
A Parallel Optimization Framework in Grid Environment

Kun Gao1,2, Hongshan Yang1, Kexiong Chen2, Meiqun Liu3, Jiaxun Chen1
1Information Science and Technology College, Donghua University, P.R.C

2Aviation University of Air Force, P.R.C
3Administration of Radio Film and Television of Jilin Province, P.R.C

Abstract: - Grid is a solution to computationally and data intensive computing problems. Since the distributed
knowledge discovery process is both data and computational intensive, the Grid is a natural platform for
deploying a high performance data mining service. The approach to efficient data mining is parallelization,
where the whole computation is broken up into parallel tasks. Existing mechanisms of data mining
parallelization are based on NOW or SMP, it is necessary to develop new parallel mechanism for grid feature.
We propose a new framework for easily and efficiently parallelizing data mining algorithms on Grid. The
framework decomposes tasks according to each of the existing computing power of grid.

Key-Words: - Optimization, Parallelism, Frameworks, Computational grids

1 Introduction
Knowledge Grid is a software architecture for
geographically distributed PDKD (Parallel and
Distributed Knowledge Discovery) systems [1]. This
architecture is built on top of a computational Grid
and Data Grid that provides dependable, consistent,
and pervasive access to high-end computational
resources[2] [3]. The Knowledge Grid uses the basic
Grid services and defines a set of additional layers to
implement the services of distributed knowledge
discovery on world wide connected computers where
each node can be a sequential or a parallel machine.

The K-Grid provides a specialized broker of Grid
resources for PDKD computations: given a user’s
request for performing a DM analysis, the broker
takes allocation and scheduling decisions, and builds
the execution plan, establishing the sequence of
actions that have to be performed in order to prepare
execution, actually execute the task, and return the
results to the user. The execution plan has to satisfy
given requirements and constraints-available
computing power. Once the execution plan is built, it
is passed to the Grid Resource Management service
for execution. Clearly, many different execution
plans can be devised, and the Resource Allocation
and Execution Management services have to choose
the one which minimizes response time [4, 5]. In
order to obtain the minimal response time, an
efficient approach for data mining applications is to
parallelize the tasks in grid environment.

However, many data mining applications have
proved difficult to parallelize, because various
pruning mechanisms are used extensively in data
mining applications and a powerful pruning
mechanism leads to a highly variable search process

that conflicts with a uniform workload requirement
for good performance [6]. Fortunately, the
computation is coarse grain parallel, i.e., it can be
parallelized into large, seldom interacting tasks.
Coarse grain parallel computations are suitable
computations for Grid [7].

In this paper, we propose a new parallel
framework on grid for three classes of data mining
problems, i.e. association rule mining, classification
rule mining, and pattern discovery. According to
each existing computing power of grid, the broker
can decompose a data mining task to resources
available. The rest of this paper is organised as
follows: in section 2, we present the framework that
parallelize data mining tasks in Grid environment. In
section 3, we present how to optimize the parallel
framework. Finally section 6 concludes this paper.

2 Parallelizing data mining tasks in
Grid environment

2.1 Modeling Data Mining Applications
We surveyed three major classes of data mining
applications, namely association rule mining,
classification rule mining, and pattern discovery in
combinatorial databases. We note the resemblance
among the computation models of these three
application classes. Table 1 is a comparison of
specifications of these three classes of applications.

A task is the main computation applied on a
pattern. Not only are all tasks of any one application
of the same kind, but tasks of different applications

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

are actually very similar. They all take a pattern and a
subset of the database and count the number of
records in the subset that match the pattern. In the
classification rule mining case, counts of matched
records are divided into c baskets, where c is the
number of distinct classes.

 Pattern
Discovery

Assoc. Rule
Mining

Class. Rule
Mining

Data-
base

Sequences Transaction
records

Database relation

Pattern Partial sequence Itemset Attribute-value
condition

Good
pattern

occurrencepattern
>min_occurrence

supportpattern
>min_support

Info_gainattribute=
Maxsibling_attributes
(info_gainattribute)

task Counting
occurrence of
pattern in subset
of database

Counting
support of
itemset over
subset of
database

Building histogram
of pattern on
classes over subset
of database

Table 1 A comparison of specifications of three
classes of data mining applications classes.
 The similarities among the specifications of these
applications are obvious, which inspired us to study
the similarities among their computation models. As
we can see from previous sections, they usually
follow a generate-and-test paradigm-generate a
candidate pattern, then test whether it is any good.
Furthermore, there is some interdependence among
the patterns that gives rise to pruning, i.e., if a pattern
occurs too rarely, then so will any superpattern.
These interdependences entail a lattice of patterns,
which can be used to guide the computation.

In fact, this notion of pattern lattice can apply to
any data mining application that follows this
generate-and-test paradigm. We call this application
class pattern lattice data mining. In order to
characterize the computation models of these
applications more concretely, we define them more
carefully in Section 2.2.

2.2 Defining Data Mining Applications
In general, a data mining application defines the
following elements.

1 A database D.
2 Patterns and a function len(pattern p) which

returns the length of p. The length of a pattern is a
non-negative integer.

For example, patterns of length k in the three
application class are shown below:

Sequence pattern
discovery

C1C2…Ck
C1, C2,…,Ck are letters

Association rule
mining

{i1, i2,…, ik}
i1, i2,…, ik are items

Classification
rule mining

(A1=v1i1)Ω(A2=v2i2)Ω…Ω(Ak=vkik)
A1, A2,…, Ak are attributes, and
V1i1, v2i2,…, vkik are attribute values

 We use **, {}, and f ; to represent zero-length
patterns in sequence pattern discovery, association
rule mining, and classification rule mining,
respectively.
 3 A function goodness(pattern p) which returns a
measure of p according to the specifications of the
application.

For example, the goodness of a pattern p in
sequence pattern discovery is the occurrence number
of p in the set of sequences; the goodness of a pattern
p in association rule mining is the support of p over
the set of items; the goodness of a pattern p in
classification rule mining is the info_gain by
partitioning the training set by p.

4 A function good(p) which returns 1 if p is a
good pattern or a good subpattern and 0 otherwise.
Zero-length patterns are always good.

For example, in sequence pattern discovery, a
pattern p is good if goodness(p) is greater than or
equal to some prespecified min_occurrence; in
association rule mining, pattern p is good if
goodness(p)>=some prespecified min support; in
classification rule mining, a pattern p is good if
goodness(p)>=goodness(p’), for any p’ such that
len(p’) = len(p).

Sometimes there are such additional requirements
as minimum and/or maximum lengths of good
patterns (e.g., in sequence pattern discovery).
Without loss of generality, we disregard these
requirements in our discussion unless otherwise
noted.
 The result of a data mining application is the set of
all good patterns. If a pattern is not good, neither will
any of its superpatterns be. In other words, it is
necessary to consider a pattern if and only if all of its
subpatterns are good.

Let us define an immediate subpattern of a pattern
q to be a subpattern p of q where len(p) = len(q)-1.
Conversely, q is called an immediate superpattern of
p.

For example, immediate subpatterns of a length k
pattern p is as follows:

Sequence
pattern
discovery

All (k-1)-prefixes and
All (k-1)-suffixes of p

Association
rule mining

All (k-1)-itemsets

Classification
rule mining

The pattern consisting
of the first k-1
attribute-value pairs in p

Except for the zero-length pattern, all the patterns
in a data mining problem are generated from their
immediate subpatterns. In order for all the patterns to
be uniquely generated, a pattern q and one of its
immediate subpatterns p have to establish a

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

childparent relationship (i.e., q is a child pattern of p
and p is the parent pattern of q). Except for the
zero-length pattern, each pattern must have one and
only one parent pattern. For example, in sequence
pattern discovery, *FRR* can be a child pattern of
FR; in association rule mining, {2, 3, 4} can be a
child pattern of {2, 3}; and in classification rule
mining, (C = c1)^(B = b2)^(A = a1) can be a child
pattern of (C = c1)^(B = b2).

2.3 Solving Data Mining Applications
Having defined data mining applications as above, it
is easy to see that an optimal sequential program that
solves a data mining application does the following:

1. generates all child patterns of the zero-length
pattern;

2. computes goodness(p) if all of p's immediate
subpatterns are good;

3. if good(p) then generate all child patterns of p;
4. applies 2 and 3 repeatedly until there are no

more patterns to be considered.
Because the zero-length pattern is always good

and the only immediate subpatterns of its children is
the zero-length pattern itself, the computation starts
on all its children, which are all length 1 patterns.
After these patterns are computed, good patterns
generate their child sets. Not all of these new patterns
will be computed-only those whose every immediate
subpattern is good will be.

2.4 Mapping data mining application to
DAG.

We propose to use a directed acyclic graph (dag)
structure called exploration dag (E-dag, for short) to
characterize pattern lattice data mining applications.
We first describe how to map a data mining
application to an E-dag.

The E-dag constructed for a data mining
application has as many vertices as the number of all
possible patterns (including the zero-length pattern).
Each vertex is labeled with a pattern and no two
vertices are labeled with the same pattern. Hence
there is a one-to-one relation between the set of
vertices of the E-dag and the set of all possible
patterns. Therefore, we refer to a vertex and the
pattern it is labeled with interchangeably.

There is an incident edge on a pattern p from
each immediate subpattern of p. All patterns except
the zero-length pattern have at least one incident
edge on them. The zero-length pattern has an
outgoing edge to each pattern of length 1. Figure 1
(Figure 2, Figure 3, respectively) shows an E-dag

mapped from a simple sequence pattern discovery
(association rule mining, classification rule mining)
application.

Figure 1: A complete E-DAG for a sequence

pattern discovery application on sequences FFRR,
MRRM, and MTRM.

Figure 2: A complete E-DAG for an

association rule mining application on the set of
items {1, 2, 3, 4}.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

Figure 3: A complete E-DAG for a

classification rule mining application on a simple
database with attributes A (possible values a1 and
a2), and B (possible values b1, b2, and b3).

2.5 Data mining task parallel decomposition
Definition 2.8 Let P be a set. An equivalence relation
on P is a binary relation Ί such that for all X, Y,
ZΞP, the relation is:

1) Reflexive: XΊ X.
2) Symmetric XΊ Y implies YΊ X.
3) Transitive: XΊ Y and YΊ Z, implies XΊ Z.
The equivalence relation partitions the set P into

disjoint subsets called equivalence classes. The
equivalence class of an element XΞP is given as
[X]={YΞP| XΊ Y}.

Define a function p: P (I) a P(I) where p(X; k) =
X[1:k], the k length prefix of X. Define an
equivalence relation q k on the lattice P(I) as follows:
" X, Y ΞP(I), XΊ q k YΫ p(X, k) = p(Y, k). That
is, two itemsets are in the same class if they share a
common k length prefix. We therefore call q k a
prefix-based equivalence relation.

Figure 4: Equivalence Classes of P(I) Induced by q 1

Figure 5: Equivalence Classes of

1
[]A q Induced by

q 2
Figure 4 shows the lattice induced by the

equivalence relation 1 on P(I), where we collapse all
itemsets with a common 1 length prefix into an
equivalence class. The resulting set or lattice of
equivalence classes is {[A], [C], [D], [T], [W]}.

Because the computation nodes in grid are
supercomputer, cluster or PC, their computing
capability is different [8, 9, 10]. According to each
existing computing power of grid, the broker can
decompose a data mining task to resources available.
Figure 5 shows the decomposition results according
to different computing resources.

3 Optimal Implementation of Parallel
Tasks
The implementation of the parallel data mining
generates the correct result for any data mining
application because it faithfully implements a
parallel E-dag traversal. But what would be an
optimal implementation of a parallel E-dag traversal
on Grid? Would an optimal implementation have an
equivalent execution as the optimal sequential
program on any input? In the Grid environment, with
the presence of complicated communication and
synchronization costs, the first question is
unanswerable in general. And the answer to the
second question is no. So what is our approach to
optimality? In order to answer this question, we first
introduce a tree structure that is closely related to the
E-dag structure. The tree structure is called
exploration tree (E-tree, for short).

3.1 Exploration Tree
An E-tree is a tree transformed from an E-dag. The
transformation is very simple. If we make edges from
all patterns to their non-child immediate
superpatterns dashed, all the vertices in the E-dag and

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

all the solid edges constitute the E-tree. The root of
the E-tree is the zero-length pattern. Figure 6, Figure
7, and Figure 8 are E-trees transformed from the
corresponding E-dags.

Figure 6: An E-tree for a sequence pattern discovery
application on sequences FFRR, MRRM, and
MTRM.

Figure 7: An E-tree for an association rule mining
application on the set of items {1, 2, 3, 4}.

Figure 8: An E-tree for a classification rule mining
application on a simple database with attributes A

(possible values a1 and a2), and B (possible values b1,
b2, and b3).
 The optimal implementation of the parallel data
mining is a combination of PLED (parallel E-dag
traversal) and PLET (parallel E-tree traversal).

We observe that one can benefit more from the
pruning due to a non-good subpattern in early stages
of an E-dag traversal than in later stages. One
possibility is that the optimal program will start with
PLED, in the middle of which, will switch to PLET.
When to switch is the crucial question in this scheme.
The answer will depend on the particular
environment on which the program is running and the
data mining application itself.

Another possibility for the optimal program is a
hybrid from PLED and PLET, in which, when a
visiting worker becomes free, it visits the non-pruned
node as high as possible in the E-tree. If the result is
not good, then it prunes all its superpatterns. This
algorithm would be optimal under the assumptions of
free network bandwidth and free access to shared
storage.

4 Conclusion
We proposed the E-dag framework for finding
pattern lattices based on analysis of computation
models of three classes of data mining problems. We
present the framework that parallelize data mining
tasks in Grid environment and how to optimize the
parallel framework. E-dag construction and traversal
can be done efficiently in parallel. However, network
latency can slow down parallel E-dag traversal if
there is a fair amount of interprocess communication.
In an E-tree traversal, much communication is
eliminated by giving up some pruning opportunities.
We observe that an optimal parallel program is some
form of combination of E-dag and E-tree traversal.

References:
[1] D. Talia and M. Cannataro, Knowledge grid: An

architecture for distributed knowledge discovery,
Communications of the ACM, 2002.

[2] I. Foster and C. Kasselman, The Grid: blueprint
for a future infrastructure. Morgan Kaufman,
1999.

[3] A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke, The Data Grid: towards
an architecture for the distributed management
and analysis of large scientific datasets. J. of
Network and Comp. Appl., (23):187–200, 2001.

 [4] Kun Gao, Kexiong Chen, Meiqun Liu, Jiaxun
Chen, Rough Set Based Data Mining Tasks

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

Scheduling on Knowledge Grid, Lecture Notes in
Computer Science, Volume 3528, May 2005,
Pages 150 - 155

[5] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun Chen,
Rough Set Based Computation Times Estimation
on Knowledge Grid, Lecture Notes in Computer
Science, Volume 3470, July 2005, Pages 557 –
566

[6] D. Talia, "Parallelism in Knowledge Discovery
Techniques", Proc. 6th Int. Conference on
Applied Parallel Computing, Helsinki, LNCS
2367, pp. 127-136, June 2002.

[7] M. Cannataro, P. K. Srimani and D. Talia,
Parallel Data Intensive Computing in Scientific
and Commercial Applications, Parallel
Computing, Vol. 28, No. 5, pp. 673-704, May
2002.

[8] D. B. Skillikorn. Strategies for parallel data
mining. IEEE Concurrency, 7, 1999.

[9] Cannataro M., Clusters and Grids for Distributed
and Parallel Knowledge Discovery, LNCS 1823,
pp. 708-716, Springer, 2000.

[10] Cannataro M., D. Talia, Parallel and Distributed
Knowledge Discovery on the GRID: A Reference
Architecture, 4th Int. Conference on Algorithms
and Architecture for Parallel Processing (ICA3PP
2000), Hong Kong, Dec. 11-13, 2000, pp.
662-673. World Scientific, 2000.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp19-24)

