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Abstract — A new autonomous oscillator topology is proposed, based on a feedback loop around the Duffing 
non-autonomous system and capable of generating both chaotic and almost harmonic signals. The main idea is 
to filter the wide-band chaotic output signal by means of a high selectivity band pass filter (BPF), 
implemented with quartz crystals and connected in a feedback loop. Simulation results for several important 
particular cases confirm the predicted behavior.  
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1 Introduction 
Generating both harmonic and wide band signals 
inside the same system is desirable in many 
applications, including communication systems test 
equipment, computer clock generation, chaotic 
encryption and chaos communication. 

Non-linear non-autonomous systems have 
received increasing attention recently as regards 
their possibility to behave chaotically, under certain 
particular conditions, and in this way generating 
useful unpredictable signals. Their non-autonomous 
character is generally treated for the particular case 
of harmonic input signal. Depending on the 
particular implementation of the non-linear circuit, 
series/parallel RLC circuits with one of its elements 
being nonlinear were studied e.g. in [4], [5].  

Special attention was paid to the Duffing 
differential equation, regarded as a particular case of 
the aforementioned class of chaotic systems. In-
depth studies on the dynamics of circuits described 
by a Duffing like differential equation were made. 
Simulation results were reported in [1], highlighting 
the phase portraits and attractor-basin for the forced 
Duffing circuit. 

The most general equation for the forced Duffing 
circuit is: 
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Its simplified form, as it can be found in [1], 
[3], is: 
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The factor k, in the second term, shows that 

the circuit is dissipative and it is important to 
note that its magnitude is a determining 
parameter of how fast/slow the oscillations 
damp/latch-up rather than as a chaos control 
parameter.  

For state space characterization, the equation 
(2) is re-written as a system of two first order 
differential equations: 
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which, in turn, can be re-written in vector-
matrix form: 
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The new variables denoted as: 
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are the state variables of the Duffing circuit and the 
link between the equations (3) and (2). 

In almost all situations the amplitude of the 
excitation signal, e(t) , denoted as B , is the main 
control parameter: 

tsinBe(t) 0ω⋅=                                              (6) 
Other control parameters are the dissipative term 

coefficient, k  in equations (1-5) and the input signal 
-frequency πω 2/f 00 = in equations (6). Moreover, 
in [3], a control strategy for such a non-autonomous 
circuit is developed, in order to produce appropriate 
chaotic and non-chaotic reference trajectories or 
switching between the two. But, regarded as a block 
diagram, the entire circuit proposed in [4] is still 
non-autonomous, needing a harmonic signal as in 
equation (6) as input. 
 
 
2 The Autonomous Duffing like 
Oscillator 
The basic block diagram of the proposed system is 
shown in Fig.1. 

 
The main idea of the proposed circuit is that of 

transforming the classic, non-autonomous one into 
an  autonomous oscillator by band-pass filtering the 
output signal of the Duffing circuit, amplifying it, 
and driving with the filter output signal,  (t)ef , the 
non-autonomous Duffing circuit. The newly 
obtained signal,  (t)ef

, plays the part of e(t) in the 
classic forced Duffing circuit.  

The transfer function of the BPF of Fig.1 is given 
by: 
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where α/2bG 10 =  is the filter’s gain at the 
central frequency

0ω , and αω 2/Q 0= is its quality 
factor.  

In order to force a chaotic behavior in the 
proposed circuit the BPF should have the 
highest selectivity possible, which means, for a 
second order filter, a high quality factor. This is 
the reason why the BPF is thought of as being 
made in quartz technology, ensuring a quality 
factor of, at least, 104.  

The main control parameter remains the 
amplitude of  (t)ef as in the case of the classic 
forced Duffing oscillator. 

It must be mentioned that the BPF’s gain G0 
and the gain b are interdependent, the sense that 
the amplitude B of  (t)ef can be set at a certain 
value by modifying the value of any of the 
control parameters. 

In order to study the circuit dynamics and 
compare it to that of the classic forced Duffing 
one, waveforms of the state variables x1, x2, and 
the forcing signal are presented. In Fig.2.a) and 
Fig.2.b) are presented examples of simulated 
variation in time of the state variable x1 for the 
proposed circuit and classic Duffing circuit, 
respectively.  

 

 

Fig.1 Block diagram of the proposed 
autonomous system 

 
Fig.2.b) Time variation of the state variable x1 in the 

forced Duffing circuit 

 
Fig.2.a) Time variation of the state variable x1 in the 

proposed circuit 

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp40-43)



From their power spectra, depicted in Fig.3.a) 
and Fig.3.b) we can further argue their chaotic 
character. 
 

 
 

 
The output of BPF,  (t)ef , which plays the part of 

the classic forcing harmonic signal, depicted in 
Fig.4.b), is shown in Fig.4.a). It can be seen 
that  (t)ef , the filtered chaotic signal, is a reasonable 
approximation of a harmonic one.  

It must be noted that BPF’s selectivity is a useful 
control parameter, in that it modifies the degree of 
approximation of the ideal input signal. For small 
values of the filter quality factor, chaotic behavior 
could not be achieved, as can be seen in Fig.5, for 
Q=100 and the rest of the parameters kept 
unmodified. This is the cause for the necessity of a 
quartz implementation. A value of Q=104 or greater 
is enough to determine, by setting appropriate G0 or 
b, a chaotic behavior as it can be seen in Fig.3.a). 

The following numerical values were used in the 
simulation examples presented: k=0.0015, ω0=1 
rad/sec, 2α = 0.0001, a1 = 0.8, b = 1, and the initial 
conditions (x10, x20) = (0.1, -1). 

For the presented numerical values the phase 
portrait (x2 vs. x1) shown in Fig.6 was obtained, 
suggesting the existence of a chaotic attractor. 

 

 

 

 

 
 

Since it is known that in the case of the 
classic forced Duffing oscillator the frequency 
of the forcing sinusoidal signal is also a control 
parameter, the central frequency of BPF from 
Fig.1 was modified around nominal value. At 
central frequencies ω0 greater than 3rad/sec, 
numerical instability was observed. At 
frequencies less than 1rad/sec the output signals 
x1 and x2 tend to become periodical, as it can be 
seen in Fig.7.a) and b). 

 
Fig.3.b) The power spectrum of the chaotic signal 

shown in Fig.3.b 

 
Fig.3.a) The power spectrum of the chaotic signal 

shown in Fig.3.a 

 
Fig.6 The phase portrait suggesting the 

existence of an chaotic attractor 

 
Fig.5 Time variation of the state variable x1 of the 

proposed circuit for Q=100 

Fig.4.b) The forcing harmonic signal e(t) in the classic 
Duffing oscillator 

Fig.4.a) The almost harmonic signal ef (t) in the 
proposed circuit 
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The greater Q is (>105-106), the closer to a 
harmonic signal the output of BPF will be but with 
its amplitude smaller. This means that a greater gain 
b will be needed in order to determine the circuit to 
behave chaotically. A tradeoff must be made 
between a quality factor as large as possible and a 
gain b not to large in order for a chaotic response to 
be get and numerical stability not to be obtained. 

The bifurcation diagram presented in Fig. 8, was 
developed as it was considered in [2], [3], in order to 
see the b-ranges, where the circuit behaves 
chaotically.  

 

 
 

3 Conclusions 
We proposed a non-autonomous oscillator 
based on Duffing circuit, capable of generating 
chaotic output signal and an almost harmonic 
one. The chaotic behavior can be controlled by 
means of the classic control parameter, the 
amplitude of the harmonic signal, and using the 
filter gain, center frequency and quality factor 
as new ones. Some simulation results are 
reported as arguments for the desired operation 
of the proposed circuit.  

Further research is needed to analyze system 
parameters, such as Lyapunov exponents, and 
atractor dimensions in order to demonstrate 
rigorously its chaotic dynamics. 
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Fig.7.a) Time variation of the state variable x1of the 

proposed circuit for ω0=0.1rad/sec 

Fig.8 The bifurcation diagram x1 vs. the gain b in 
the loop of the autonomous Duffing oscillator 

 
Fig.7.b) Time variation of the state variable x2of the 

proposed circuit for ω0=0.1rad/sec 
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