order of magnitude faster than the Stack Automatons 

algorithm in the whole range. The reason can be 

observed in Fig. 5 where the number of those states 

are depicted which were active during the mining 
process. It is observable that the number of active 

states is more orders of magnitude greater in case of 

the Stack Automatons algorithm. This is the 

expected result, as the joining step and its 

consequences were declared as the main benefit of 

the PD-Tree algorithm, because one of the 

consequences were to reduce the number of the 

active states.  

 

 
Fig.4. Execution time of the two algorithms 

 

 
Fig.5. Number of active states during the process 

 

Further measurement results are shown in Table 3, 

where both the name of the candidate datasets and 

the name of the transaction datasets are depicted. 

The execution times of the two algorithms are 

enumerated as well. The last column stores the 
speed up ratio when using the PD-Tree algorithm. It 

can be observed that the speed up ratio is greater, 

when the number of the candidates is high, while it 
is small, when the number of the candidates is 

limited. This can also be explained with the joining 

step.  

 

 
Table 3. Execution times of the two algorithms 

 
 Candidate 

database 

Tree 

database 

Stack 

 Auto. 

(sec) 

PD-Tree 

(sec) 

Speed-

up 

Ratio 

1 D4F3L10T5K D5F4L10T1K 160.72 6.50 24.73 

2 D4F3L10T5K D5F4L10T10K 1630.44 74.31 21.94 

3 D4F3L10T50K D5F4L10T1K 160.17 5.02 31.93 

4 D5F3L10T1K D4F3L10T10K 43.36 13.23 3.27 

5 D5F3L10T1K D4F3L10T5K 43.42 18.83 2.31 

6 D5F3L10T1K D4F3L10T50K 43.26 12.38 3.50 

7 D5F3L10T10K D4F3L10T5K 613.44 98.42 6.23 

8 D5F4L10T1K D5F4L10T10K 255.52 40.59 6.29 

9 D5F3L10T10K D5F4L10T1K 354.48 37.44 9.47 

 

 

 

In Fig. 6 the execution times depicted in Table 3 

are shown with cube diagrams. Fig. 7 shows the 
number of the states which were checked during the 

mining process. The numbering on the x axis of Fig. 

6 corresponds to the numbering of the different 

cases in Table 3.  

One can draw the conclusion that joining the 

automatons results in a significant time saving. 

However the number of the states saved in this way 

is less significant as shown in Fig. 8, where the state 

numbers created by the two algorithms are depicted 
for the different candidate datasets. 

 

 
Fig.6. Execution time in the cases shown in Table 3 
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Fig.7. Number of the states checked during the mining 

process in the cases shown in Table 3 

 

 

 
Fig.8. Number of states created by the two algorithms for 

the different candidate datasests shown in Table 3 

 

 

 

7   Conclusion 
This paper deals with the problem of efficient 

subtree discovery in tree databases. In this paper a 

novel approach is presented which uses pushdown 

automatons for subtree inclusion testing. After 

introducing the basic concepts and the related work, 
it was shown how to create pushdown automatons 

for the candidates, and how to join them to create a 

so-called PD-Tree structure, such only one stack is 
needed for the whole process. The active states of 

the new automatons can be handled using tokens. 

Experimental measures show the efficiency of the 

PD-Tree structure over the several automatons. 
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