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Abstract: - In last years new procedures to generate Internet-like topologies have been proposed, stemming from 
the evidence of a power-law behavior of real networks. Realistic networks generators are necessary for simula-
tion and performance evaluation of data communication systems. Assuming a simple loss model for the links, the 
present investigation shows that the adoption of a specific topological model for the Internet graph (here, the 
Waxman or the Barabási-Albert model) may affect, to a certain extent, the estimates of the loss probabilities for 
end-to-end communications obtained by simulation (e.g. via NS-2 package). 
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1   Introduction 
For some while, technical and scientific research ac-
tivity related to the Internet world has been mainly 
focused on new kinds of applications and communi-
cation protocols in order to develop new service 
scenarios or guarantee the interoperability among 
software and hardware entities of the network. In last 
years, researchers have also been led to investigate 
new mathematical models suitable for the network 
traffic [1], aiming to face the increasing demand of 
Quality of Service (QoS). More recently, new re-
search activities have been stimulated by the expo-
nential growth of the number of hosts connected to 
the Internet and the huge amount of data traffic ex-
changed by them. It has been realized that a com-
prehensive  understanding of the Internet is necessar-
ily related to the mathematical characterization of its 
topological structure, since it has been shown that 
network topology can influence protocol behaviors 
[2]. Such investigations are particularly relevant for 
the design of new services requiring high QoS level, 
such as Voice over IP (VoIP) and video-streaming. 

Modeling the Internet topology is an important 
open problem both from a theoretical point of view 
and for practical aspects, related to the generation of  
realistic graphs for the simulation of the behavior of 
new protocols, the evaluation of communications 
performance or the analysis of new service platforms 
for the Internet [3]. 

The study of the statistical aspects of the Internet 
topology relies on the data collected by many research 
projects devoted to the mapping of nodes of the 
Internet and connections among them, such as the 
Internet Mapping Project [4], Skitter by Cooperative 

Association for Internet Data Analysis (CAIDA) [5] 
or Rocketfuel [6].  

Graph-like representations of a large portion of the 
Internet are now available. Recent studies on such 
results, due to M. Faloutsos et. al in 1999 [7], have 
addressed some typical features of many real complex 
systems. 

Indeed, it has been realized that Internet is a 
scale-free network whose interconnection structure is 
governed by power-law distributions (as in the case of 
the degrees of the nodes, the eigenvalues distribution, 
etc.). This result is in contrast with the distributions  
of Internet-like networks produced by traditional 
generators, based on the Erdős-Rényi classical 
random graph (henceforth ER) model [8-10], 
including the Waxman generator [11] among others. 

The discovery of the scale-free nature of the 
Internet stimulated the introduction of new 
mathematical models [12-14] reproducing such a 
scale-free behavior. The first and most popular model 
was proposed by A.-L. Barabási and R. Albert 
(henceforth BA) in late 1999 [12]. It is ruled by two 
simple concepts: (i) the graph grows as a consequence 
of the continuous addition of new nodes; (ii) each new 
node connects to the existing vertices with a 
probability proportional to their degree (preferential 
attachment mechanism). 

Since then, other models have been proposed in 
order to overcome some limitations of the ER-based 
and BA models. For further reading Ref. [15] is 
suggested. 

In this paper the influence is investigated of 
different topological models on communications 
performance. In particular, for a given link loss 
model, the end-to-end loss probabilities are evaluated 
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in Internet-like networks, and then compared. Such 
networks are generated according to two different 
network generation algorithms: the Waxman algo-
rithm [11] and the BA model [12], both included in 
the Internet-like topologies generator BRITE [16]. 

The paper is organized as follows. In Sect. 2 we 
outline the relevant Internet topology models: ER, 
Waxman and BA models. In Sect. 3 we describe the 
loss model adopted for the links of the synthetic 
Internet-like graphs. In Sect. 4 numerical results via 
NS-2 simulations are presented. Finally, Sect. 5 yields 
conclusions and references to further current work. 
 
 
2   Internet topological models 
Internet topologies are generally represented as 
graphs that mime the large-scale characteristics of the 
maps obtained by measurements of the real network. 
As it is well known, Internet is a world-wide network 
composed of computers (or hosts) communicating by 
means of intermediate nodes (or routers), responsible 
to forward properly the information flows, and of 
links physically interconnecting each pair of nodes. It 
is possible to represent the network as an undirected 
graph, whose vertices are the routers and whose edges 
stand for the physical connections between pairs of 
them: this is often referred as the Internet Router (IR) 
level representation. 

At an higher level, Internet can be partitioned into 
many autonomously administered routing domains, 
named Autonomous Systems (AS),  that are groups of 
nodes under a common administration and sharing 
routing information. Information flows among them 
are ruled by inter-AS routing protocols, such as the 
Border Gateway Protocol (BGP). Then, another pos-
sible representation of Internet is an undirected graph 
in which vertices represent the ASs and edges are 
peering relationships between pairs of ASs: this is the 
so-called AS level representation. A peering rela-
tionship is an agreement between two ASs that ex-
change traffic and routing information through one or 
more directly connected border routers (gateways). 
Fig. 1 illustrates the representations of Internet at both 
levels. 

The traditional approach to model data networks 
relied on the use of classical random graphs, intro-
duced by P. Erdős and A. Rényi in 1959 [8,9] (ER 
model). Based on such a model, the computer science 
community developed some tools to reproduce 
Internet in order to test new protocols [11,17]. 

After the discovery of the scale-free nature of 
Internet [7],  such models and generators became 
inadequate to describe or reproduce large Inter-
net-like networks (however, they seem to give good 
results for small and medium networks), so the rise of 
new models has been stimulated in order to catch its 

Figure 1 – A schematic representation of Internet 
AS-level map with a router level map of an AS. 
 
 
features and new paradigms have been proposed to 
generate representative synthetic networks [16,18]. 

 
2.1 Static random graphs and the Waxman 
model 
Static random graph models entail a fixed number of 
nodes N throughout the generation process. Typical 
examples of such models are the Erdős-Rényi and the 
Waxman models. 

Technically speaking, an undirected graph G is a 
pair of sets G = {V,E} where V is the set of vertices 
and E is the set of edges connecting two vertices of V. 
The size of the graph is |V | = N. 

An ER random graph GN,p can be defined [19] as a 
graph with N nodes where each of the N(N − 1)/2 
possible edges is present, independently of the others, 
with probability p, called connection probability, and 
absent with probability     1 − p. In this ensemble, the 
number of edges M is a binomial random variable (r. 
v.), viz. ( )( 1) / 2,M B N N p−∼ . Such a model, also 
named binomial model, has been widely adopted by 
Internet researchers. 

Defining the degree of a node as the number of 
edges attached to it, the average degree can be easily 
computed as 

  ( 1) ,k p N pN= − ≅  (1) 
where the approximation holds for large N. 

The theory of random graphs studies the properties 
of the probability space of graphs as N → ∞. 

Since real networks (even evolving ones, such as 
the Internet) are characterized by an almost constant 
average degree [15], it is convenient to consider p(N) 
= k /N, derived from eq. (1). If k  < 1, the network is 
composed by isolated subgraphs and hence it can be 
represented as a collection of clusters. On the other 
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Figure 2 – Communication path between two generic 
nodes. 
 
 
hand, when k  > 1 a giant cluster (aka the giant 
component) emerges which incorporates almost all 
nodes, as N → ∞. As the average degree approaches 
the critical value k  = 1 an abrupt change in the 
cluster structure occurs. At the corresponding critical 
probability pc(N) = 1/N the random graph changes its 
topology abruptly from a collection of isolated 
components to a single giant cluster, as it also hap-
pens at the percolation transition in the Percolation 
Theory. 

One of the main features of a random graph is its 
degree distribution P(k). In an ER graph with N nodes 
and connection probability p it is 

11
( ) (1 ) ,

!

k
k N k kN kP k p p e

k k
− − −−⎛ ⎞

= − ≅⎜ ⎟
⎝ ⎠

 (2) 

where the Poisson approximation holds for large N 
and for constant k . 

Another fundamental subject of investigation in 
graph theory for networks applications  is the distri-
bution of the distances among nodes,  or hop count 
distribution for short, expressed, in terms of prob-
ability mass function (pmf) as f(n) = Pr{h = n}, where 
h= d (i, j) is a r. v. representing the length of the 
shortest path connecting a pair of randomly selected 
vertices i and j or, equivalently the number, plus 1, of  
hops to be traversed to reach node j starting from node 
i, as represented in Fig. 2. For ER graphs the average 
distance is [20] 

 log .
log

Nh
k

≅  (3) 

It is evident that h  is much smaller than the size 
of the graph N, as a consequence of the small-world 
effect [21], exhibited by many real networks. 

Despite reproducing the small-world behavior, the 
ER model fails to predict some features of Internet 
topology: for instance, it yields a binomial degree 
distribution which decreases exponentially for large N 
and, then, deviates from the heavy-tailed distribution 
observed in measurement on the Internet. 

The ER model has inspired the first Internet to-
pology generator used for protocol testing, proposed 
by Waxman [11]. According to the Waxman algo-
rithm, nodes are randomly distributed on a rectangu-
lar coordinate grid and the probability of an edge 

between two vertices i and j is 

 
( , )

( , )
Ed i j

Dp i j e βα
−

=  (4) 
where dE (i, j) is the Euclidean distance from node i to 
j, α and β are parameters in the range (0,1] and D is 
the maximum distance between two vertices. While 
the topological structure of the graph is not influenced 
by the value of D [17,22], it is highly dependent on 
the values of α and β: α controls directly the number 
of edges, while β  rules the influence of the Euclidean 
distance between pairs of nodes. 

Like ER graphs, Waxman graphs yield values of 
h  small with respect to the size of the network and 
hence consistent with the small-world effect, but fail 
to  yield the heavy-tailed degree distributions 
observed in Internet. 

 
2.2 Barabási-Albert model 
Many complex systems, such as Internet, show 
degree distributions that are not peaked around a 
typical value, the average degree k , but instead 
highly skewed (scale-free behavior). The first model 
for computer networks producing graphs with 
power-law degree distributions was proposed by 
A.-L. Barabási and R. Albert in 1999 [12], who 
claimed that the network is an open system growing 
along the time,  and that the probability that  two 
nodes are connected depends on the degree of the 
nodes. It means that new edges are not placed at 
random but tend to connect to vertices that already 
have a large degree, respecting the paradigm 
rich-get-richer, introduced by H. A. Simon in 1955 
[23]. 

The algorithm inside Barabási-Albert (BA) 
models can be summarized as follows: 
• Growth: the network starts at time t0 = 0 with a 

small number of nodes m0. At every time unit a 
new vertex with m edges (m < m0) is added and it 
is connected to m different nodes already present 
in the system. 

• Preferential attachment: The edges of the new 
vertex are connected to the i-th already existing 
node with a probability Π(ki(t)) proportional to its 
degree ki(t) at time t, such that 

 ( )( ) ( )
( )

.i
i

jj

k t
k t

k t
Π =

∑
 (5) 

After t time units the BA procedure provides a 
graph Gm

(N) with N = t + m0 nodes and mt edges, 
whose average degree is 

 2 ,k m≅  (6) 
where 0N m�  has been considered. Since m is an 
integer, eq. (6) implies that k  can have integer 
values. 
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BA graphs have a power-law degree distribution 
P(k) [12] 

 ( ) ,P k k γ−∼  (7) 
where γ = 3, similar to the degree distribution meas-
ured in Internet (however, in real networks γ ≅ 2.1 
[15]). The power-law distribution implies that the 
probability of finding vertices with a very large de-
gree is not negligible in the BA graph. These nodes 
represent the hubs of the network since they connect a 
large number of other nodes. The hubs represent the 
core of the BA graph and, hence, they provide many 
shortcuts among nodes composing the network. 

BA graphs exhibits the small-world effect as 
happens in ER graphs. Indeed, it has been proved 
rigorously [24] that the diameter, namely the maxi-
mum distance in the shortest path sense, of BA net-
works shows different asymptotical behaviours , in 
the limit of large N, depending on the value of the 
parameter m. The average distance is supposed to 
behave in similar way. In particular, in BA graphs 
with m = 1, the average distance is, as N → ∞, 
 logh N∼  

like ER graphs. Instead for m ≥ 2 it is asymptoti-
cally 

 log .
log log

Nh
N

∼  (8) 

 
 

3   Loss model 
The hop count distribution of the Internet reflects the 
interconnection structure among routers (IR level 
representation) and hence affects significantly  the 
end-to-end communication performance. Thus, since 
every model proposed to represent Internet provides, 
in principle, a different distribution of the distance 
among nodes, the predicted performance may depend 
on the adopted topological model of the network. 

To shed some light on this subject, we carried on 
an evaluation of packet loss probabilities under dif-
ferent Internet-like topologies, given the loss model 
of single links. 

Every communication between two end-points 
involves a path set up by the routing protocols, aim-
ing to minimize the number of hops packets have to 
traverse to reach the destination. Although some in-
tra-ASs routing policies might in principle inflate the 
shortest paths, the distance, h,  between source and 
destination can be assumed to be the length of one of 
the shortest paths between the two end-points [25] 
and can be considered fixed along time. 

Further, we introduce a simple link loss model, in 
which every packet is lost on the n-th link, inde-
pendently of the others, with a probability 

 [ ]0, .n maxUλ λ∼  (9) 

Such a model introduces some relevant simplifi-
cations with respect to reality, since correlations are 
neglected both in space (from link to link at a given 
time) and in time (at different times on one link). 
However, it can be considered as a first step to capture 
some effects of the network topology on performance 
analysis. 

Then, the end-to-end packet loss probability L can 
be expressed as 

 ( )
1

1 1
h

n
n

L λ
=

= − −∏  (10) 

where λn is the loss probability of the n-th link in the 
path, and where h , as above, is a r. v. representing the 
shortest path length and conveying the influence of 
network topology on the packet loss rate. 

In the simulations, λmax has been set to the value 
10-2, selected to match to the order of magnitude of 
the maximum loss rate typically encountered  inside 
Internet [26,27]. 
 
 
4   Numerical results 
In order to assess the influence of network topology 
on performance prediction, representative numerical 
experi ments have been carried out by means of 
Network Simulator version 2 (NS-2) [28] on synthetic 
networks generated by BRITE [16]. The latter have 
been produced according to two algorithms outlined 
in Sect. 2: the BA model [12] and the Waxman model 
[11].The link loss model outlined in previous section 
has been implemented via the NS-2 Error Model 
class. A Constant Bit Rate (CBR) traffic flow 
(representative of many real-time applications, like 
VoIP) between two randomly selected nodes 
(connected by a communication path) is added to the 
network scenario, in order to compute the end-to-end 
packet loss probability L as the fraction of packets 
being lost  among those transmitted. The duration of 
each NS-2 simulation has been established so that the 
CBR source send 105 packets to the destination. 

For each topological model,  5000 experiments 
have been performed via Monte Carlo techniques in 
graphs with the same size (N = 1000 vertices) and 
average degree ( 4k = ), in reasonable agreement to 
the value observed in the Internet [15]). In order to 
obtain the desired average degree, the m parameter of 
BA graphs, eq. (6), is set to the value m = 2. 

For Waxman graphs we have selected the value of 
the α and β parameters of eq. (4) after thorough 
numerical experiments on the whole parameter space.  
Figure 3 represents the contour plots in (α,β) for 
different values of k  and h  obtained for Waxman 
graphs with N = 1000 nodes. Note the values of (α,β) 
providing graphs with the given average degree 
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Figure 3 – Contour plots of different values of k  
(solid lines) and h  (dotted lines) in Waxman graphs 
with N = 1000 nodes and 1000 2D =  in a fraction of 
the parameter space (α,β). 1,2, 4,8k = , 4,5,10h =  
are reported. 
 
 

4k =  also  provide an (almost) constant value of  h . 
Here, we have chosen α = 0.01 and β = 0.37 
( 1000 2D = ), but other choices are essentially 
equivalent. 

The Complementary Cumulative Distribution 
Function (CCDF) { }( ) PrLF x L x= >  of the 
end-to-end loss probability in BA and Waxman 
graphs are reported in Fig. 4. Both empirical distri-
butions are fitted by a Weibull CCDF 

 ( ); , , 0.
baxF x a b e x−= ≥  (11) 

The parameters in eq. (11) are a = 5.7⋅105, b = 3.7 
for  BA networks and a = 1.4⋅105, b = 3.4 for Waxman 
networks respectively. 

However, as. Fig. 4 suggests by inspection,  the 
considered graphs,  although with the same size N and 
the same average degree k , yield different packet loss 
probabilities. In particular, performances predicted on 
Waxman networks are poorer than  those predicted on  
BA networks  (in terms of average loss rates:  

0.0267 0.0243W BAL L= > = ). 
This results is in agreement with eq. (10) which 

implies that the end-to-end loss probability is related 
to the behavior of the  h r.v., and increases as its pmf 
shifts to the right. Indeed,  the different behavior of h 
under the two topological models can be appreciated 
from  Fig. 5, which shows the empirical hop count 
pmfs  computed by means of 5000 Monte Carlo itera-
tions for the two  models (for both models N = 1000 
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Figure 4 – Complementary Cumulative Distribution 
function ( )LF x  of the end-to-end loss probability in 
BA and Waxman networks. The empirical distribu-
tions (dots) are compared with their Weibull fits 
(solid lines). 
 
 
and 4k = , but the average hop count for Waxman is  

5.04Wh =  whereas, for BA, 4.61BAh = ). 
 
 
5   Conclusion 
The investigation was motivated by the fact that the 
various topological models of Internet yield different 
degree distributions, (e.g. P(k) decays exponentially 
for Waxman model while decays as a power-law for 
BA model). 

Under the assumed Bernoulli link loss model, our 
numerical experiments (performed by means of NS-2 
network simulator on graphs generated by BRITE 
package with N = 1000 and 4k = ) support the 
following conclusions: (i) despite the said discrep-
ancy, both end-to-end loss probabilities are fitted by a 
Weibull distribution; (ii) however the performance 
predicted in terms of average loss rates is poorer for 
Waxman networks than for BA networks. The latter 
fact has been related to the different behavior of the h 
r.v. for the two models. 

Consequently, further investigations could com-
pare end-to-end loss probabilities in different 
Internet-like graph models showing the same average 
distance h . 

The methodology presented in this paper could be 
applied under more realistic loss models for the links 
taking into account the burstiness and the 
(long-range) correlations of the loss process measured 
during real operations in the Internet. 
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Figure 5 – Empirical pmfs of the hop count f(n) in 
Waxman networks with α = 0.01, β = 0.37 and 

1000 2D =  (circles and dashed lines) and BA net-
works with m = 2 (triangles and dot-dashed lines). All 
experiments are carried out in graphs with N = 1000 
vertices. 
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