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Abstract: - Grid is a solution to computationally and data intensive computing problems. Since the distributed 
knowledge discovery process is both data and computational intensive, the Grid is a natural platform for 
deploying a high performance data mining service. The approach to efficient data mining is parallelization, 
where the whole computation is broken up into parallel tasks. Existing mechanisms of data mining 
parallelization are based on NOW or SMP, it is necessary to develop new parallel mechanism for grid feature. 
We propose a new framework for easily and efficiently parallelizing data mining algorithms on Grid. The 
framework decomposes tasks according to each of the existing computing power of grid. 
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1   Introduction 
Knowledge Grid is a software architecture for 
geographically distributed PDKD (Parallel and 
Distributed Knowledge Discovery) systems [1]. This 
architecture is built on top of a computational Grid 
and Data Grid that provides dependable, consistent, 
and pervasive access to high-end computational 
resources[2] [3]. The Knowledge Grid uses the basic 
Grid services and defines a set of additional layers to 
implement the services of distributed knowledge 
discovery on world wide connected computers where 
each node can be a sequential or a parallel machine. 

The K-Grid provides a specialized broker of Grid 
resources for PDKD computations: given a user’s 
request for performing a DM analysis, the broker 
takes allocation and scheduling decisions, and builds 
the execution plan, establishing the sequence of 
actions that have to be performed in order to prepare 
execution, actually execute the task, and return the 
results to the user. The execution plan has to satisfy 
given requirements and constraints-available 
computing power. Once the execution plan is built, it 
is passed to the Grid Resource Management service 
for execution. Clearly, many different execution 
plans can be devised, and the Resource Allocation 
and Execution Management services have to choose 
the one which minimizes response time [4, 5]. In 
order to obtain the minimal response time, an 
efficient approach for data mining applications is to 
parallelize the tasks in grid environment. 

However, many data mining applications have 
proved difficult to parallelize, because various 
pruning mechanisms are used extensively in data 
mining applications and a powerful pruning 
mechanism leads to a highly variable search process 

that conflicts with a uniform workload requirement 
for good performance [6]. Fortunately, the 
computation is coarse grain parallel, i.e., it can be 
parallelized into large, seldom interacting tasks. 
Coarse grain parallel computations are suitable 
computations for Grid [7]. 

In this paper, we propose a new parallel 
framework on grid for three classes of data mining 
problems, i.e. association rule mining, classification 
rule mining, and pattern discovery. According to 
each existing computing power of grid, the broker 
can decompose a data mining task to resources 
available. The rest of this paper is organised as 
follows: in section 2, we present the framework that 
parallelize data mining tasks in Grid environment. In 
section 3, we present how to optimize the parallel 
framework. Finally section 6 concludes this paper. 

 
 

2 Parallelizing data mining tasks in 
Grid environment 

 
 
2.1 Modeling Data Mining Applications 
We surveyed three major classes of data mining 
applications, namely association rule mining, 
classification rule mining, and pattern discovery in 
combinatorial databases. We note the resemblance 
among the computation models of these three 
application classes. Table 1 is a comparison of 
specifications of these three classes of applications. 

A task is the main computation applied on a 
pattern. Not only are all tasks of any one application 
of the same kind, but tasks of different applications 
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are actually very similar. They all take a pattern and a 
subset of the database and count the number of 
records in the subset that match the pattern. In the 
classification rule mining case, counts of matched 
records are divided into c baskets, where c is the 
number of distinct classes. 

 Pattern 
Discovery 

Assoc. Rule 
Mining 

Class. Rule  
Mining 

Data- 
base 

Sequences Transaction 
records 

Database relation 

Pattern Partial sequence Itemset Attribute-value 
condition 

Good 
pattern 

occurrencepattern 
>min_occurrence 

supportpattern 
>min_support 

Info_gainattribute= 
Maxsibling_attributes 
(info_gainattribute) 

task Counting 
occurrence of 
pattern in subset 
of database 

Counting 
support of 
itemset over 
subset of 
database 

Building histogram 
of pattern on 
classes over subset 
of database 

Table 1 A comparison of specifications of three 
classes of data mining applications classes. 
     The similarities among the specifications of these 
applications are obvious, which inspired us to study 
the similarities among their computation models. As 
we can see from previous sections, they usually 
follow a generate-and-test paradigm-generate a 
candidate pattern, then test whether it is any good. 
Furthermore, there is some interdependence among 
the patterns that gives rise to pruning, i.e., if a pattern 
occurs too rarely, then so will any superpattern. 
These interdependences entail a lattice of patterns, 
which can be used to guide the computation.  

In fact, this notion of pattern lattice can apply to 
any data mining application that follows this 
generate-and-test paradigm. We call this application 
class pattern lattice data mining. In order to 
characterize the computation models of these 
applications more concretely, we define them more 
carefully in Section 2.2. 
 
 
2.2 Defining Data Mining Applications 
In general, a data mining application defines the 
following elements. 

1 A database D. 
2 Patterns and a function len(pattern p) which 

returns the length of p. The length of a pattern is a 
non-negative integer.  

For example, patterns of length k in the three 
application class are shown below: 

Sequence pattern 
discovery 

*C1C2…Ck* 
C1, C2,…,Ck are letters 

Association rule 
mining 

{i1, i2,…, ik} 
i1, i2,…, ik are items 

Classification 
rule mining 

(A1=v1i1)Ω(A2=v2i2)Ω…Ω(Ak=vkik) 
A1, A2,…, Ak are attributes, and 
V1i1, v2i2,…, vkik are attribute values 

    We use **, {}, and f ; to represent zero-length 
patterns in sequence pattern discovery, association 
rule mining, and classification rule mining, 
respectively. 
    3 A function goodness(pattern p) which returns a 
measure of p according to the specifications of the 
application. 

For example, the goodness of a pattern p in 
sequence pattern discovery is the occurrence number 
of p in the set of sequences; the goodness of a pattern 
p in association rule mining is the support of p over 
the set of items; the goodness of a pattern p in 
classification rule mining is the info_gain by 
partitioning the training set by p. 

4 A function good(p) which returns 1 if p is a 
good pattern or a good subpattern and 0 otherwise. 
Zero-length patterns are always good. 

For example, in sequence pattern discovery, a 
pattern p is good if goodness(p) is greater than or 
equal to some prespecified min_occurrence; in 
association rule mining, pattern p is good if 
goodness(p)>=some prespecified min support; in 
classification rule mining, a pattern p is good if 
goodness(p)>=goodness(p’), for any p’ such that 
len(p’) = len(p). 

Sometimes there are such additional requirements 
as minimum and/or maximum lengths of good 
patterns (e.g., in sequence pattern discovery). 
Without loss of generality, we disregard these 
requirements in our discussion unless otherwise 
noted. 
     The result of a data mining application is the set of 
all good patterns. If a pattern is not good, neither will 
any of its superpatterns be. In other words, it is 
necessary to consider a pattern if and only if all of its 
subpatterns are good. 

Let us define an immediate subpattern of a pattern 
q to be a subpattern p of q where len(p) = len(q)-1. 
Conversely, q is called an immediate superpattern of 
p. 

For example, immediate subpatterns of a length k 
pattern p is as follows: 

Sequence 
pattern 
discovery 

All (k-1)-prefixes and 
All (k-1)-suffixes of p 

Association 
rule mining 

All (k-1)-itemsets 

Classification 
rule mining 

The pattern consisting 
of the first k-1 
attribute-value pairs in p 

Except for the zero-length pattern, all the patterns 
in a data mining problem are generated from their 
immediate subpatterns. In order for all the patterns to 
be uniquely generated, a pattern q and one of its 
immediate subpatterns p have to establish a 

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)



childparent relationship (i.e., q is a child pattern of p 
and p is the parent pattern of q). Except for the 
zero-length pattern, each pattern must have one and 
only one parent pattern. For example, in sequence 
pattern discovery, *FRR* can be a child pattern of 
*FR*; in association rule mining, {2, 3, 4} can be a 
child pattern of {2, 3}; and in classification rule 
mining, (C = c1)^(B = b2)^(A = a1) can be a child 
pattern of (C = c1)^(B = b2). 

 
 

2.3 Solving Data Mining Applications 
Having defined data mining applications as above, it 
is easy to see that an optimal sequential program that 
solves a data mining application does the following: 

1. generates all child patterns of the zero-length 
pattern; 

2. computes goodness(p) if all of p's immediate 
subpatterns are good; 

3. if good(p) then generate all child patterns of p; 
4. applies 2 and 3 repeatedly until there are no 

more patterns to be considered. 
Because the zero-length pattern is always good 

and the only immediate subpatterns of its children is 
the zero-length pattern itself, the computation starts 
on all its children, which are all length 1 patterns. 
After these patterns are computed, good patterns 
generate their child sets. Not all of these new patterns 
will be computed-only those whose every immediate 
subpattern is good will be. 

 
 

2.4 Mapping data mining application to 
DAG. 

We propose to use a directed acyclic graph (dag) 
structure called exploration dag (E-dag, for short) to 
characterize pattern lattice data mining applications. 
We first describe how to map a data mining 
application to an E-dag.  

The E-dag constructed for a data mining 
application has as many vertices as the number of all 
possible patterns (including the zero-length pattern). 
Each vertex is labeled with a pattern and no two 
vertices are labeled with the same pattern. Hence 
there is a one-to-one relation between the set of 
vertices of the E-dag and the set of all possible 
patterns. Therefore, we refer to a vertex and the 
pattern it is labeled with interchangeably. 

There is an incident edge on a pattern p from 
each immediate subpattern of p. All patterns except 
the zero-length pattern have at least one incident 
edge on them. The zero-length pattern has an 
outgoing edge to each pattern of length 1. Figure 1 
(Figure 2, Figure 3, respectively) shows an E-dag 

mapped from a simple sequence pattern discovery 
(association rule mining, classification rule mining) 
application. 

 
Figure 1: A complete E-DAG for a sequence 

pattern discovery application on sequences FFRR, 
MRRM, and MTRM. 

 
Figure 2: A complete E-DAG for an 

association rule mining application on the set of 
items {1, 2, 3, 4}. 
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Figure 3: A complete E-DAG for a 

classification rule mining application on a simple 
database with attributes A (possible values a1 and 
a2), and B (possible values b1, b2, and b3). 

 
2.5 Data mining task parallel decomposition 
Definition 2.8 Let P be a set. An equivalence relation 
on P is a binary relation Ί  such that for all X, Y, 
ZΞP, the relation is: 

1) Reflexive: XΊ X. 
2) Symmetric XΊ Y implies YΊ X. 
3) Transitive: XΊ Y and YΊ Z, implies XΊ Z. 
The equivalence relation partitions the set P into 

disjoint subsets called equivalence classes. The 
equivalence class of an element XΞP is given as 
[X]={YΞP| XΊ Y}. 

Define a function p: P (I) a P(I) where p(X; k) = 
X[1:k], the k length prefix of X. Define an 
equivalence relation q k on the lattice P(I) as follows: 
" X, Y ΞP(I), XΊ q k YΫ p(X, k) = p(Y, k). That 
is, two itemsets are in the same class if they share a 
common k length prefix. We therefore call q k a 
prefix-based equivalence relation. 

 
Figure 4: Equivalence Classes of P(I) Induced by q 1 

 
Figure 5: Equivalence Classes of 

1
[ ]A q Induced by 

q 2 
Figure 4 shows the lattice induced by the 

equivalence relation 1 on P(I), where we collapse all 
itemsets with a common 1 length prefix into an 
equivalence class. The resulting set or lattice of 
equivalence classes is {[A], [C], [D], [T], [W]}. 

Because the computation nodes in grid are 
supercomputer, cluster or PC, their computing 
capability is different [8, 9, 10]. According to each 
existing computing power of grid, the broker can 
decompose a data mining task to resources available. 
Figure 5 shows the decomposition results according 
to different computing resources. 
 
 
3   Optimal Implementation of Parallel 
Tasks 
The implementation of the parallel data mining 
generates the correct result for any data mining 
application because it faithfully implements a 
parallel E-dag traversal. But what would be an 
optimal implementation of a parallel E-dag traversal 
on Grid? Would an optimal implementation have an 
equivalent execution as the optimal sequential 
program on any input? In the Grid environment, with 
the presence of complicated communication and 
synchronization costs, the first question is 
unanswerable in general. And the answer to the 
second question is no. So what is our approach to 
optimality? In order to answer this question, we first 
introduce a tree structure that is closely related to the 
E-dag structure. The tree structure is called 
exploration tree (E-tree, for short). 
 
 
3.1 Exploration Tree 
An E-tree is a tree transformed from an E-dag. The 
transformation is very simple. If we make edges from 
all patterns to their non-child immediate 
superpatterns dashed, all the vertices in the E-dag and 
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all the solid edges constitute the E-tree. The root of 
the E-tree is the zero-length pattern. Figure 6, Figure 
7, and Figure 8 are E-trees transformed from the 
corresponding E-dags. 

 
Figure 6: An E-tree for a sequence pattern discovery 
application on sequences FFRR, MRRM, and 
MTRM. 

 
Figure 7: An E-tree for an association rule mining 
application on the set of items {1, 2, 3, 4}. 

 
Figure 8: An E-tree for a classification rule mining 
application on a simple database with attributes A 

(possible values a1 and a2), and B (possible values b1, 
b2, and b3). 
    The optimal implementation of the parallel data 
mining is a combination of PLED (parallel E-dag 
traversal) and PLET (parallel E-tree traversal). 

We observe that one can benefit more from the 
pruning due to a non-good subpattern in early stages 
of an E-dag traversal than in later stages. One 
possibility is that the optimal program will start with 
PLED, in the middle of which, will switch to PLET. 
When to switch is the crucial question in this scheme. 
The answer will depend on the particular 
environment on which the program is running and the 
data mining application itself. 

Another possibility for the optimal program is a 
hybrid from PLED and PLET, in which, when a 
visiting worker becomes free, it visits the non-pruned 
node as high as possible in the E-tree. If the result is 
not good, then it prunes all its superpatterns. This 
algorithm would be optimal under the assumptions of 
free network bandwidth and free access to shared 
storage. 
 
 
4   Conclusion 
We proposed the E-dag framework for finding 
pattern lattices based on analysis of computation 
models of three classes of data mining problems. We 
present the framework that parallelize data mining 
tasks in Grid environment and how to optimize the 
parallel framework. E-dag construction and traversal 
can be done efficiently in parallel. However, network 
latency can slow down parallel E-dag traversal if 
there is a fair amount of interprocess communication. 
In an E-tree traversal, much communication is 
eliminated by giving up some pruning opportunities. 
We observe that an optimal parallel program is some 
form of combination of E-dag and E-tree traversal. 
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