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Abstract:This paper presents an innovative Grid Market Exchange pricing model that embodies advance reserva-
tion, component integration, neighborhood valuation and quality of service feedback. In the context of an upcom-
ing Grid Economy, it is able to appraise job requirements and node components from historical market information.
These resource indexes constitute valuable estimation tools for compute time consumers and providers.
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1 Introduction

With the advent of high-bandwidth backbones in the late
90’s, computer scientists started dreaming about and de-
signing a worldwide federation of computing resources
and sensors:The Grid [6, 7, 8]. In this grid, every
single compute node, scientific sensor or data repos-
itory would be virtualized and accessible to anybody,
anywhere, anytime. It is taking the Internet to the era
of wide-scale distributed computing, transparent remote
execution andcomputing on demand.

In the last decade, large compute grids have been
made possible thanks to substantial government infras-
tructure investments, just as electrical networks came to
light in the 40’s and 50’s. Funding was provided to vi-
sionary researchers in the field to design and implement
the emerging grid. But building this kind of architecture
involved high risk levels and the resulting product was
far too unstable to be accounted for rigorously. Cou-
pled with the grid community’s idealistic views, this risk
explains the actual free and undervalued nature of grid
CPU power.

Out of its implementation transient state, the grid in-
frastructure is about to provide a stable and definable
quality of service. CPU power will then be consid-
ered as a valuable good that can be assessed over time.
Grid Economy[3] is an emerging research field trying to
define computing resources exchange policies and sys-
tems to put them in place. While a market-driven CPU
economy involves building meta-schedulers to provide
dynamic accounting, auditing and advance reservation
of resources, and before even thinking of trading CPU

stocks, a framework composed of publishers, brokers,
banks and monitors must be implemented.

The GridBus [4] project is developed at the Grid
Computing and Distributed Systems (GRIDS) Labora-
tory of the University of Melbourne, Australia (project
leader and laboratory director, Rajkumar Buyya, is a
leading Grid Economy scientist [1]). GridBus is an
all-inclusive system that regroups the many components
(GSB, GMB, GridBank, G-Monitor, GridSim) targeting
the same objective: building the grid economy infras-
tructure. Other projects like OCEAN [9], Nimrod-G [2],
and Libra [10] are also dealing with various aspects of
the grid market exchange.

The primary trend supporting a market-driven grid,
as mostGrid Economistswould argue, refers to a fun-
damental incentive toward computing power exchange.
Currently, compute time-slot exchange is based mostly
on a system of good-will. While this “socialist” perspec-
tive can hold for demonstration purposes, on a day-to-
day basis, computing power producers and consumers
need auser-centricsystem implementing schedulers
and accounting with a definable quality of service.

Many auction models can apply to this transactional
model, either English, Dutch or double auction, but all
require a deterministic assessment of the true value for
a given time-slot on a specific node. One major prob-
lem is that computing power producers (supercomputer
owners, LAN managers, etc.) have no clear way of es-
timating how much their CPU cycles are really worth.
Consumers, mostly scientists from other fields, are even
further from this assessment.

To be a stable and maintainable wide-scale system,
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the Grid Market Exchange must be self-regulating and
reduce management overheads to a minimum. While
conventional markets trade stocks based on a current
value, the Grid Market Exchange will need to support
advanced reservations, in a manner similar to stock op-
tions. But it would then be impossible for anybody
to appraise every single time-slot on a cluster for the
months to come, a process far too speculative and time-
consuming. Whether the exchange unit is based on a
real monetary mapping or on some form of fictive cur-
rency, we must have automated tools based on statistical
data to estimate the cost of resources.

2 Objectives

In this paper, we advocate a Grid Market Exchange bro-
ker implementing a statistical pricing algorithm. To be
deployable on a wide-scale grid, this broker will have to
support the following:

2.1 Advance Reservation

On a worldwide grid supporting advance reservations,
every single future time-slot for a specific node would
become an exchangeable unit on a compute time mar-
ket. Auction models involve individual time-slot assess-
ment; thus for a group of 512 processors and 1 hour
time-slots, this represents 4 485 120 “cpu stocks” to ap-
praise per year. Even on a homogeneous cluster, disre-
garding configuration aspects, the owner must still as-
sess 8 760 values (24 hours x 365 days). Since offer and
demand will vary dynamically over time, this process
would have to be re-evaluated regularly, probably on a
daily basis, a daunting task. This is the fundamental
motivation for some form of automation in the pricing
algorithm.

2.2 Component Integration

While most actual grid applications specify relatively
few configuration requirements (processor time, avail-
able memory and disk space), future applications might
necessitate additional constraints like memory band-
width, cache size, etc. The pricing model must there-
fore be adaptive, to enable the seamless integration of
new trends in application requirements. Furthermore,
the relative significance of components will undoubt-
edly vary over time, and node pricing will have to be
adjusted accordingly. Such a model would therefore be
able to make the transition to any future breakthrough in
HPC technology.

2.3 Neighboring Nodes

While embarrassingly parallel apps can compute on dis-
tant nodes almost without consideration for the intercon-
nect, many MPI programs need tightly coupled nodes.
Therefore, a compute node linked to similar nodes with
Myrinet or InfiniBand will undoubtedly present more
value than a comparable broadband node. This reality
must be reflected in the pricing model. It must also
consider dynamically evolving interconnect aspects of
throughput and latency.

2.4 Quality of Service

This aspect is certainly the cornerstone of the Grid
Economy. Quality of service will have to be advertised
by producers regarding every node component. In fact,
compute node owners will sell a given level of service
for their nodes. Consumers, depending on how much
they will be willing to pay, will agree to these terms and
anticipate an appropriate fulfillment. Feedback mecha-
nisms will have to be put in place to evaluate advertised
QoS and apply corrections if needed.

3 Pricing Model

While many have worked on market-driven compute
time brokers and schedulers [2, 5, 10, 11], few pric-
ing models exist as it is considered that human interac-
tion would determine bid and ask prices. Recent work
by Yeo and Buyya [12] propose a pricing model for
utility-driven management and allocation of resources
on a cluster. Their model implements a fair account-
ing scheduler and broker where users actually “pay” for
their effective resource needs using the following equa-
tion:

Pn
j =

(
α + βUn

j

)
Pn

base, (1)

where the unit pricePn
j for a given resource on a cluster

noden for a jobj is computed from a base pricePn
base

(set by the owner) for that resource, and a utilization
factorUn

j determined at run-time:

Un
j =

Rn
max

Rjn
free

, (2)

where
Rjn

free = Rn
max −

∑
i6=j

Rn
i , (3)

with Rn
max andRn

i being the maximum amount of this
resource for noden, and the amount consumed by an-
other job i running on the same node, respectively.
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While this pricing function generates a higher price un-
der high demand for the provider, there is no assurance
for the consumer that the provider won’t load the re-
sources at run-time (deliberately or not), reducingRjn

free

therefore raisingUn
j .

This model also implies dynamically measuring job
execution-time, memory and storage usage ratios. The
α andβ factors provide flexibility over the weighting
of static and dynamic components in the overall pric-
ing. They have proven higher cluster profitability with
enhanced waiting time and response time.

Although this model has given good results on an iso-
lated cluster, we are willing to define a pricing model in
a wider perspective. The Grid Economy will be based
on a market exchange matching Task Level Agreements
(TLAs) with Service Level Agreements (RLAs) before
the job execution. Therefore, the initial deal cannot be
made over effective resource utilization for the job al-
though this information will be very useful a posteriori.

3.1 Pricing as a Time Function

We advocated earlier that compute nodes are far too nu-
merous to be assessed on a one by one basis. Moreover,
for an advance reservation CPU market-exchange, we
must consider the temporal aspect of compute power.
Therefore, the pricing functionP for a given distributed
application would have to take this general form:

P(t0, t1, t2) =
∫ t2

t1

P (t)dt, (4)

where we must integrate over time the cost att0 of each
time-slot needed by the job to complete fromt1 = t0 +
∆t to t2 = t1 + λt. The total execution price for the
application therefore depends on the deal timet0, the
delay between deal time and launch time∆t and total
execution timeλt. For a set of jobsJ running on a set
of nodesN , we can define a pricing functionP (t) for a
time-slott as:

P (t) =
∑
n∈N

Pn(t) =
∑
j∈J

Pj(t), (5)

wherePn(t) is the price of noden andPj(t) is the price
for job j. For everyj running onn, when a deal is
concluded,Pj(t) = Pn(t). Therefore, equation 5 is true
for any one-to-one mapping ofJ andN .

3.2 Fundamental vs Speculative Inputs

For every compute node, we argue that autonomic valu-
ation algorithms should be based on a fundamental trend

future

$

now∆tt0 t1 t2λt

α(t)

P
n
base

P
n
market(t)

Pn(t)

Figure 1:Grid Pricing Graph

calculated on original and operational costs, on the one
hand, and a market-driven speculative component, on
the other hand. Intuitively, as shown in Figure 1 (solid
line), we can think of computing power starting at a
base price level in a distant future, growing incremen-
tally approaching present time, and probably dropping
drastically sometime before the expiry of the time-slot.
This behavior is somewhat comparable to airplane ticket
prices or other commodity markets. This reflects the
“blue-chip” aspect of long term bidding, the speculative
increment, and the fact that remaining cpu cycles, if not
sold, will be lost.

We therefore propose a pricing function presenting
these two components: basic (fundamental) and market
(speculative):

Pn/j(t) = α(t)Pn/j
base + (1− α(t))Pn/j

market(t), (6)

where the price for a noden or a job j at time t

is determined by a static basic pricePn/j
base and a dy-

namically evolving speculative indexPn/j
market for that

specific node configuration or set of job requirements.
Pn

base is assessed by the node owner upon original and
maintenance costs. Likewise, the consumer can de-
termine a basic price,P j

base, he is willing to pay for
compute time-slots in the long run. Recall that when
Pj(t) = Pn(t), we have a deal. Theα parameter serves
to tweak the relative significance of fundamental versus
speculative inputs. It might in fact be a function oft
and could decrease linearly or exponentially. This pa-
rameter shall be determined by the resource owner and,
similarly, by the compute time consumer.

3.3 Component Aggregation Pricing

It is also very important to consider node component
relationships. Quality of service must not be calculated
solely on resource availability, it must also consider effi-
ciency. Therefore, many more parameters must be eval-
uated at run-time and considered in the pricing function.
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They can be static characteristics (memory throughput,
cache size, hard drive interconnect, hard drive through-
put, etc.) or run-time benchmarks (Linpack, STREAM,
etc.). For example, since memory bandwidth is becom-
ing a major roadblock for many HPC applications, a
truly dynamic and adaptive pricing model would prob-
ably incorporate it. Therefore, the individual time-slot
pricePn

market for a noden can be evaluated by summing
the market indexes of its components:

Pn
market(t) =

∑
c∈C

Ic
comp(t), (7)

whereC is the set of node components andIc
Comp is the

market index of componentc. The market value of node
n is therefore less speculative in some manner because
the node’s pricing comes from the sum of its specula-
tive parts, representing larger scale market trends thanks
to an enhanced granularity. As we will see later, com-
ponent and requirement indexes might not be equal, we
thus defineP j

market(t) for a jobj as:

P j
market(t) =

∑
r∈R

Ir
req(t), (8)

whereR is the set of job requirements andIr
req(t) is the

market index of requirementr.

3.4 Neighborhood Valuation

Another important aspect not considered in current
pricing models is the proximity of similar compute
nodes and storage hardware. For an embarrassingly-
parallel problem, this presents very little impact. For
tightly-coupled ones, it is a whole different story. Ev-
ery scientist in the HPC/Grid community knows that
data-driven applications or tightly-coupled problems
are more expensive to run than embarrassingly-parallel
ones. They require high-capacity storage and massive
network throughput, respectively. A more realistic pric-
ing model will have to consider resources interconnect.

Therefore, we introduce the concept of neighborhood
resources that must be counted like other components
or requirements in equation 7 and 8. Consumers and
providers would therefore be able to specify the num-
ber of nodes, interconnect and latency specifications, in
their TLAs and SLAs, respectively.

3.5 Quality of Service Feedback

When executing a job, quality of service validation
mechanisms will have to be applied to make sure the

consumer gets what he paid for. This is where the uti-
lization factor comes into play. If a user paid for 90% of
a compute node CPU power, the producer must satisfy
the requirement. In this regard, it would be interesting to
modify Equation 7 to incorporate an advertised resource
utilization factorδc, that could be determined automati-
cally upon prior job runs or manually by the provider.

Pn
market(t) = ξn

∑
c∈C

δcI
c
comp(t). (9)

Finally, user satisfaction and vendor commitment are
clearly aspects with an intrinsic value in every economy.
QoS information feedback on the computational market
exchange is necessary because trustable grid nodes are
clearly of higher value than unstable ones. A final fac-
tor ξn is thus added as an averaged trust index computed
from the node QoS history.

4 Resource indexes

The need for some form of automated pricing algorithm
comes from the impossibility for anygrid broker to ap-
praise in real-time every future time-slot for every com-
pute node. This comes from the far too numerous time-
slots but also from the combinatorial explosion of node
configurations. Therefore, if we want to appraise any
given node, we argue that we must first decompose pre-
vious deals into discrete resource indexes from which
we can concatenate various individual node pricing.

4.1 Matching requirements and components

We start with a set of resourcesΦ from which job re-
quirementsR ⊂ Φ and node componentsC ⊂ Φ
can be expressed. These resources can be decomposed
in subsets of discrete resource types like memory size,
disk space, CPU architecture and frequency, memory
bandwidth, cache memory, benchmark results, software
stack components, etc. It is important to note thatΦ is
not a fixed set, but can evolve dynamically over time.
For example, we could consider the following:

Φ = Φmem ∪ Φdisk ∪ Φcpu ∪ Φfreq ∪ Φnodes ∪ Φmisc

with:

Φmem = {128, 256, 512, 1024} (MB)

Φdisk = {1, 2, 4, 8} (GB)

Φfreq = {1.0, 2.0, 3.0} (GHz)

Φcpu = {x86, ppc, sparc}
Φnodes = {7@10, 31@1} (n@Gbit)

Φmisc = {vpu, gcc4, mpi, globus}
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Therefore, a user could define the following require-
ments for an individual jobj with only a small subset
of Φ:

Rj = {512mem, 1disk, ppccpu, 7@10nodes} (10)

This would denote a job compiled for the PPC archi-
tecture, necessitating 512MB of RAM and 1GB of disk
storage and requiring 7 similar nodes linked with a 10
Gbit interconnect. Note that this user does not specify
any requirement regarding performance, this could be
part of the decision making strategy to obtain the low-
est price point for total execution. We will return to this
later. Similarly, the owner of noden defines its compo-
nents:

Cn = {256mem, 512mem, 1024mem, (11)

1disk, 2disk, 4disk, 8disk,

1freq, 2freq, ppccpu, 7@10nodes}

This node would therefore accept jobs requiring 256
MB, 512MB or 1GB of RAM (but not 128 MB) on a
PowerPC architecture from 1GHz to 2GHz, necessitat-
ing between 1GB and 8GB of storage. It can also be
sold with 7 similar 10 gigabit nodes. Hence, the setAj

of admissible nodes for jobj (defined by requirements
R) is given by:

Aj = {n ∈ N | Rj ∩ Cn = Rj} (12)

4.2 Market-driven pricing feedback

At the creation of a grid brokering infrastructure, all
pricing information will be based upon the variousPn

base

set by the providers and theP j
base of consumers. As soon

as the first deal is finalized, global market exchange in-
formation will be used to compute resource indexes and
consequently market-driven pricing. With statistics on
requirements and components in a set of previously con-
cluded dealsD, we can maintain a database containing
time relevant counts for every requirementηφ

req(t) and
componentηφ

comp(t). Using historical statistics, we can
therefore calculate resource market ratios:

ρφ(t) =
ηφ
req(t)

ηφ
comp(t)

, ∀φ ∈ Φ (13)

Table 1 shows sample statistics from requirements of
64 executed jobs and components offered on 64 hetero-
geneous nodes. All 64 jobs required some amount of

memory and a specific kind of processor, 42 of them
required some disk space and 36 a specific CPU clock.
We can see that 64 nodes had at least 512MB of mem-
ory but 4 of them were not willing to compute smaller
jobs requiring 128MB of RAM. As CPU architecture is
a binary input, processor type statistics are mutually ex-
clusive.

Thus, we can compute component and requirement
pricing indexes by retro-propagating every single deal
priceΠ$ proportionally:

Ic
comp(t) = ρc(t) /

∑
φ∈C

ρφ(t) ∗Π$ (14)

Ir
req(t) = ρr(t) /

∑
φ∈R

ρφ(t) ∗Π$ (15)

Taking the previous example (eq. 10-11) and consid-
ering the deal had been closed at 1000 grid units (gu):

I512mem
comp (t) =

0.44
3.60

∗ 1000gu = 121gu (16)

I512mem
req (t) =

0.44
2.25

∗ 1000gu = 196gu (17)

Resource pricing indexes are therefore calculated dy-
namically over time. From a system point of view, the
real-time value for an index could be simply its last deal
value or an averaged combination of surrounding deal
values in time.

The motivation for a double index scheme comes
from the fact that the brokering system will not match
job requirements on limited node components. In fact,
in almost every deal, the consumer will pay in some way
for some components not listed in the requirements, still
presenting a positive market ratio (eq. 13). Although we
must interpolate every component index when closing a
deal on a given node, the requirement indexes must be
higher to compensate for unrequested, but still unusable
by others, components.

In a steady-state system, the consumer will be in-
formed in real-time of the lowest, average and highest
priced (ask) available node matching its requirements.
Helped by the market-driven indexP j

market(t), he will
be able to make a better buying decision. Similarly,
the provider will be presented the lowest, average and
highest priced job (bid) able to run on its node, using
Pn

market(t), he will thus be able to steer its selling price.
In both cases, the decision making strategy could be au-
tomated to match a given percentage of resource indexes
depending on the execution timeframe, for example.
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Resource ηφ
req ηφ

comp ρφ Ir
req Ic

comp

128mem 10 60 0.17
256mem 18 64 0.28 78gu
512mem 28 64 0.44 196gu 121gu
1024mem 8 32 0.25 69gu

1disk 20 64 0.31 138gu 87gu
2disk 15 64 0.23 64gu
4disk 6 64 0.09 25gu
8disk 1 41 0.02 6 gu

1.0freq 12 64 0.19 53gu
2.0freq 16 56 0.29 80gu
3.0freq 8 0 0.17

x86cpu 48 48 1.00
ppccpu 8 8 1.00 444gu 278gu
sparccpu 8 8 1.00

7@10nodes 8 16 0.50 222gu 139gu
31@1nodes 0 48 0.00

64 64 1000gu 1000gu

Table 1: Example of resource statistics.

5 Conclusion

This paper presented an innovative grid market ex-
change pricing model that embodies advance reserva-
tion, component integration, neighborhood valuation
and quality of service feedback. Most introduced ideas
are in fact part of a work in progress and an exhaustive
simulation engine to validate the model on a larger scale
is being developed. Many other calculation approaches
for the resource indexes can be envisioned and will be
evaluated in future work. A prototype infrastructure im-
plementing this market-driven brokering model will be
deployed through various testbeds in North-America.

On a wider perspective, further research will be con-
ducted on the similarities between a CPU exchange mar-
ket and other commodity economies like electricity, air-
plane tickets, coffee, bananas, etc. This could bring in
some very interesting insight on how an upcoming wide
scale CPU time-slot market would behave. In the long
term, a Grid Market Exchange could outline the real
needs of users, needs that hardware vendors will be able
to use to build better computers, instead of relying on
actual flawed benchmarks.

TheGrid Economywill bring a plethora of new eco-
nomic and computer science phenomenons to analyse.
While it might favor the Grid democratization, con-
sumers and providers will be mostly newcomers to this
market exchange. We must therefore envision innova-
tive foundations of trust in this economy; assessing re-
sources statistically could be one of them.
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