
Efficient Subtree Inclusion Testing in Subtree Discovering Applications

RENATA IVANCSY, ISTVAN VAJK

Department of Automation and Applied Informatics and HAS-BUTE Control Research Group

Budapest University of Technology and Economics

1111 Goldmann Gy. ter 3., Budapest

HUNGARY

Abstract: - Frequent pattern mining as part of the data mining process can be used in many applications. The

type of the patterns can be various regarding the problem to be solved. In several cases the problem can be

modeled with graphs only, thus methods are needed which can discover such patterns from large databases.

Trees are special graphs where one path exists only between two arbitrary nodes. Trees can be handled easier

than a general graph; however trees can model several problems, thus discovering frequent trees has

justification. In this paper a novel approach is presented for efficiently discovering frequent subtrees from a

tree database. The main contribution of the new method is to use pushdown automaton for subtree inclusion

testing. In order to enhance the performance of counting the support of the candidate trees, the several

automatons are joined such that only one stack is needed for handling the joined automatons.

Key-Words: - Data mining, Frequent pattern mining, Graph mining, Subtree discovery, Pushdown Automaton

1 Introduction
Labeled graph is an appropriate tool for modeling

several real world data like Web links, chemical

compounds, academically citations etc. For this

reason the studies of pattern mining have been

extended to process not only transactional data, like

in frequent itemset mining, but also semi-structured
and structured data.

When extending the patterns to be searched to

graphs, the patterns and the rules that can be created
based on the patterns get more complex. Complex

rules can describe the problem more precisely;

however the process of discovering such rules is

complex as well. Thus beside exploiting the benefits

using structured data one have to be care of keeping

the complexity of the problem as low as possible.
Trees can be considered as the medium between

graphs and transactional data. Handling trees is

easier than handling general graphs, but one can
have more complex rules when using trees than

using flat data. Furthermore several real world

problems can be modeled with tree data as well.
This paper deals with the problem of discovering

frequent subtrees in a forest. The trees are rooted,

labeled, ordered and the algorithm presented in this

paper searches for embedded subtrees. A new

method is proposed which uses pushdown

automaton in order to enhance the subtree inclusion

testing process.

The organization of the paper is as follows.

Section 2 describes briefly the problem of frequent
subtree discovery. Section 3 presents the most

important algorithms. In Section 4 the new approach

is presented, namely how to create pushdown

automaton for subtree inclusion detecting. In Section

5 the way is shown how to join the several

pushdown automatons to create an automaton for

detecting the subtree inclusions for all the candidate

trees at the same time. Experimental results are
shown in Section 6, and conclusions are in Section

7.

2 Problem Statement
This section introduces the most important notations

and definitions regarding frequent subtree discovery.

A tree can be denoted with its set of vertices (V)

(also called nodes) and the set of edges (E) between

the nodes. A rooted, labeled tree is a 5-tuple π(V, E,

λ, fλ, v0) where (i) V is the set of vertices; (ii) E

denotes the set of edges in a tree; (iii) λ is the set of

labels for any node v ∈ V, (iv) fλ is a function which

maps for each node a label (∀v∈V, fλ(v) ∈ λ); (v) v0

∈ V is a dedicated node in the tree called the root. A

tree is ordered if it is a rooted tree and the children

of a given node have an ordering. The size of a tree
equals to the number of vertices in the tree.

A tree π1(Vπ1, Eπ1) is an embedded subtree of

π2(Vπ2, Eπ2) if Vπ1 ⊆ Vπ2 and a branch appears in π1 if

and only if the two vertices are on the same path

from the root to a leaf in π2. Given a database D

containing trees, the support of a tree π is the

number of the trees in D which has π as an

embedded subtree. In this case the number of

occurrences of π in a given tree is irrelevant. Given

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

a user specified minimum support threshold

(minsup) a tree is called frequent if it is contained by

more trees in the database than the threshold, in

other words the support of the tree exceeds the

minimum support threshold.

3 Related Work
The TreeMiner algorithm proposed in [1] is one of
the first contributed tree miner algorithms. It

discovers the frequent embedded subtrees in a

forest, where a forest is a set of rooted, labeled,

ordered trees. The main contribution of the

algorithm is to define equivalent classes and to use

so-called scope-lists for each frequent tree in order

to keep track which trees contain a given frequent

subtree. The algorithm uses a DFS traversal for

generating the frequent trees, and using the scope-
list, the support of the subtrees can be calculated

only by comparing the scope-lists of two subtrees

from which the new subtree is created.

Another algorithm called FREQT [2] discovers

also the frequent tree patterns from a set of labeled,

ordered trees. The algorithm uses a rightmost

expansion technique, which means that a tree is
created from a frequent tree by attaching new nodes

only to the rightmost branch of the tree. FREQT

uses a BFS approach, and during the candidate
generation it also generates the rightmost occurrence

list for the candidates.

The algorithms mentioned so far use a “candidate
generate and test” approach based on the Apriori

hypothesis to discover frequent rooted, labeled trees.

The Chopper [3] and XSpanner [3] algorithms use a

new approach which is based on sequence mining.

In Chopper the sequence mining step and the

extraction of frequent tree patterns from the

sequences are separated, while in XSpanner these

two steps are integrated.

The FreeTreeMiner [4] is a method for
discovering free trees, which is a more complex

problem than discovering rooted trees. Thus in case

of free trees, the canonical center of the tree has to
be found which is used further as the root.

Afterwards the nodes in the tree should be ordered,

such that the result is a rooted, ordered tree, that is,

the canonical form. The algorithm can be

implemented either as an Apriori-like level-wise

search or as a depth-first search. It searches for a

range from small trees to large trees according to the

“issubtree-of” relation. Further tree mining

algorithms are presented in [5, 6] and a more
detailed overview of the different tree mining

algorithms can be found in [7].

4 Pushdown Automaton Approach
One of the most time consuming and

computationally complex tasks is the subtree
inclusion testing step. In case of algorithms which

project the database into the memory like the

TreeMiner algorithm, it can be done by using the
scope lists of the candidate trees. However, these

algorithms have the drawback that the memory

requirement depends strongly on the number of
transactions, which can be critical. Thus a level-wise

method is needed which can test the subtree

inclusion in an efficient way. For this reason this

section introduces a novel method which exploits

the benefits of using a pushdown automaton for

detecting subtrees in an input tree.

A pushdown automaton (PDA) is a finite

automaton outfitted with access to a potentially

unlimited amount of memory called the stack. The
pushdown automaton can be defined with a 7-tuple

as follows: P (Q, Σ, Γ, δ, q0, Z0, F), (i) the final set

of states, Q, (ii) the alphabet of the input, Σ, (iii) the

alphabet of the stack, Γ, (iv) the set of transition

functions, δ (Q × (Σ ∪ε) × Γ � Q × Γ
k
), (v) the start

state, q0 ∈ Q, (vi) the initial stack symbol, Z0 ∈ Γ

and (vii) the set of accept states, F ⊂ Q.

The automaton starts in its start state and the stack

contains only the initial symbol. When reading one
character from the input string, the set of transition

functions are checked whether one of them can be

used. If there is a transition rule which contains the

state in which the automation resides, and the same

symbol is on the top of the stack as in the rule, and

the same character is just read, the automaton moves

into its new state and a new symbol is pushed into

the stack. By default the symbol from the stack is

removed, when it is used by the transition function.
If one wants to keep the symbol in the stack, one has

to push it again. The ε symbol is used when no

symbol is pushed into the stack. The input string is

accepted if the automaton is in an accept state after

its last character has been processed.
The new idea is to use a pushdown automaton for

detecting whether a tree is contained by another tree.

Using this approach the support counting of the
candidates can be achieved by processing the input

tree only once. At the end of the transaction the

counters of those candidates should be incremented
whose automaton is in an accept state. For this

reason the trees are represented with strings as

follows. The string encoding τ is initialized to an

empty sting, τ = ∅. Afterwards the tree is traversed

in preorder manner starting at the root, and the label
λi of the current node is added to the end of τ.

Whenever the algorithm has to backtrack from a

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

child to its parent a {–} sign is added to τ. In this

case it is assumed that the {–} sign is not in the label

set of the tree. After the last label was reached the

algorithm terminates, which means that the

algorithm does not traverse back to the root as
described in [1], thus the minus signs from the end

of the string are omitted. As an example Fig. 1

shows a tree with its string encoding.

A

B

BC

D

A

A

B

BC

D

A
 τ = ABC–BA– – – D

Fig.1. A sample tree with its string encoding

The rules generating the pushdown automaton for

detecting a subtree in an input tree is described in

Table 2. The notations for the rules can be found in
Table 1.

Table 1. Notations for the rules

Table 2. Rules for creating a pushdown automaton for a

candidate tree

As described in Table 2 each state can have two
transitions which results in a different state. One of

them is a forward transition and the other is a

backward transition. The forward transition is used
when the input tree seems to contain the candidate.

The backward transitions are for those cases when

the input tree does not contain the candidate yet.

Proposition 1. Let π1 and π2 denote two trees with

their string encodings τ and κ respectively. The PDA

created for τ according to Table 2 accepts its inputκ

if and only if π1 is an embedded subtree of π2.

Proof. The proof is given constructively by

describing the process of the algorithm. The

pushdown automaton for detecting a tree in the input

tree works as follows. The automaton starts in its

start state q00. It reads the characters of the input

string κ = κ0 κ1… κs one by one. If ·κi = τ0, the

automaton gets into its next state (q11) and the

symbol and the number of the start state as a

structure (<κi,0>) are pushed into the stack. In other

cases the automaton remains in its start state, and if

·κj∈λ, then the character is pushed, otherwise the

topmost symbol is popped. When the automaton is
in an arbitrary state qij , four possibilities exist. If the

character just read (κl) equals to the character

expected by the given state, then the automaton

moves in its next state, and the character and the

state number are pushed if·κl∈λ, otherwise the

topmost symbol is popped. In other cases when the

input character κl was not expected, but it is in λ,

only the character is pushed into the stack and the

automaton stays in its state. If the input character is

a minus sign and it is not expected, two possibilities

exist. The backward transition is used if the topmost
structure matches the structure assigned to the

backward transition. In other cases the self loop is

used. In both cases the topmost symbol is popped
from the stack.

In order to better understand the process of the

pushdown automaton Fig. 2 shows a sample PDA
for the tree τ = ABC–BA– – –D. The notations on the

arrows are in the following form: Σ,Γ/ Γ
k
, the first

part of the expression (before the / sign) shows

which character has just been read and which

symbol is on the top of the stack. The second part
denotes the symbols that should be pushed into the

stack. The * denotes any symbol from the stack.

Fig.2. Sample pushdown automaton for the candidate tree

ABC – BA – – D

5 PD-Tree Approach
Because of the possible large number of candidate
trees on each level, it is worth joining the several

automatons of the candidates in order to reduce

computational cost. However it is not trivial how to
join two pushdown automatons. It is expected that

the resulting object needs less memory and its

operation should be more efficient than that of the

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

separated automatons. One of the most important

consideration is the number of the stack which have

to be used. If this cannot be decreased the benefits of

joining the PDA-s is questionable. In the sequel it is

shown how the pushdown automatons can be joined
such that the execution time is reduced. Furthermore

the number of the stacks to be used remains one. Let

two pushdown automatons be given P1(Q1, Σ1, Γ1,
δ1, q01, Z01, F1) and P2(Q2, Σ2, Γ2, δ2, q02, Z02, F2).

The join operation on P1 and P2 results in a so-called

Pushdown Automaton-Tree (PD-Tree) which is

defined as follows: P3(Q3, Σ3, Γ3, δ3, q03, Z03, F3)

where (i) Q3 = Q1 ∪ Q2, (ii) Σ3 = Σ1 = Σ2, (iii) Γ3 =

extended Γ1, as described later (iv) δ3 (Q3 × (Σ3 ∪ ε)

× Γ3 � Q3
2 × Γ3

k), (v) q03 = q01 = q02 (vi) Z03 = Z01 =

Z02 and (vii) F3 = F1 ∪ F2.
The main problem one faces when joining two

pushdown automatons originates from the fact that

during the process not only one accept state exists
but several, and using the tree all accept states have

to be accessed, i.e. all counters for those trees have

to be incremented which are contained by the input

tree. The other problematic fact is that because of

space saving only one stack has to be used, thus the

characters pushed into the stack are mixed up

regarding the different candidate trees. Furthermore

because not only one active state exists at the same

time, but several, also when pushing a character into
the stack not only one state has to be inserted into

the structure but all from which a new state is

reached.
For this reason the definition of the stack symbols

has to be modified as follows. Let Γ3 = Z0 ∪ λ ∪ <
λ,qi1,qi2,…,qip> denote the stack symbols of the PD-

Tree, where < λ,qi1,qi2,…,qip> is a structure where

{qi1,qi2,…,qip} (called state list) is the list of all the
states from which λ causes a forward transition in

the PD-Tree.

Proposition 2. The PD-Tree created for several
candidate trees increments the counters of a

candidate tree if and only if the candidate is

contained by the input. Furthermore the counters of

all these candidates are incremented by processing

the characters of the input string exactly once only.

Proof. The modified definition of the stack

symbols means that for each label those states are

stored in the stack from which a transition were

proceeded. This is necessary because of the
following. A state in the PDTree can have one

forward transition and one backward transition. The

forward transition is used independently of the
content of the stack. The backward transition is

followed only when the stack contains the same

label as the label in the transition rule is. However

this is not the only condition, because the backward

transition has to be followed only, if using a

backtracking in the tree such a node is reached

which causes that the candidate is not possible to be

contained by the input. In this case the automaton
gets in its previous state. Thus we have to know

which label has caused the forward step in order to

know which has to be caused the backward as well.
This is marked with the state in the simple PDA in

case of single subtree inclusion testing, and with a

state list in case of the joined PDAs.

Thus when processing the PD-Tree, when the

automaton reads a {-} character, for each state, the

possible state for a backward transition has to be

calculated, and it has to be checked whether it is

contained in the topmost state list of the stack. If it is

contained, the automaton must step back, otherwise

it remains in the current state or it also steps forward
as well.

As an example Fig. 3 shows a PD-Tree when

joining the following trees: ABC – B, ABC – –B,

BA – AB and ABCD. The figure does not contain the

self-loops in order to have a clearer view of the

relevant part of the automaton.

Fig.3 Sample PD-Tree

6 Experimental Results
In order to show the efficiency of the PD-Tree

algorithm several experimental results were created.
The simulations were executed on a Pentium 4 CPU,

2.4GHz, and 1GB of RAM computer. The

algorithms were implemented in C#.

The two algorithms are the PD-Tree and the Stack

Automatons where the latter is an implementation of

the pushdown automatons for each candidate

without joining them. The algorithm works as

follows. A separate pushdown automaton is created

for each candidate. When a transaction is processed,
all the automatons are checked for each item of the

transaction, whether it can take a transition into a

new state.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

Two types of datasets were used in the

experiments. One of them contains the candidates

that are to be checked whether they are contained by

the transaction. The transaction database belongs to

the second type of dataset. The meaning of the
notations is as follows: D stands for the maximum

depth, F means the number of fan-out, L is the

number of labels, T stands for the number of
transactions and K means thousands.

Fig. 4 shows the execution time of the two

algorithms when using the candidate dataset

D4F3L10T10K, and D5F3L10Tx as the transaction

database, where x is in the range of 100 and 10000.

It can be seen well that the PD-Tree algorithm is an

order of magnitude faster than the Stack Automatons

algorithm in the whole range. The reason can be

observed in Fig. 5 where the number of those states

are depicted which were active during the mining
process. It is observable that the number of active

states is more orders of magnitude greater in case of

the Stack Automatons algorithm. This is the

expected result, as the joining step and its

consequences were declared as the main benefit of

the PD-Tree algorithm, because one of the

consequences were to reduce the number of the

active states.

Fig.4. Execution time of the two algorithms

Fig.5. Number of active states during the process

Further measurement results are shown in Table 3,

where both the name of the candidate datasets and

the name of the transaction datasets are depicted.

The execution times of the two algorithms are

enumerated as well. The last column stores the
speed up ratio when using the PD-Tree algorithm. It

can be observed that the speed up ratio is greater,

when the number of the candidates is high, while it
is small, when the number of the candidates is

limited. This can also be explained with the joining

step.

Table 3. Execution times of the two algorithms

 Candidate

database

Tree

database

Stack

 Auto.

(sec)

PD-Tree

(sec)

Speed-

up

Ratio

1 D4F3L10T5K D5F4L10T1K 160.72 6.50 24.73

2 D4F3L10T5K D5F4L10T10K 1630.44 74.31 21.94

3 D4F3L10T50K D5F4L10T1K 160.17 5.02 31.93

4 D5F3L10T1K D4F3L10T10K 43.36 13.23 3.27

5 D5F3L10T1K D4F3L10T5K 43.42 18.83 2.31

6 D5F3L10T1K D4F3L10T50K 43.26 12.38 3.50

7 D5F3L10T10K D4F3L10T5K 613.44 98.42 6.23

8 D5F4L10T1K D5F4L10T10K 255.52 40.59 6.29

9 D5F3L10T10K D5F4L10T1K 354.48 37.44 9.47

In Fig. 6 the execution times depicted in Table 3

are shown with cube diagrams. Fig. 7 shows the
number of the states which were checked during the

mining process. The numbering on the x axis of Fig.

6 corresponds to the numbering of the different

cases in Table 3.

One can draw the conclusion that joining the

automatons results in a significant time saving.

However the number of the states saved in this way

is less significant as shown in Fig. 8, where the state

numbers created by the two algorithms are depicted
for the different candidate datasets.

Fig.6. Execution time in the cases shown in Table 3

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

Fig.7. Number of the states checked during the mining

process in the cases shown in Table 3

Fig.8. Number of states created by the two algorithms for

the different candidate datasests shown in Table 3

7 Conclusion
This paper deals with the problem of efficient

subtree discovery in tree databases. In this paper a

novel approach is presented which uses pushdown

automatons for subtree inclusion testing. After

introducing the basic concepts and the related work,
it was shown how to create pushdown automatons

for the candidates, and how to join them to create a

so-called PD-Tree structure, such only one stack is
needed for the whole process. The active states of

the new automatons can be handled using tokens.

Experimental measures show the efficiency of the

PD-Tree structure over the several automatons.

Acknowledgments

This work has been supported by the fund of the

Hungarian Academy of Sciences for control

research and the Hungarian National Research Fund

(grant number: T042741).

References:
[1] M. Zaki, Efficiently mining frequent trees in a

forest, In Proc. of the 8th ACM SIGKDD

International Conference on Knowledge

Discovery and Data Mining, Edmonton, Alberta,

Canada, 2002, pp. 71-80.

[2] Tatsuya Asai, Kenji Abe, Shinji Kawasoe,

Hiroki Arimura, Hiroshi Satamoto, and Setsuo

Arikawa. Efficient substructure discovery from

large semistructured data. In Robert L.

Grossman, Jiawei Han, Vipin Kumar, Heikki
Mannila, and Rajeev Motwani, editors, SDM.

SIAM, 2002.

[3] C. Wang, M. Hong, J. pei et al, Efficient Pattern-

Growth Methods for Frequent Tree Pattern

Mining, In. Proc of the 8th Pacific-Asia

Conference of Advances in Knowledge

Discovery and Data Mining, PAKDD 2004,

Sydney, Australia, May 26-28, 2004. pp. 441-

451.
[4] U. Ruckert, S. Kramer, Frequent free tree

discovery in graph data, In Proc. of the 2004

ACM Symposium on Applied Computing (ACM,
2004), Nycosia, Ciprus, 2004.

[5] A. Termier, M.C. Rousset and M. Sebag,

TreeFinder: a first step towards XML Data
Mining, In Proc. Of 2002 IEEE International

Conference on Data Mining (ICDM’02),

Maebashi city, Japan, 2002, pp. 450-457.

[6] Dimitrios Katsaros, Alexandros Nanopoulos, and

Yannis Manolopoulos. Fast mining of frequent

tree structures by hashing and indexing.

Information & Software Technology, 47(2):129–

140, 2005.

[7] Yun Chi, Richard R. Muntz, Siegfried Nijssen,
and Joost N. Kok. Frequent subtree mining – an

overview. Fundamenta Informaticae, Special

issue on Advances in Mining Graphs, Trees and
Sequences, 66(12):161–198, March-Apr 2005.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp190-195)

