
Describing Data Table with Best Decision

ANTS TORIM, REIN KUUSIK
Department of Informatics

Tallinn University of Technology
Raja 15, 12618 Tallinn

ESTONIA
 http://staff.ttu.ee/~torim

Abstract: - We propose a new way for describing data tables that is inspired by decision trees. Our goal is to summarize
entire data table with one “average” object called best decision. The best decision is defined here as a decision that
achieves the greatest value of a weight function. In our paper we first review computationally simple weight function
for defining the best decision which does not account for the dependencies between the attributes. Then we define
decision as a branch in a decision tree and introduce a weight function that takes those dependencies into account. As
search-space for such decision grows factorially with the number of attributes, efficient pruning techniques are
necessary. We define three pruning techniques that can be applied in combination. We present some empirical data to
demonstrate the effectiveness of such techniques.

Key-Words: - data mining, decision tree, best decision, optimization, algorithms

1 Introduction
Data mining approaches like rule-sets [5], decision trees
[4] and clustering [6] describe data tables with structures
that are quite comprehensive put not as compact as
traditional descriptive statistics – mean, median, mode.
Traditional descriptive statistics however are calculated
independently for every attribute and don’t account for
correlations between values of different attributes.
“Average” object composed from values calculated
independently for each attribute might not exist in data
table at all. In the following article we will discuss the
task of representing the data table with one “average”
row that we call the best decision. The concept of the
best decision is inspired by decision trees [4] and
monotone systems theory [2, 7, 8, 9, 10]. It was first
described in [1], however it was not presented to wider
international audience. In contrast to the Quinlan’s ID3
algorithm [4], we are not interested in the entire decision
tree but only in the one branch of it - best decision. In
our paper we first describe scale of conformity approach
[11] for defining the best decision and review its
shortcomings. Then we give our definition for best
decision. As search-space for best decision grows
factorially with the number of attributes, efficient
pruning techniques are necessary. We present an
algorithm that uses concept of potential to prune the
search-space as described in [1]. We also describe two
novel enhancements that allow additional pruning.
Finally, we compare time efficiency of those
enhancements by empirical measurements.

2 Problem Formulation

Best decision was originally intended as a formal way to
select one from possibly conflicting recommendations of
experts [1]. It is however applicable to any table
containing discrete data as a way to describe it with one
“average” row. We present computationally simple scale
of conformity approach [11] and review its
shortcomings. Then we present our approach.

2.1 Best Decision as Measured by the Scale of

Conformity
The problem of finding the best decision can be defined
in many ways. Here we are using following argument.
We can calculate a weight for every decision. If we base
our weight calculation on typicality then we can measure
it by the conformity [11]. Conformity as a measure is
calculated by the certain transformation where instead of
attribute value we use its frequency – that is, we perform
the so-called frequency transformation. For every row in
the data table we can then calculate the sum of all
attribute-value frequencies – that is we find the weight
for row which we can call the conformity of that row
(decision). The greater the conformity the more typical
attribute values the row contains. According to that
principle the row with the greatest conformity becomes
the best decision.
 Though we are evaluating every decision in relation
to the system as a whole (data table is an object-attribute
system), while summing frequencies, we may not always
get the result that we can intuitively call the best
decision. That is because we are not taking into account
the dependencies between the attributes. That can lead to
situations where the best decision does not feel

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

intuitively appropriate. Let’s examine the following
example. Let us have a data table T:

Table 1. Example.

 A1 A2 A3 A4 A5 A6 A7
O1 1 1 1 1 3 3 3
O2 1 1 1 2 3 3 3
O3 1 1 1 2 2 2 2
O4 2 2 2 1 2 2 2
O5 2 2 2 1 2 2 2

In our example the number of rows | T | equals to five.
We denote the set of attributes in the table T by AT and
the set of possible values for an attribute a by Dom(a). In
our example AT = {A1, A2,..., A7} and Dom(A1) = {1,
2}. We call pair (a, v) where a is an element of AT and
v is an element of Dom(a) element of decision. For each
element (a, v) we can calculate its frequency πT ((a, v))
in data table T.

Table 2. Frequencies.

Each object (row) in the data table is a set of elements:

O = { (a1, v1), (a2, v2),..., (an, vn)}

Objects weight according to the scale of conformity is
sum of its elements frequencies:

W(O) = πT ((a1, v1))+ πT ((a2, v2))+...+ πT ((an, vn)) (1)

Table 3. Weights of objects in the scale of conformity.

 A1 A2 A3 A4 A5 A6 A7 W(O)
O1 3 3 3 3 2 2 2 18
O2 3 3 3 2 2 2 2 17
O3 3 3 3 2 3 3 3 20
O4 2 2 2 3 3 3 3 18
O5 2 2 2 3 3 3 3 18

Table 4. The best decision (by the scale of conformity).

(O3) 1 1 1 2 2 2 2

 We can see that the object identified as the best
decision is not very typical, as there is only one instance
of it. In this case the scale of conformity approach does

not seem trustworthy. That kind of result was caused by
not taking into account the dependencies between the
attributes. How should we behave when we assume
mutual dependency between the attributes? Below we
describe a suitable approach. We present its result (the
best decision) right now in order to show the difference.

Table 5. The best decision (by another approach)

2.2 The Problem of Finding the Best Decision
Concept of best decision as described here was first
formulated in [1]. Decision can be described as one
branch in a decision tree. It’s first element (a, v pair)
defines sub-table, its second element defines sub-table of
sub-table and so on. Informally, weight of a decision is
sum of rows over those recursive sub-tables. Formal
definition follows.
 We denote the data table after the selection of an
element (a, v) by T \ (a, v) and define it as a sub-table of
T that contains all the rows of T where value of an
attribute a equals v and all the columns of T except
column a.
 For example if T is Table 1 then T \ (A2, 1) is:

Table 6. T \ (A2, 1).

 A1 A3 A4 A5 A6 A7
O1 1 1 1 3 3 3
O2 1 1 2 3 3 3
O3 1 1 2 2 2 2

Definition 1. Ordered set IT = 〈 (a1, v1), (a2, v2), ... ,(an,
vn) 〉 that contains n elements from table T and where no
attribute ai occurs twice is decision. If n = |AT|, then IT
is complete decision, if n < | AT | then IT is partial
decision.

One complete decision for Table 1 is 〈 (A7, 3), (A2, 1),
(A4, 1), (A1, 1), (A3, 1), (A6, 3), (A5, 3)〉.

Definition 2. For a decision IT = 〈 (a1, v1), (a2, v2),..., (an,
vn) 〉 we define its weight W(IT) as follows:

W(IT) = πT ((a1, v1)) + W(I \ (a1, v1) T \ (a1, v1)), if | AT | > 1
W(IT) = πT (a1, v1), if | AT | = 1 (2)

For Table 1:
W(〈(A7, 3), (A2, 1), (A4, 1), (A1, 1), (A3, 1), (A6, 3), (A5,
3) = 2 + 2 + 1 + 1 + 1 + 1 + 1 = 9

Definition 3. The best decision for table T is decision IT,
with greatest weight. That is, for any decision I´T in

Attrib
ute’s
value

A1 A2 A3 A4 A5 A6 A7

1 3 3 3 3 0 0 0

2 2 2 2 2 3 3 3

3 0 0 0 0 2 2 2

(O4, O5) 2 2 2 1 2 2 2

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

table T holds condition W(IT) ≥ W(I´T). We denote the
best decision for table T by bIT.

The best decision and its weight for Table 1 is,
W〈 (A7, 2), (A6, 2), (A5, 2), (A4, 1), (A3, 2), (A2, 2), (A1,
2)〉 = 3 + 3 + 3 + 2 + 2 +2 + 2 = 17.
 Our definition for the best decision has several
interesting properties:

• It takes into the account dependencies between
the attributes.

• Row described by the best decision is
guaranteed to exist in a data table.

• The order of elements in the best decision is
significant and informative. First (attribute,
value) pairs represent greater part of the weight
than later elements and describe frequent and
correlated (attribute, value) pairs. In the scale of
conformity approach that information is missing.

• Best decision represents a branch in the decision
tree [4]. It can be thought of as representing
properties of a typical row in the order of
importance. Unlike decision tree, it is not usable
for exact classification. If we are dealing with
several classes of objects, we can find best
decision for each class by splitting table into
sub-tables - one.sub-table for every class.

• In not requiring designated class, best decision is
similar to association rules approach. It gives
more compact and less comprehensive
description for data table than association rules.

3 Problem Solution

3.1 Algorithms
We first review a simple brute-force algorithm [3] and
after that an algorithm that uses the concept of potential
for pruning the search tree. Then we add additional
enhancements.

3.1.1 Brute-force algorithm
Brute-force algorithm for depth-first search can be
described as follows. Recursive function BestDecision
has three parameters: table (or sub-table) T, current best
decision bI and partial decision under construction I. It
returns the decision with the greatest weight from two
options:

• The best decision that can be constructed by
extending partial decision I with elements form
the table T. That is always I + bIT.

• Current best decision bI.
Call for the first level of recusion has the form

BestDecision (T, 〈〉, 〈〉) and we assume that W (〈〉) = 0.

BestDecision(T, bI, I):
(End of recursion) If |AT| = 1:
 Find (a, v) with greatest πT ((a, v))
 If W(I +〈(a, v)〉) > W(bI), then set bI ← I +〈(a, v)〉
(Recursion) If (|AT| > 1):
 For each (a, v) in T:
 Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉)
(Return) Return the decision bI

3.1.2 Pruning by potential
Brute-force algorithm needs to search through all
possible decisions. Number of possible decisions is
factorially dependent to the number of attributes | AT | as
we need to check all possible permutations. As S. Skiena
[3] claims good pruning techniques have stronger
influence to the efficiency of a backtracking algorithm
than any other factor. We describe how to use the
concept of potential [1] for pruning the search tree.

Definition 4. The potential V for an element (a, v) and
partial decision I from table T is:

V((a, v), T, I) = πT ((a, v)) ⋅ |AT| + W(I) (3)

Potential sets upper limit to the weight of any decision I
+〈(a, v), ...〉, that we can construct from a partial decision
I and an element (a, v).
 Example potential from Table 1:
V((A1, 1), T, 〈〉) = 3 ⋅ 7 + 0 = 21
Example potentials from Table 6:
V((A1, 1), T\ (A2, 1), 〈 (A2, 1)〉) = 3 ⋅ 6 + 3 = 21
V((A4, 1), T\ (A2, 1), 〈 (A2, 1)〉) = 1 ⋅ 6 + 3 = 9
 It is trivial to see that it is impossible to construct a
decision with the greater weight than that given by the
potential when adding an element (a, v) to a partial
decision. Potential equals weight in the ideal case when
all the rows in the table T \ (a, v) contain identical data.
 If we compare potential of a partial decision to to the
weight of the current best decison then we can prune
number of branches from our search tree. To increase the
effectiveness of pruning we try to find the high-weight
decisions as early as possible. For that we are using the
heuristic of examining elements in the order of their
frequencies.
(*) - Enhancement for the brute-force algorithm

BestDecision(T, bI, I):
(End of recursion) If |AT| = 1:
 Find (a, v) with greatest πT ((a, v))
 If W(I +〈(a, v)〉) > W(bI), then set bI ← I +〈(a, v)〉
(Recursion) If (|AT| > 1):
 (*) Order all elements (a, v) decreasingly by πT ((a, v))
 (*) For each (a, v) where V((a, v), T, I) > W(bI):

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

 Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉)
 (Return) Return the decision bI

Example: Let us have a data table T with two attributes
(possible values 1 and 2) and ten rows.

Table 7. Example.

A B
1 1
1 1
1 1
1 2
1 2
1 2
1 2
2 1
2 1
2 1

We have identified 〈(A, 1), (B, 2)〉 as the current best
decision with the weight 11. We are trying to find
BestDecison(T, 〈(A, 1), (B, 2)〉 , 〈〉). As potentials for
elements (A, 2) and (B, 2) are less than 11, we can
eliminate those branches from our search.

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2
V = 6

B1
V = 12

B2
V = 8

B2 A1A1 B1 B2A2 A2

Fig. 1. Nodes are sub-tables with number of rows, lines
are selections, solid lines represent examined search-
space.

3.1.3 Additional enhancements
When examining our search procedure we can see that
repeated visits to same sub-table are possible. We can
get to the sub-table A1B1 by taking A1 as first element
and B1 as second or by taking B1 as first element and
A1 as second. Our new enhancements – bringing zeroes

down and bringing zeroes up – reduce those repeated
visits.
 Bringing zeroes down allows us to detect by
examining already searched elements (zeroes) from
immediate upper level of backtracking, that we have
already examined certain sub-table and partial decision
that led to it had at least equal weight to our current
partial decision.

Theorem 1
Let us have two elements (a1, v1) and (a2, v2) from
table T so as πT ((a1, v1)) ≥ πT ((a2, v2)). Then

W(〈(a1, v1), (a2, v2)〉) ≥ W(〈(a2, v2), (a1, v1)〉 (4)

Proof: Tables T \ (a1, v1) \ (a2, v2) and T \ (a2, v2) \
(a1, v1) are identical (same sub-table). So frequencies πT

\ (a1, v1) ((a2, v2)) and πT \ (a2, v2) ((a1, v1)) are also
identical. As πT ((a1, v1)) + πT \ (a1, v1) ((a2, v2)) ≥ πT

((a2, v2)) + πT \ (a2, v2) ((a1, v1)) it must be that W(〈(a1,
v1), (a2, v2)〉) ≥ W(〈(a2, v2), (a1, v1)〉).
■

In other words, if πT ((a1, v1)) ≥ πT ((a2, v2), then
partial decision 〈(a1, v1), (a2, v2)〉 is at least equal in
weight as partial decision 〈(a2, v2), (a1, v1)〉. As we
examine elements in order of their weights and use
depth-first search, we can leave out from recursion level
T \ (a2, v2) every element (a1, v1) that was already
examined in previous recursion level T.
 Bringing zeroes up allows us to detect that sub-table
corresponding to some element was already examined in
immediate lower level of backtracking.

Theorem 2
Let us have two elements (a, v) and (a´,v´) from table T
so as πT ((a´, v´)) = πT \ (a, v) ((a´, v´)). Then

W(bIT\(a, v)) ≥ W(bIT\ (a´,v´)) (5)

Proof: If πT ((a´, v´)) = πT \ (a, v) ((a´, v´)) then table T \ (a,
v) must contain all the rows from table T \ (a´, v´) –
table T \ (a´, v´) is its sub-table. Let decision I´T\(a, v)
contain same elements as decision bIT\ (a´,v´). As table
T\(a, v) contains table T\(a´, v´) then W(I´T\(a, v)) ≥ W(bIT\

(a´,v´)). So table T \ (a, v) must contain at least one
decision with greater or equal weight as best decision
from table T \ (a´, v´).
■

So, if we find that frequency of element remains same in
immediate lower level of backtracking then we need not
examine this element again in upper level.

Enhanced algorithm:

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

K – Elements checked at upper level of recursion.
K’ – Elements checked at current level of recursion.
(*) - Enhancement for purely potential based algorithm

BestDecision(T, bI, I, K):
(End of recursion) If |AT| = 1:
 Find (a, v) with greatest πT ((a, v))
 If W(I +〈(a, v)〉) > W(bI), then set bI ← I +〈(a, v)〉
(Recursion) If (|AT| > 1):
 (*) Set K´← {}
 Order all elements (a, v) decreasingly by πT ((a, v))
 (*) For each (a, v) not in K and K´ where
 V((a, v), T, I) > W(bI):
 (*) Add (a, v) into K´
 Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉, K´)
 (*) Add all elements (a´, v´) from T \ (a, v) where
 πT ((a´, v´)) = πT \ (a, v) ((a´, v´)) into K´
(Return) Return the decision bI

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2 B1 B2

B2 A1A1
K = (A1) B1 B2A2 A2

Fig 2. Example of bringing zeroes down (Table 7). As
A1 is in the set of elements checked in level T, we can
ignore it at the level T \B1.

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2 B1 B2
K' = (B2)

B2 A1A1 B1 B2A2 A2

Fig. 3. Example of bringing zeroes up (Table 7). As πT
((B2)) = πT\A1 ((B2))=4 and we have examined whole
level T\A1 we can ignore B2 at level T.

3.2 Efficiency Comparison
We compared the efficiency of a brute-force algorithm
against the efficiency of an algorithm using only
potential and algorithm using potential, bringing zeroes
up and bringing zeroes down for pruning. Properties of
the testing enviroment were:
• processor Intel(R) Pentium(R) 4, 2.80 GHz
• 512 MB memory
• operating system Windows XP

We varied the number of columns and number of rows
in our input tables and ran separate comparisons for
random data tables and structured data tables. Attributes
had values in range 1..9.

0

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

rows

tim
e(

m
s)

brute force
potential
enhanced potential

Fig 4. Random data, 5 columns.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

0

10000

20000

30000

40000

50000

60000

70000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

rows

tim
e(

m
s)

Fig 5. Structured data, 5 columns.
Uneven growth in time (potential, enhanced potential) is
probably due to differences in tables internal structures.

0

50000

100000

150000

200000

250000

300000

350000

0 2 4 6 8 10 12 14 16 18

columns

tim
e(

m
s)

Fig. 6. Random data, 100 rows. Uneven growth in time
(potential, enhanced potential) is probably due to
differences in tables internal structures.

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18

columns

tim
e(

m
s)

Fig. 7. Structured data, 100 rows.

As we can see, the algorithm that applies potential for
pruning is significantly more efficient than the brute-
force approach. Proposed additional enhancements speed
it up even further.

4 Conclusion
Best decision describes data table in a compact way.
Calculating it is computationally complex task. Though
proposed pruning techniques offer significant speed-up
compared to brute-force algorithm, for significant
number of columns they are still inadequate. We have
several ideas for further optimization for example
through sub-table caching techniques.

References:
 [1] Kuusik, R. Application of Theory of Monotonic
Systems for Decison Trees Generation. Transactions of
Tallinn Technical University no. 705
[2] Mullat, I. Extremal Monotonic Systems. Automation
and Remote Control, No 5, 1976
[3] Skiena, S. The Algorithm Design Manual. Springer-
Verlag, 1998
[4] Quinlan, J. R. Induction of Decision Trees, Machine
Learning, (1), 1986, pp. 81-106
[5] Cohen, W. W. Fast effective rule induction. Machine
Learning: Proceedings of the Twelfth International
Conference, 1995. pp. 115—123
[6] Kaufman, L. and Rousseeuw, P. Finding groups in
data: An Intorduction to cluster analysis. NewYork:
Wiley, 1990.
[7] Kuusik, R. Lind, G., Võhandu, L. Pattern Mining as a
Clique Extracting Task. Posters. Tenth International
Conference IPMU 2004 Information Processing and
Management of Uncertainty on Knowledge-Based
Systems. July, 4-9, 2004, Perugia, Italy, ISBN 88-87242-
54-2, pp. 19-20.
[8] Lind, G. Method for Data Mining - Generator of
Hypotheses. Databases and Information Systems.
Proceedings of the 4th International Baltic Workshop.
Vilnius 2000. Vol. 2, pp. 304-305.
[9] Kuusik, R., Lind, G. An Approach of Data Mining
Using Monotone Systems. Proceedings of the Fifth
International Conference on Enterprise Information
Systems. Angers, France 2003. Vol. 2, pp. 482-485.
[10] Kuusik, R., Lind, G. New frequency pattern
algorithm for data mining. Proceedings of the 13th
Turkish Symposium on Artificial Intelligence and Neural
Networks. 10-11 June, 2004, Foca, Izmir, Turkey, ISBN
975-441-213-8, pp. 47-54.
[11] Võhandu, L. Express Methods of Data Analysis,
Transactions of Tallinn Technical University, No. 464,
1979, pp. 21-37 (in Russian).

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)

