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Abstract: - We propose a new way for describing data tables that is inspired by decision trees. Our goal is to summarize 
entire data table with one “average” object called best decision. The best decision is defined here as a decision that 
achieves the greatest value of a weight function. In our paper we first review computationally simple weight function 
for defining the best decision which does not account for the dependencies between the attributes. Then we define 
decision as a branch in a decision tree and introduce a weight function that takes those dependencies into account. As 
search-space for such decision grows factorially with the number of attributes, efficient pruning techniques are 
necessary. We define three pruning techniques that can be applied in combination. We present some empirical data to 
demonstrate the effectiveness of such techniques. 
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1   Introduction 
Data mining approaches like rule-sets [5], decision trees 
[4] and clustering [6] describe data tables with structures 
that are quite comprehensive put not as compact as 
traditional descriptive statistics – mean, median, mode. 
Traditional descriptive statistics however are calculated 
independently for every attribute and don’t account for 
correlations between values of different attributes. 
“Average” object composed from values calculated 
independently for each attribute might not exist in data 
table at all. In the following article we will discuss the 
task of representing the data table with one “average” 
row that we call the best decision. The concept of the 
best decision is inspired by decision trees [4]  and 
monotone systems theory [2, 7, 8, 9, 10]. It was first 
described in [1], however it was not presented to wider 
international audience. In contrast to the Quinlan’s ID3 
algorithm [4], we are not interested in the entire decision 
tree but only in the one branch of it - best decision. In 
our paper we first describe scale of conformity approach 
[11] for defining the best decision and review its 
shortcomings. Then we give our definition for best 
decision. As search-space for best decision grows 
factorially with the number of attributes, efficient 
pruning techniques are necessary. We present an 
algorithm that uses concept of potential to prune the 
search-space as described in [1]. We also describe two 
novel enhancements that allow additional pruning. 
Finally, we compare time efficiency of those 
enhancements by empirical measurements. 
 
 
2   Problem Formulation 

Best decision was originally intended as a formal way to 
select one from possibly conflicting recommendations of 
experts [1]. It is however applicable to any table 
containing discrete data as a way to describe it with one 
“average” row. We present computationally simple scale 
of conformity approach [11] and review its 
shortcomings. Then we present our approach. 
 
 
2.1 Best Decision as Measured by the Scale of 

Conformity 
The problem of finding the best decision can be defined 
in many ways. Here we are using following argument. 
We can calculate a weight for every decision. If we base 
our weight calculation on typicality then we can measure 
it by the conformity [11]. Conformity as a measure is 
calculated by the certain transformation where instead of 
attribute value we use its frequency – that is, we perform 
the so-called frequency transformation. For every row in 
the data table we can then calculate the sum of all 
attribute-value frequencies – that is we find the weight 
for row which we can call the conformity of that row 
(decision). The greater the conformity the more typical 
attribute values the row contains. According to that 
principle the row with the greatest conformity becomes 
the best decision.  
     Though we are evaluating every decision in relation 
to the system as a whole (data table is an object-attribute 
system), while summing frequencies, we may not always 
get the result that we can intuitively call the best 
decision. That is because we are not taking into account 
the dependencies between the attributes. That can lead to 
situations where the best decision does not feel 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp152-157)



intuitively appropriate. Let’s examine the following 
example. Let us have a data table T: 
 
Table 1. Example. 

 
 A1 A2 A3 A4 A5 A6 A7 
O1 1 1 1 1 3 3 3 
O2 1 1 1 2 3 3 3 
O3 1 1 1 2 2 2 2 
O4 2 2 2 1 2 2 2 
O5 2 2 2 1 2 2 2 

 
In our example the number of rows | T | equals to five. 
We denote the set of attributes in the table T by AT and 
the set of possible values for an attribute a by Dom(a). In 
our example AT  = {A1, A2,..., A7} and Dom(A1) = {1, 
2}.  We call pair (a, v) where a  is an element of AT  and 
v  is an element of Dom(a) element of decision. For each 
element (a, v) we can calculate its frequency πT ((a, v)) 
in data table T. 
 
Table 2. Frequencies. 

 
Each object (row) in the data table is a set of elements: 

O = { (a1, v1), (a2, v2),..., (an, vn)} 
 

Objects weight according to the scale of conformity is 
sum of its elements frequencies: 

W(O) = πT ((a1, v1))+ πT ((a2, v2))+...+ πT ((an, vn)) (1) 
 
Table 3. Weights of objects in the scale of conformity. 
 

 A1 A2 A3 A4 A5 A6 A7 W(O) 
O1 3 3 3 3 2 2 2 18 
O2 3 3 3 2 2 2 2 17 
O3 3 3 3 2 3 3 3 20 
O4 2 2 2 3 3 3 3 18 
O5 2 2 2 3 3 3 3 18 

 
Table 4. The best decision (by the scale of conformity). 
 
(O3) 1 1 1 2 2 2 2 

 
     We can see that the object identified as the best 
decision is not very typical, as there is only one instance 
of it.  In this case the scale of conformity approach does 

not seem trustworthy. That kind of result was caused by 
not taking into account the dependencies between the 
attributes. How should we behave when we assume 
mutual dependency between the attributes? Below we 
describe a suitable approach. We present its result (the 
best decision) right now in order to show the difference. 

 
Table 5.  The best decision (by another approach) 

 
 
2.2   The Problem of Finding the Best Decision  
Concept of best decision as described here was first 
formulated in [1]. Decision can be described as one 
branch in a decision tree. It’s first element (a, v pair) 
defines sub-table, its second element defines sub-table of 
sub-table and so on.  Informally, weight of a decision is 
sum of rows over those recursive sub-tables. Formal 
definition follows. 
     We denote the data table after the selection of an 
element (a, v) by T \ (a, v) and define it as a sub-table of 
T that contains all the rows of T where value of an 
attribute a equals v and all the columns of T except 
column a.  
     For example if  T is Table 1 then  T \ (A2, 1) is: 
 
Table 6.  T \ (A2, 1). 

 A1 A3 A4 A5 A6 A7 
O1 1 1 1 3 3 3 
O2 1 1 2 3 3 3 
O3 1 1 2 2 2 2 

 
Definition 1. Ordered set   IT = 〈 (a1, v1), (a2, v2), ... ,(an, 
vn) 〉  that contains n elements from table T and where no 
attribute ai  occurs twice is decision. If n = |AT|,  then IT   
is complete decision, if n < | AT | then IT   is partial 
decision. 
 
One complete decision for Table 1 is 〈 (A7, 3), (A2, 1), 
(A4, 1), (A1, 1), (A3, 1), (A6, 3), (A5, 3)〉. 
 
Definition 2. For a decision IT = 〈 (a1, v1), (a2, v2),..., (an, 
vn) 〉  we define its weight W(IT) as follows: 
 
W(IT) = πT ((a1, v1)) + W(I \ (a1, v1) T \ (a1, v1)),  if | AT | > 1 
W(IT) = πT (a1, v1), if | AT | = 1       (2) 
 
For Table 1:  
W(〈(A7, 3), (A2, 1), (A4, 1), (A1, 1), (A3, 1), (A6, 3), (A5, 
3) = 2 + 2 + 1 + 1 + 1 + 1 + 1 = 9 
 
Definition 3. The best decision for table T is decision IT, 
with greatest weight. That is, for any decision I´T  in 

Attrib
ute’s 
value 

A1 A2 A3 A4 A5 A6 A7 

1 3 3 3 3 0 0 0 

2 2 2 2 2 3 3 3 

3 0 0 0 0 2 2 2 

(O4, O5) 2 2 2 1 2 2 2 
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table T holds condition W(IT) ≥ W(I´T). We denote the 
best decision for table T by bIT. 
 
The best decision and its weight for Table 1 is,  
W〈 (A7, 2), (A6, 2), (A5, 2), (A4, 1), (A3, 2), (A2, 2), (A1, 
2)〉  =  3 + 3 + 3 + 2 + 2 +2 + 2 = 17. 
     Our definition for the best decision has several 
interesting properties: 

• It takes into the account dependencies between 
the attributes. 

• Row described by the best decision is 
guaranteed to exist in a data table. 

• The order of elements in the best decision is 
significant and informative. First (attribute, 
value) pairs represent greater part of the weight 
than later elements and describe frequent and 
correlated (attribute, value) pairs. In the scale of 
conformity approach that information is missing. 

• Best decision represents a branch in the decision 
tree [4]. It can be thought of as representing 
properties of a typical row in the order of 
importance. Unlike decision tree, it is not usable 
for exact classification. If we are dealing with 
several classes of objects, we can find best 
decision for each class by splitting table into 
sub-tables - one.sub-table for every class. 

• In not requiring designated class, best decision is 
similar to association rules approach. It gives 
more compact and less comprehensive 
description for data table than association rules. 

 
 
3   Problem Solution 
 
 
3.1   Algorithms  
We first review a simple brute-force algorithm [3] and 
after that an algorithm that uses the concept of potential 
for pruning the search tree. Then we add additional 
enhancements. 
 
3.1.1   Brute-force algorithm 
Brute-force algorithm for depth-first search can be 
described as follows. Recursive function BestDecision 
has three parameters: table (or sub-table) T, current best 
decision bI and partial decision under construction I. It 
returns the decision with the greatest weight from two 
options: 

• The best decision that can be constructed by 
extending partial decision I with elements form 
the table T. That is always I + bIT. 

• Current best decision bI. 
Call for the first level of recusion has the form 

BestDecision (T, 〈〉, 〈〉) and we assume that W (〈〉) = 0. 

  
BestDecision(T, bI, I): 
(End of recursion) If |AT| = 1: 
    Find (a, v)  with greatest πT ((a, v))  
    If W(I +〈(a, v)〉) > W(bI), then set bI ←  I +〈(a, v)〉 
(Recursion) If  (|AT| > 1): 
    For each (a, v) in T: 
        Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉) 
(Return) Return the decision bI 
 
3.1.2  Pruning by potential  
Brute-force algorithm needs to search through all 
possible decisions. Number of possible decisions is 
factorially dependent to the number of attributes | AT | as 
we need to check all possible permutations. As S. Skiena 
[3] claims good pruning techniques have stronger 
influence to the efficiency of a backtracking algorithm 
than any other factor. We describe how to use the 
concept of potential [1] for pruning the search tree. 
 
Definition 4.  The potential V for an element (a, v)  and 
partial decision I from table T is: 
 

V((a, v), T, I) =  πT ((a, v)) ⋅  |AT| + W(I)  (3) 
 

Potential sets upper limit to the weight of any decision I 
+〈(a, v), ...〉, that we can construct from a partial decision 
I and an element (a, v). 
     Example potential from Table 1: 
V((A1, 1), T, 〈〉) = 3 ⋅ 7 + 0 = 21 
Example potentials from Table 6: 
V((A1, 1), T\ (A2, 1), 〈 (A2, 1)〉) = 3 ⋅ 6 + 3 = 21 
V((A4, 1), T\ (A2, 1), 〈 (A2, 1)〉) = 1 ⋅ 6 + 3 = 9 
     It is trivial to see that it is impossible to construct a 
decision with the greater weight than that given by the 
potential when adding an element (a, v) to a partial 
decision. Potential equals weight in the ideal case when 
all the rows in the table T \ (a, v) contain identical data. 
     If we compare potential of a partial decision to to the 
weight of the current best decison then we can prune 
number of branches from our search tree. To increase the 
effectiveness of pruning we try to find the high-weight 
decisions as early as possible. For that we are using the 
heuristic of examining elements in the order of their 
frequencies. 
(*) - Enhancement for the brute-force algorithm 
 
BestDecision(T, bI, I): 
(End of recursion) If |AT| = 1: 
    Find (a, v)  with greatest πT ((a, v))  
    If W(I +〈(a, v)〉) > W(bI), then set bI ←  I +〈(a, v)〉 
(Recursion) If  (|AT| > 1): 
    (*) Order all elements (a, v) decreasingly by πT ((a, v)) 
    (*) For each (a, v) where V((a, v), T, I) > W(bI): 
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        Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉) 
 (Return) Return the decision bI 
 
Example: Let us have a data table T with two attributes 
(possible values 1 and 2) and ten rows. 
 
Table 7. Example. 
 

A B 
1 1 
1 1 
1 1 
1 2 
1 2 
1 2 
1 2 
2 1 
2 1 
2 1 

 
We have identified 〈(A, 1), (B, 2)〉 as the current best 
decision with the weight 11. We are trying to find 
BestDecison(T, 〈(A, 1), (B, 2)〉 , 〈〉). As potentials for 
elements (A, 2) and (B, 2) are less than 11, we can 
eliminate those branches from our search. 
 

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2
V = 6

B1
V = 12

B2
V = 8

B2 A1A1 B1 B2A2 A2

 
 
Fig. 1. Nodes are sub-tables with number of rows, lines  
are selections, solid lines represent examined search-
space. 
 
3.1.3  Additional enhancements  
When examining our search procedure we can see that 
repeated visits to same sub-table are possible. We can 
get to the sub-table A1B1 by taking A1 as first element 
and B1 as second or by taking B1 as first element and 
A1 as second. Our new enhancements – bringing zeroes 

down and bringing zeroes up – reduce those repeated 
visits. 
     Bringing zeroes down allows us to detect by 
examining already searched elements (zeroes) from 
immediate upper level of backtracking, that we have 
already examined certain sub-table and partial decision 
that led to it had at least equal weight to our current 
partial decision. 
 
Theorem 1 
Let us have two elements (a1, v1) and (a2, v2) from 
table T so as πT ((a1, v1)) ≥  πT ((a2, v2)). Then 
 

W(〈(a1, v1), (a2, v2)〉) ≥ W(〈(a2, v2), (a1, v1)〉  (4) 
 
Proof: Tables  T \ (a1, v1) \ (a2, v2) and T \ (a2, v2) \ 
(a1, v1) are identical (same sub-table). So frequencies πT 

\ (a1, v1) ((a2, v2)) and πT \ (a2, v2) ((a1, v1)) are also 
identical. As πT ((a1, v1)) + πT \ (a1, v1) ((a2, v2)) ≥  πT 

((a2, v2)) + πT \ (a2, v2) ((a1, v1)) it must be that W(〈(a1, 
v1), (a2, v2)〉) ≥ W(〈(a2, v2), (a1, v1)〉). 
■ 
 
In other words, if πT ((a1, v1)) ≥  πT ((a2, v2),  then 
partial decision 〈(a1, v1), (a2, v2)〉  is at least equal in 
weight as partial decision 〈(a2, v2), (a1, v1)〉. As we 
examine elements in order of their weights and use 
depth-first search, we can leave out from recursion level 
T \ (a2, v2) every element (a1, v1) that was already 
examined in previous recursion level T.  
     Bringing zeroes up allows us to detect that sub-table 
corresponding to some element was already examined in 
immediate lower level of backtracking. 
 
Theorem 2 
Let us have two elements (a, v) and (a´,v´) from table T 
so as πT ((a´, v´)) = πT \ (a, v) ((a´, v´)).  Then 

W(bIT\(a, v)) ≥ W(bIT\ (a´,v´))   (5) 
 
Proof: If πT ((a´, v´)) = πT \ (a, v) ((a´, v´)) then table T \ (a, 
v)  must contain all the rows from table T \ (a´, v´) – 
table T \ (a´, v´) is its sub-table. Let decision I´T\(a, v) 
contain same elements as decision bIT\ (a´,v´). As table 
T\(a, v) contains table T\(a´, v´) then W(I´T\(a, v) ) ≥ W(bIT\ 

(a´,v´)). So table T \ (a, v)  must contain at least one 
decision with greater or equal weight as best decision 
from table T \ (a´, v´). 
■ 
 
So, if we find that frequency of element remains same in 
immediate lower level of backtracking then we need not  
examine this element again in upper level.  
 
Enhanced algorithm: 
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K – Elements checked at upper level of recursion.  
K’ – Elements checked at current level of recursion.  
(*) - Enhancement for purely potential based algorithm 
 
BestDecision(T, bI, I, K): 
(End of recursion) If |AT| = 1: 
    Find (a, v)  with greatest πT ((a, v))  
    If W(I +〈(a, v)〉) > W(bI), then set bI ←  I +〈(a, v)〉 
(Recursion) If  (|AT| > 1): 
     (*) Set K´← {} 
     Order all elements (a, v) decreasingly by πT ((a, v)) 
    (*) For each (a, v) not in K and K´  where  
     V((a, v), T, I)   > W(bI): 
        (*) Add (a, v) into K´ 
        Set bI ← BestDecison(T \ (a, v)), bI, I +〈(a, v)〉, K´) 
        (*) Add all elements (a´, v´) from T \ (a, v) where   
        πT ((a´, v´)) = πT \ (a, v) ((a´, v´))  into K´ 
(Return) Return the decision bI 
 

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2 B1 B2

B2 A1A1
K = (A1) B1 B2A2 A2

 
 
Fig 2.  Example of bringing zeroes down (Table 7). As 
A1 is in the set of elements checked in level T, we can 
ignore it at the level T \B1. 
 

A2B1: 3A1B2: 4A1B1: 3 A2B2: 0

A1: 7 A2: 3 B1: 6 B2: 4

(10)

A1

B1

A2 B1 B2
K' = (B2)

B2 A1A1 B1 B2A2 A2

 
 
Fig. 3. Example of bringing zeroes up (Table 7). As πT 
((B2)) = πT\A1 ((B2))=4  and we have examined whole 
level T\A1 we can ignore B2 at level T. 
 
 
3.2 Efficiency Comparison 
We compared the efficiency of a brute-force algorithm 
against the efficiency of an algorithm using only 
potential and algorithm using potential, bringing zeroes 
up and bringing zeroes down for pruning. Properties of 
the testing enviroment were: 
• processor Intel(R) Pentium(R) 4, 2.80 GHz 
• 512 MB memory 
• operating system Windows XP 
 
We varied the number of columns and number of rows  
in our input tables and ran separate comparisons for 
random data tables and structured data tables. Attributes 
had values in range 1..9. 
 

0

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

rows

tim
e(

m
s)

brute force
potential
enhanced potential

 
Fig 4. Random data, 5 columns. 
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Fig 5. Structured data, 5 columns. 
Uneven growth in time (potential, enhanced potential) is 
probably due to differences in tables internal structures. 
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Fig. 6. Random data, 100 rows. Uneven growth in time 
(potential, enhanced potential) is probably due to 
differences in tables internal structures. 
 
 

0

50000

100000

150000

200000

250000

0 2 4 6 8 10 12 14 16 18

columns

tim
e(

m
s)

 
Fig. 7. Structured data, 100 rows. 
 

As we can see, the algorithm that applies potential for 
pruning is significantly more efficient than the brute-
force approach. Proposed additional enhancements speed 
it up even further. 
 
 
4 Conclusion 
Best decision describes data table in a compact way.  
Calculating it is computationally complex task. Though 
proposed pruning techniques offer significant speed-up 
compared to brute-force algorithm, for significant 
number of columns they are still inadequate. We have 
several ideas for further optimization for example  
through sub-table caching techniques. 
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