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Abstract:  This paper presents the stabilization of a hinged flexible beam attached to a rigid arm. The applied 
control at the articulation point consists of the absorbing waves with the goal of minimizing the reflection of 
the energy at this point. The stabilization of the beam involves fractional operators that can be achieved in the 
non-hereditary way using a diffusive model. The numerical simulation results clearly show the powerful and 
the effectiveness of the control using diffusive representation.   
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1   Introduction 
Control of a flexible structure is one of the main 
themes in control engineering. The traveling wave 
approach used in [ ][ ]is based on the property that 
the response  of the flexible structure can be viewed 
as a superposition of the waves traveling in a 
flexible structure. The boundary conditions at an 
actuator might be written as the relation of reflective 
waves with the incident waves.      
Von Flotow and Shafer [ ] developed a wave 
absorber for flexible cantilevered beam by using a 
control force which leads to the impedance matching 
at the free end of the beam.  
This paper proposed a control of a hinged-free 
flexible beam attached to a rigid arm by means force 
control and torque applied at the articulation point. 
The idea works on the basis of absorbing the 
traveling waves introduced in [ ]. Such wave-
absorbing controller involves fractional integrals and 
derivators. The major inconvenient associated to the 
fractional operators is the hereditary behavior. 
Therefore, the employment of mathematical 
analyses tools, such as stability analysis and 
numerical approximation is very difficult. We used a 
new approach called "diffusive representation" to 
alleviates these difficulties. 
The diffusive representation introduced in [ ] allows 
to achieved the fractional operators in a non-
hereditary way and simplify the study as much as 
the stability and the numerical approximation. The 
application of such representation in the flexible 

beam control leads to obtain a global system that can 
be expressed in the standard form dX/dt = AX. 
This paper is organized as follows. In section 2, we 
present the model of the hinged flexible beam. In 
section 3, we describe the dynamics of the beam in 
term of traveling waves, and the fractional feedback 
controller. Section 4 introduces the diffusive 
representation of the fractional operators in 
simplified way. Its application, for the stabilization 
of the beam, leads to a global system.  In section 5, 
we present the numerical simulation of the fractional 
operator based on the diffusive model 
 
 
2   Model of flexible beam  
A dynamic model of the beam is based on the Euler-
Bernoulli theory. In this paper, the angle θ is 
assumed to be small (Fig.1). Therefore, the 
stabilization problem can be regarded as the 
stabilization of a hinged-free beam by a force and 
torque controls applied to hinged point (fig.2). The 
partial differential equation governing the dynamics 
of the beam (fig.1) is written in the non-dimensional 
form: 

 
( ) ( ) 042 =∂+∂ t,xyt,xy xt   [ ]10,x ∈           (1) 

 
Together with the boundary conditions: 
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and the initials conditions:  
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where  ( )t,xy is the vertical displacement and x is 
space variable.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
3   Controller Design 
 
 
3.1 Wave representation 
The analysis proceeds with the introduction of the 

cross-sectional state vector  ( )Txxx y,y,y,yz 32 ∂∂∂=  

Where yx∂ is the slope, yx
2∂  is the internal bending 

moment, yx
3∂  is the internal shear force. 

The application of the Fourier transformation to  
Eq.1(in order to avoid a new symbols, the 
transformed variables hereafter have the same 
notation as their times-dependent equivalents), give 
the ordinary differential equation : 
 

( ) ( ) 0422 =∂+∂ t,xyt,xy xtω                      (4) 
 
In terms of state vector, the beam dynamics are 
written in the form: 
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This equation is diagonalized by the transformation:  
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This diagonalization can be interpreted in term of 
the traveling waves, where each term of the new -
sectional state vector W is the amplitude of traveling 
wave mode. The amplitudes of these waves mode 
vary according to: 
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The cross-sectional state vector W has been ordered 
as  ( )Tb,b,a,aW 2121= , where  1a  and 2a  are the 
amplitudes of the waves mode incoming into the 
hinged end of the beam,  1b and 2b  are the 
amplitude of waves mode departing the hinged end 
of the beam.    
 
 
3.2 Fractional feedback control 
The boundary conditions can be rewritten in terms 
of the state vector z and the externally applied force 
control F and torque M as follows: 
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This Equation can be written in wave-mode 
coordinates by: 
 

       
                  M 
            F         

 y   

x   

Fig.2: Flexible hinged-free flexible beam 

Fig.1: Flexible beam attached to a rigid arm 
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The Eq.8 may be rewrite in the general form:  
 

extOL BFaSb +=                                    (9) 
where SOL  is the open loop scattering matrix, a is 
the outgoing wave modes, b is the incoming wave 
modes and Fext are the external forces. 
 
In this paper, we limited to linear wave absorbers 
that given by: 
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For evaluate and design the absorber controller it's 
convenient to derive an expression for the closed 
loop. Substituting eq.10 to eq.9 leads to:  
 

aSb CL=                                                 (11) 
 
where SOL  is the closed loop scattering matrix that is 
a function C.  
For guarantied any reflection at hinged point it's 
necessary to put SCL=0. Therefore, the controller 
matrix C is given by:  
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The temporal domain expression is given by:  
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where I1/2 and ∂1/2 are a fractional operators defined 
by the classical Riemann –Liouville formulas: 
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The difficulties generated by these operators, due to 
the hereditary behavior, are multiple in particular the 
stability study and numerical approximation. 
From Eq. (13), we note that the traveling waves are 
suppressed by a fractional controller. The system 

can be presented by the following functional 
diagram: 
 
 
 

 
 
 
 
 
 

 
 
 

4   Diffusive controller 
 
 
4.1 Diffusive representation 
The diffusive realization noted ( )ξµ of the pseudo 

differential operator H: ( )udt
dHgu =→  is 

defined by the dynamic input-output system [ ][ ]: 
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The impulse response h:=L-1H is clearly expressed 
from µ(ξ)by [  ]: 

 
( ) ( )∫

+∞ −= 0 ξξµξ deth t                                  (17) 
 
so the diffusive symbol is also given by 
 
  µ:L-1h                                                  (18) 
 
In the particular case of fractional integrators  
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The diffusive symbol is expressed as:  
  

 ( ) ( )
αξπ

παξµ 1sin
= , ξ>0                          (20)              

where α  is the order of integration 
 
The diffusive symbol of the fractional derivators 
may be derives directly from (16). 
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Fig.3: Fractional feedback control of the beam
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4.2 Global system 
From  Eqs.(1), (2) and (16) we can construct a 
global system as follows: 
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The system (21 ) can be expressed under standard 

abstract form AX
dt
dX

= , where ( )T
t ,,y,yX ψϕ∂=                                             

We can easily proof that the global system (21) is 

dissipative in the sense 0≤
dt

dEX . 

 
 
5   Numerical simulation 
 
 
5.1 Numerical approximation of diffusive 

representation 
The numerical approximation of H(d/dt) can be 
constructed by discretizing the variable ξ and 
involving standard quadrature methods on (16). This 
leads to input-output approximation 

( )udt
dHgg~u =≅→  of the form:    
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with ( )∫
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= ξΛξµ dc kk  

 
where Λk are convenient piecewise affine functions 
with bounded support. 
 
 
5.2 Results and comments 
Figures 4 and 5 present the bode diagram of the half 
integrator and derivator. It's clearly show that their 
numerical approximations are correctly carried out 
by diffusive representation on the pulsation domain 
[10-5, 105].( the amplitude and the phase of half 
integrator or derivator are equal to -10dB or 10 dB 
and-45° or 45°  respectively). 
Figure 6 shows the evolution of the beam in the 

autonomous case, and reveals complex vibrating 
behaviors of the beam due to the traveling waves 
reflection.  
 Figures 7 and 8 show the effect of the wave 
absorbing control to the flexible beam. It does not 
have no reflection at the articulation (x=0). The 
absorption is slow at the beginning but always tends 
towards to a minimal value. 
Figure 9 shows the tip deflection of the beam. we 
see that the tip exhibits visible vibration and the 
magnitude is quite to constant value.   
Figure 10 shows the evolution of the mechanical 
energy of the beam, it is obvious that the energy is 
decreasing.  
The responses of the flexible beam and a rigid arm 
are shown in fig.11. 

-100

-50

0

50

M
ag

ni
tu

de
 (d

B)

10
-6

10
-4

10
-2

10
0

10
2

10
4

-90

-45

0
Ph

as
e 

(d
eg

)

Bode Diagram

Frequency  (rad/sec)

              

 
Fig.4: Numerical approximation of I1/2 
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Fig.6: Autonomous beam deflection 
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Fig.7: Beam deflection with control 
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Fig.9: Tip deflection of the beam 
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Fig.10: Mechanical energy of the beam 

 
 
 

  
 
 
6   Conclusion 
Stabilization of a hinged-free flexible beam attached 
to a rigid arm has been investigated using wave-
absorbing control. Such control involved fractional 
integrators and derivators. The non-hereditary 
realization of the fractional feedback has been 
achieved by the diffusive representation. . The 
numerical simulation results clearly has been 
showed the powerful and the effectiveness of the 
wave absorbing control using diffusive 
representation. 
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