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SLOVENIA 

 

Abstract: - This paper presents adaptive edge detector using a novel directional wavelet transform. The 

proposed algorithm has two stages: a) directional wavelet transform and b) edge detection on space–scale–

directional plane with maximum entropy measure. Preliminary results with synthetic images show that 

directional wavelet transforms gives excellent results. The proposed method was tested on synthetic images at 

different signal-to-noise ratios (SNRs) and visually assessed on medical image. We assessed its reliability, 

accuracy and robustness using the mean absolute distance (MAD) metrics. 
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1   Introduction 
The process of edge detection is based on the 

hypothesis that the edge is a point where an image 

has sharp intensity transitions [1, 2, 3]. Important 

regions of interest (ROI) are separated by different 

level of pixel intensity value. Upon this assumption, 

many edge detectors have been proposed. Most of 

them depend on the local pixel intensity gradient, 

done by differencing [2] as a calculation of 

convolution of weighted matrix called local gradient 

mask. This group consists of well-known edge 

detectors, such as Sobel, Roberts, Prewitt, Robinson, 

Kirsch, Frei-Chen and Marr-Hildreth [3]. Their 

major drawbacks are high sensitivity to noise and 

disability of discrimination edges versus textures. 

Because of these limitations more advance edge 

detectors have been proposed which do not only 

detect edges but also try to connect neighbouring 

edge points into a contour. In this way, many 

authors have developed different edge detectors 

based on the scale space [6], active contours [5], and 

morphological operations [10]. Among all, the 

fundamental one is Canny edge detector [4], which 

is fast, reliable, robust and generic, but the accuracy 

is not satisfactory, because of the parameter σ which 

is the weakest point in the procedure [7]. 

 

The purpose of this paper is to present an edge 

detector based on directional wavelet transform. 

Analyzing a signal at different scales and directions 

increases the accuracy and reliability of edge 

detection. Focusing on localized signal structures, 

e.g. edges, with a zooming procedure enables 

simultaneous analysis from a rough to a fine shape 

[8]. Progressing between scales also simplifies the 

discrimination of edges versus textures [9]. Because 

of this ability the wavelets have also been used for 

edge detection in different applications. 

 

Wavelets are well adapted to singularities that are 

commonly found in real–life signals. In 

multidimensional cases, most often tensor product 

wavelets are employed. Therefore, wavelets are well 

adapted in higher dimensions for pointlike 

phenomena. But this is the only type of singularities 

that wavelets can efficiently represent. This problem 

was raised recently by Candes [12] who argued that 

in higher dimensions, there are many other kinds of 

intermittency such as singularities along lines and 

curves which wavelets do not deal with efficiently. 

In order to overcome this weakness, we have 

develop a new system of representations named 

directional wavelet transform which can effectively 

deal with linelike phenomena in 2-D. 

 

The paper is organized as follows: in Section 2 the 

directional wavelet transform is presented. Section 3 

deals with the edge detector. Section 4 demonstrates 

the experimental results, while Section 5 concludes 

the paper.  

 

 

2   Directional Wavelet Transform  
Natural images are not simply stacks of 1-D 

piecewise smooth scan–lines; discontinuity points 

(i.e. edges) are typically located along smooth 

curves (i.e. contours) owing to smooth boundaries of 

physical objects. Thus, natural images contain 

intrinsic geometrical structures that are key features 

in visual information [11].  

 

The wavelet transform [8, 9] has a long and 

successful history as an efficient image processing 
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tool. However, as a result of a separable extension 

from 1-D bases, wavelets in higher dimensions can 

only capture very limited directional information. 

For instance, 2-D wavelets only provide three 

directional components, namely horizontal, vertical, 

and diagonal. Furthermore, the 45° and 135° 

directions are mixed in diagonal subbands. 

 

A number of approaches in providing finer 

directional decomposition have been proposed. 

Some notable examples include 2-D Gabor wavelets 

[13], the steerable pyramid [14], the directional filter 

bank [6], 2-D directional wavelets [15], complex 

wavelets [16], curvelets [12], ridgelets [12], and 

contourlets [11]. However, there is a question “Can 

we extend the 1-D wavelet transform with finer 

directionality, while still retaining its structure and 

desirable features?” We give an affirmative answer 

in this paper by proposing a simple directional 

extension.  

 

The main idea here is to find some directional 

extension to 1-D wavelets. In particular, we want to 

have a system which has characteristics of wavelets 

plus directions.  

 

Firstly, we extended 1-D wavelet ψα(n); n=0,…,N-2 

to a 2-D wavelet kernel as: 
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where α is the scale parameter. The result is 2-D 

wavelet kernel which can be used in wavelet 

transform as follows: 
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where M and N stand for the image size, s(m,n) is 

input image and κα(m,n) is 2-D mother wavelet 

kernel. This kernel is a prototype from which all 

other kernels are generated. The supplement of (2) 

with directional characteristics is given by: 
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where Q(δ) is rotator that rotates kernel κα in image 

counterclockwise through an angle δ. The result of 

directional wavelet transform is a image-scale-

directional space.  

 

The main benefit of directional wavelet transform is 

singularities detection along lines.  

3 Edge detector 
 

We transform the problem of image edge detection 

into a search of sudden amplitude changes in image 

signals taken along neighbouring rows or columns.  

 

3.1 Adaptive edge detection using directional 

wavelet transform 
 

Directional wavelet transform maps an image into a 

four-dimensional space of α, τ1, τ2 and δ. Parameter 

α scales the transform by compressing or stretching 

it. Parameters τ1, τ2 corresponds to the translation of 

the wavelet function along the image rows and 

columns. Parameter δ rotates the wavelet kernel κα. 

An important property of wavelet transform is its 

ability to focus on localized signal structures with a 

zooming procedure that progressively reduces the 

scale parameter α. In this way, rough and fine signal 

structures are simultaneously analysed at different 

scales. It will be shown that this property is also 

important for real edges detection.  

 

We decided for wavelet kernel which is made from 

Haar wavelets (3), because it is orthogonal, compact 

and without spatial shifting in the transform domain. 

Its main property is ability to present the magnitude 

variation between adjacent intervals in signal as a 

modulus maximum on the time-scale plane [8]. This 

property is also preserved in the image-scale-

directional space.  

 

Natural images are corrupted by the noise which is 

presented as magnitude variation in image. Such 

noise appears in image-scale-directional space the 

same way as additional edges. But there are two 

principal differences between edges and noise: a) 

modulus maxima of edges are larger than noise 

modulus maxima if the signal-to-noise ratio (SNR) 

is low, and b) the influence of noise decreases with 

progressing toward higher scales if noise is additive 

with zero mean, because Haar wavelet kernel 

perform averaging. Hence, the influence of noise is 

gradually filtered out going toward higher scales and 

its maxima become negligibly small.  

 

Considering the findings above, we made two major 

conclusions about the edge detector, which are: a) 

the corresponding maxima between scales must be 

linked if we wanted to avoid multiple detection of 

the same edge at different scales, and b) a decision 

whether a particular maximum, regarding to other 
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maxima, is significantly different or not must be 

adaptive.  

Modulus maxima carry a significant degree of 

information about the position of edges. Therefore, 

our goal is to identify the local maxima of the 

directional wavelet transform in all scales. But the 

edges are, in general, presented as significant peaks 

in more than one scale and therefore we need to 

connect them. Maxima line is an answer to this 

demand. It is a connected curve along which all 

points are maxima, but it could break up and stop 

before reaching the finest scales [8]. It links the 

same edge points from finer to coarser scales.  

 

When dealing with low SNRs, the number of 

maxima lines may be very large. In order to select 

the maxima lines of image edges, we introduced the 

following assumption: if the maxima line has at least 

one modulus maximum which is above a certain 

threshold T, then this maxima line is edge maxima 

line and the position of maximum at the finest scale 

reflects the edge position. In the proposed edge 

detector a maximum entropy thresholding technique 

is used [17].  

 

The algorithm of the proposed wavelet-based edge 

detector is executed in six major steps which are: 

1. Directional wavelet transform with Haar 

wavelet kernel at dyadic scales from 1 to 

 )),(min(log2 JI  is calculated, at directions 

between 0 and π with increments π/12. Dyadic 

scaling sequence minimizes the time 

complexity of the algorithm, while the quality 

of edge detection is not reduced. The result is 

image-scale-directional space. 

2. Dimension reduction thus that maximal 

absolute value in dimension vector is kept. The 

result of dimension cutting down is image-

scale space S(α, τ1, τ2). 

3. Modulus maxima detection is done along τ1 

and τ2 directions in image-scale space S(α, τ1, 

τ2). The result is a plane, MM, of modulus 

maxima. 

4. Connecting the corresponding maxima from 

MM, according to the procedure introduced in 

[8], the maxima lines are obtained. The result is 

set S of modulus maxima lines. 

5. Adaptive maxima selection: a threshold value T 

is calculated upon the absolute value in space 

S(α, τ1, τ2). for each scale and detection 

direction (row or column). The edge is 

considered where maxima surpass the threshold 

T. 

6. Edge position determination: the position of 

modulus maximum at the lowest detected scale 

determinates the edge position. 

 

The proposed edge detector relies on the directional 

wavelet transform and the adaptive edge modulus 

maxima detection. It does not require explicit 

specification of any additional input regulation 

parameters and it is able to detect real edges which 

actually appear as edge region with different widths. 

Detection of edges solely depends on the 

information in a row or column signal in space S(α, 

τi, τj) and consider information of the adjacent rows 

or columns. Inclusion of a wider area brings 

additional information about the edge outline.  

 

4   Experimental results 
The proposed edge detector was tested on a set of 

real images, as well as on synthetic images. Firstly, 

several tests were performed on synthetic images. 

The performance of the proposed edge detector was 

evaluated by mean absolute distance (MAD) [12]. 

Beside statistical evaluation we made also a visual 

inspection.  

 

Synthetic images used in our experiment were 

corrupted by additive zero-mean Gaussian noise 

with SNRs interval from 3 dB to 40 dB. Figure 1a is 

an example of them (SNR was 4 dB). Figure 1b is 

the edge image obtained by the proposed edge 

detector. The results are good. The contour lines are 

almost entirely detected. The MAD measures 0.75 

pixels.  

 

 
a) 

 
b) 

Figure 1: Example of synthetic images (a) and their 

corresponding edge detection (b). 

Differences between the actual and detected edges 

are less than 1 pixel, which means that the obtained 

edge positions are really accurately detected. The 

algorithm was tested on 30 synthetic images. The 

accuracy of our detector was around 0.53 pixel in 

almost noiseless images. Excellent results were also 

obtained in very noisy images (around 6 dB) where 

the errors were around 1 pixel. The average MAD 

distance was 0.68 pixels, the standard deviation was 

0.12 pixels, the minimum distance was 0.50 pixels, 
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and the maximum distance was 1.04 pixels. This 

indicates that the edge points have been very 

accurately and consistently detected.  

Furthermore, we experimented edge detection in 

MR images (Fig. 2a). Figure 2b depicts the result of 

edge detection. With the visual assessment we can 

confirm that significant structures are outlined.  

 

a) 

 
b) 

Figure 2: MR image edge detection with our proposed 

method (a) MR-image and the corresponding edge 

detection (b). 

  

5   Conclusion 

We have introduced adaptive edge detection with 

directional wavelet transform, which is robust to the 

outliers and very accurate. With directional wavelet 

transform modulus maxima are detected, which are 

connected into maximum lines. Then with maximum 

entropy measure, the edge maxima lines are selected 

and the position of modulus maximum at the lowest 

detected scale determinates the edge position. The 

result is an edge image. We showed that the 

introduced edge detector is robust, accurate and 

effective even in images where the presence of 

considerable noise and outliers is unavoidable. 
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