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Abstract: - CA
2
 is a novel computer simulation program to investigate in silico population dynamics of cancer 

growth. The model is based on 2-dimensional generalized and probabilistic cellular automata with fixed lattice 

structure.  The structural elements of the cellular automata are units that simulate real cell dynamics at cellular 

and inter-celular level. Each artificial unit is a 4-state element and at any instance can be in one of the 

following conditions: normal, immature cancer, matured cancer, or dead. Depending on cell’s state, a triplet 

of specific time values are randomly selected and associated with it. This triplet of values corresponds to cell’s 

lifetime, mature period and dissolution time (if dead). Simulation results of the evolution of cancer growth and 

the obtained population dynamics are in good agreement with both in vitro experiments of cell cultures and 

statistical (macroscopic) mathematical models of cancer growth. Furthermore, the model provides evidence of 

emerging non-linear complexity, self-organization and chaotic population dynamics in cancer growth. These 

features are related to similar observations found in dynamics at cellular and intra-cellular level. Additional 

evidence for the emergence of self-organized chaos at the systemic level for a growing cancer is provided from 

the analysis of the underlying dynamics of the biomagnetic activity emitted from various types of cancer 

lesions. These biomagnetic recordings were obtained using Superconductive Quantum Interference Devices 

(SQUIDs).  
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1   Introduction 
Investigation of the dynamics of cancer growth, 

proliferation and metastasis is of great importance, 

since it allows to us to study the role of several 

parameters involved. Early studies concluded to the 

well-known mathematical model of Gompertz, 

which in a simple mathematical expression 

describes the evolution of the volume of a growing 

and proliferating tumor. In mathematical terms [1], 

the Gompertzian model can be written as follows: 
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In the above relation, V(t) is the tumor volume at 

any time t; V0 is the initial tumor volume (t = 0); A 

and B, are model’s positive parameters, with values 

more or less arbitrarily chosen in order the model to 

fit given experimental data. 

     Describing the model of Eq. (1) we could 

mention that it incorporates exponential growth, but 

with a time evolving exponent which is zero for t = 

0 and increases to a saturation value, namely tents to 

A/B for t → ∞, or practically, for large values of t 

(decelerating growth). By plotting V(t) against t, we 

obtain a one-modal sigmoid curve, with rapid 

increase for small values of t, and a saturation point 

at V0e
A/B  

for large enough values of t. 

     Despite the fact that there is no doubt that the 

Gompertzian model is closely related to the realistic 

behavior of cancer growth, due to its mathematical 

nature it remains deeply phenomenological and 

abstractive, lacking of physical interpretation for the 

parameters A and B, which are of macroscopic and 

statistical nature. In addition, the Gompertzian 

model can not incorporate parameters that are 

related to the micro-structure and the micro-

dynamics of cancer growth, which are present at 

cellular and intra-cellular level. Nor this model takes 

under consideration that many tumors contain more 

than one clonal population with different division 

rates and nutritional needs which can be described 
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only assuming competition among cellular 

subpopulations [2]. 

     Except from the above, several mathematical 

models have been proposed, considering exponential 

growth, logistic growth [3], incorporating models 

for the very crucial phenomenon of angiogenesis 

[4,5], utilizing continuum models governed by 

reaction-diffusion differential equations [6], 

description of nutrient distribution with the use of 

nonlinear partial differential equations [7], even 

mathematical models of nutrient diffusion, 

trophoblast invasion [8], cellular necrosis and 

apoptosis [9], and tumor classification using 

elasticity theory [10]. Despite their success, the main 

disadvantage of all these models remains the 

inability to describe micro-dynamics at cellular and 

sub-cellular level [11]. 

     More realistic, “bottom-up” approaches that 

overcome the limitations of the mathematical 

models are based on cellular automata (CA). Several 

CA models of cancer growth have been proposed in 

the past, based on their ability to exhibit global 

behavior resulting form local interactions, to provide 

explanation of macroscopic phenomena using 

discrete, microscopic description, and their 

adaptability to account as simple-rules-based models 

of highly complex systems [12-14]. Both 2-

dimensional and 3-dimensional CA models of 

cancer growth have been proposed, providing square 

or cubic lattice grids of fixed size [15-17]. 

Moreover, more complex models incorporating 

variable 3-dimensional lattice have been proposed 

[18, 19]. All these models were trying to provide 

answers on subjects such as tumor growth and 

proliferation, immune response, even cell migration. 

     Based on our previous work [20, 21], the CA 

model proposed here is a 2-dimensional approach 

for the study of cancer growth and proliferation on a 

fixed size lattice. The model incorporates 

microscopic parameters referring to cellular 

generation, maturity, proliferation and death. The 

exact values of these parameters are individually 

selected for each one cell. Local interactions are 

considered that simulate real cellular and inter-

cellular behavior. Finally, the model has the ability 

to study the growth of cellular subpopulations, 

which were proliferated on the same lattice, but 

were characterized by different division rates and 

nutritional needs. Results obtained from the 

performed computer simulations, shown realistic 

macroscopic behavior that compares favorably to 

both experimental data and the findings of other 

proposed models. These results are discussed in 

terms of cellular (local) dynamics, as well as global 

behavior and in terms of emerging features, complex 

dynamics and self-organization. 

 

 

2   Methods 
Our CA model of cancer growth is based on 

previous work [21, 22] for cancer growth using a 2-

dimensional, rectangular, fixed structured lattice, 

where each grid point corresponds to a single cell 

position. The proposed CA is generalized and 

probabilistic in terms that will be explained in the 

following. At any instance of time, each cell can be 

in one of the four following states: 

• Normal, denoted by N 

• cancer, denoted by c 

• cancer, in division phase denoted by C 

• dead, denoted by D 

 

Thus, the permitted values of each cell are N, c, C or 

D. Each cell is characterized by a triplet of values: 

• lifetime, TL, related to the total period that a 

specific cell is alive 

• maturity period or reproduction age, TR, 

which is the time necessary a cell to become 

“mature enough” to divide and proliferate 

• dissolution time, TD, the time necessary the 

remaining of a dead cell to be exported and 

the specific grid site to be free 

 

Due to the probabilistic nature of the proposed 

model, the exact values of the triplet (TL, TR, TD) for 

each cell are individually defined in a random 

fashion. To be more specific, each one of these 

values is selected randomly from a range of 

corresponding permitted values with the use of 

pseudo-random number generators. In order the 

model to be able to simulate the evolution of more 

than one subpopulation, the definition of the triplet 

of values (TL, TR, TD) of a cell generated after 

division, takes under consideration the 

corresponding triplet of values of the original cell. In 

other words, for the definition of these three vital 

parameters of each cell inheritance is incorporated. 

Thus, it can result a number of subpopulations that 

carry different proliferation and nutritional 

characteristics that are simultaneously developing 

and competing on the same lattice. 

     Finally, the mechanisms of local interactions of 

the CA that are simulating the real inter- and intra-

cellular cellular dynamics are the following: 
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• N → c : a grid position that was 

occupied by a normal cell is taken by a 

new cancer cell 

• c → C : an immature cancer cell gets in 

the proliferation phase 

• C →  2c : division of a cancer cell 

• c → D : death of an immature cancer 

cell 

• C → D : death of a mature cancer cell 

• N → D : death of a normal cell 

• D → N : a new normal cell occupies an 

empty position 

• D → c : a new cancer cell occupies an 

empty grid position 
 

Initially, (for t = 0), the CA is consisted of normal 

cells, except a user-defined number of cells that 

turned to cancer cells. If the number of cancer cells 

is more than one for t = 0, then a corresponding 

number of cancer cells subpopulations are evolving 

simultaneously on the same lattice. The precise grid 

position of the cancer cell(s) is (are) randomly 

selected by the simulation program. For each time 

instance a pictorial representation of the CA is 

provided, as well as numerical results considering 

the number of normal cells, immature cancer cells, 

matured cancer cells and dead cells. 

 

 

3   Results 
The results of two, out of a large number of 

computer experiments are presented in the 

following. For better pictorial representation of the 

CA at each particular time instance, there were used 

different gray-scale colors to denote the 

corresponding type of cell on the lattice. Thus: 

• black denotes mature cancer cells C 

• dark-grey denotes immature cancer cells c 

• light-grey denotes normal cells N 

• white denotes death cells D or empty lattice 

positions 

 

     In Fig. 1 there are shown 6 instances of the 

obtained simulation results of a CA consisting of 

50x50 cells. Starting from the upper-left picture of 

Fig. 1, a single cell is turned to cancer cell (dark-

grey dot) at time t = 0. This cancer cell matured and 

was ready to divide (c → C) at time t = 10,  as it is 

shown in upper-right picture (black dot). At the next 

time step (t = 11) the original cancer cell is divided 

and two cancer cells are shown in middle-left 

picture (denoted two dark-grey dots). The position 

of the new cancer cell was selected randomly among 

the available grid positions surrounding the original 

cancer cell. At instance for t = 13 the new cancer 

cell dies (white dot at middle-right picture), whereas 

the original cancer cell remains alive (dark-grey dot 

at the same picture). The last (lower-left and lower-

right) pictures in Fig. 1 represent the death of the 

original cancer cell, for t = 18, before it manage to 

mature and be divided once more. This result may 

be unexpected, but however is common behavior in 

real life. For every organism, generation of a cancer 

cell from a normal cell, (carcinogenesis), occurs in 

an every day fashion. However, not all organisms 

will develop cancer, since as a result of the immune 

system response, cancer cells die at a very premature 

level, before they divide and proliferate.  

     Quite different were the obtained results that are 

presented in Fig. 2. In that Figure it is shown the 

evolution of 5 subpopulations of cancer cells. These 

5 subpopulations were emerged from 5 cancer cells 

that appeared for t = 0 (upper-left picture).  As we 

have stated before, the particular lattice positions for 

each one of that 5 cancer cell was chosen randomly 

by the program. The CA condition for t = 50 is 

shown in the upper-right picture of Fig. 2. Clearly, 

the 5 original cancer cells have managed to mature, 

divide and proliferate in the surroundings. Cancer 

cells are shown to be expanded further for t = 100, 

as it is shown if the lower-left picture of Fig. 2. 

Almost 50% of the lattice positions are occupied by 

either mature cancer cells (black dots), or immature 

cancer cells (dark-gray dots). Finally, t = 170 shown 

in the lower-right picture of Fig. 2, cancer cells have 

proliferate practically all over CA lattice. Only few 

grid positions are occupied by normal (light-grey 

dots) or dead (white dots) cells. 

     For the latter computer experiment, the evolution 

of the number of the cancer cells is shown in Fig. 3. 

The CA considered in that experiment was a 50x50 

lattice, that is, it consisted of 2500 grid positions 

(individual cells). As it is shown in Fig. 3, for small 

values of time t, the number of cancer cells seems to 

increase almost exponentially. This is in favorable 

comparison with the real-life experimental results, 

and in good agreement with the results of the 

Gompertz model of (Eq. 1). For t = 170 and 

thereafter up to t = 300, the number of cancer cells 

appears to saturate to a mean value around 2340 

cells and small fluctuations are observed above or 

below that value. Practically, the CA have reached 

to a dynamical equilibrium condition, with a few 

cancer cells to die, and a few new-born cancer cells 

to  occupy  free  lattice  positions  resulting  from the 

 dissolution of a small number of dead cells. The 

evolution of the dead cells population is shown in 
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Fig. 4, where after a approximately exponential 

increase for small values of t a saturation is observed 

with small fluctuations around a mean value of 160 

dead cells.  

 

 

4 Discussion 
The aim of this work was to develop a new software 

tool named CA
2
 for  in silico  investigation of cancer 

growth [18-21]. CA
2
 is a discrete simulation model 

consisting of elements with real cell-like function. 

The model is based on generalized, probabilistic 

cellular automata with a 2 - dimensional fixed  (non- 

 

 

 

variable size) lattice. Each cell is a 4-state element, 

and may be either a normal cell, or an immature 

cancer cell, or a mature (dividing) cancer cell, or 

finally a dead cell. Depending on its state, a cell is 

characterized of a triplet of values corresponding to 

three functional parameters: lifetime, maturity time 

and dissolution time (if dead). The specific values 

are randomly selected from user-defined ranges. 

Simulations like the ones presented above are 

typical results of the model. The obtained results 

clearly fit the corresponding ones derived from 

laboratory experiments of cancer cells cultures as 

well as mathematical models. 

  

  

  

Fig. 1  Evolution of  single cancer cell with no proliferation ability 
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Fig. 3  Evolution of the population of cancer cells 

 

 

     As it was shown in Fig. 1, the model is able to 

provide a simple and realistic explanation for the 

elimination of cancer cells at their early stage of 

development, as well as the simultaneous growth of 

multiple subpopulations on the same lattice (Fig. 2). 

Finally, the proposed model seems to be in 

agreement with observations that imply non-linear, 

complex (chaotic) dynamics and self-organization in 

cancer growth. This is shown in Fig. 2 where the 

expansion and proliferation of multiple cancer 

subpopulations is presented. In addition, the same 

thing is denoted  by the  observed  stationarity  at the  

 

 

 

 
Fig. 4  Evolution of the population of dead cells 

 

 

population dynamics of the cancer cells (Fig. 3) and 

the dead cells (Fig. 4). After a short transient phase 

corresponding to small values of t, both these two 

populations remain stationary in dynamical 

equilibrium. These findings provide evidence for 

emerging non-linear complexity and self-organized 

chaotic dynamics in cancer growth. This hypothesis, 

proposed for cancer dynamics at sub-cellular and 

cellular level, [11, 18] seems to stand at the systemic 

level as well [22-24]. Indeed, non-linear analysis 

biomagnetic measurements performed in vivo for 

various types of cancer with the use of SQUIDs 

indicated the existence of low-dimensional chaotic 

  

  

Fig. 2  Evolution of  5 cancer subpopulations on the same CA lattice 
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dynamics in the biomagnetic activity of these lesions 

[25-27]. 
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