
Sampling-Based Tasks Scheduling in Dynamic Grid Environment

Kun Gao1,2, Meiqun Liu3, Kexiong Chen2, Ning Zhou3, Jiaxun Chen1
1Information Science and Technology College, Donghua University, P.R.C

2Aviation University of Air Force, P.R.C
3Administration of Radio Film and Television of Jilin Province, P.R.C

Abstract: -In this paper, we propose a new solution for data mining task scheduling in Grid environment. First,
we propose a sample-based application run time evaluation. Then, we propose a cost model for predicting the
data transfer time on Grid. Finally, according the priori estimation of the application response time and the data
transfer time, we propose the method for tasks scheduling in grid environment.

Key-Words: - Sampling, Scheduling, Prediction, Grids

1 Introduction

Data mining is the process of autonomously
extracting useful information or knowledge from
large data stores or sets. Due to the distributed nature
of input data, both computational and data intensive,
the Grid is a natural platform for deploying a high
performance data mining service. Data mining
application is typical irregular problems [1], where
patterns of computations and communications are
unstructured and/or changing dynamically. The
performance costs of many DM tools depend not
only on the size of data, but also on the specific
mining parameters provided by the user. Consider for
example the Association Rule Mining (ARM)
analysis: its complexity not only depends on the size
of the input dataset, but also on the user-provided
support and confidence thresholds. Moreover, the
correlation between the items present in the various
transactions of a dataset largely influences the
number and the maximal length of the rules found by
an ARM tool. Therefore, it becomes difficult to
predict in advance either the computational and
input/output costs, or the size of the output data.

In order to deal with these issues, we first propose to
exploit sampling as a method to acquire preventive
knowledge about the rough execution costs of DM jobs. In
order to predicting the data transfer time, we then propose
the cost model for data mining task on Grid. Finally,
according the priori estimation of the application response
time and the data transfer time, we propose the method for
tasks scheduling in grid environment. The paper is
organized as follows. Section 2 introduces some related
works. Section 3 presents the method that evaluates data
mining task run time. Section 4 presents the cost model for
predicting the data transfer time. Section 5 presents the
solution for scheduling data mining tasks on Grid. Finally
concludes this paper.

2 Related Works
Early work in the parallel computing area proposed
using similarity templates of application
characteristics to identify similar tasks in a history. A
similarity template is a set of attributes that we use to
compare applications in order to determine if they
are similar. Thus, for histories recorded from parallel
computer workloads, one set of researchers selected
the queue name as the characteristic to determine
similarity [2]. They considered that applications
assigned to the same queue were similar. In other
work [3], researchers used several templates for the
same history, including user, application name,
number of nodes, and age.

Manually selecting similarity templates had the
following limitations:

• Identifying the characteristics that best
determine similarity isn't always possible.

• It's not generic: Although a particular set of
characteristics might be appropriate for one domain,
it's not always applicable to other domains.

In this paper, we develop a rough sets based
technique to address the problem of automatically
selecting characteristics that best define similarity in
Grid environment.

3 sample-based application run time
evaluation

3.1 Principle of Computation Times
Estimation

Rough sets theory as a mathematical tool to deal with
uncertainty in data provides us with a sound theoretical
basis to determine the properties that define similarity.
Rough sets operate entirely on the basis of the data that is
available in the history and require no external additional
information. The history represents an information system

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

in which the objects are the previous applications whose
runtimes and other properties have been recorded. The
attributes in the information system are these applications'
properties. The decision attribute is the application
runtime, and the other recorded properties constitute the
condition attributes. This history model intuitively
facilitates reasoning about the recorded properties so as to
identify the dependency between the recorded attributes
and the runtime. So, we can concretize similarity in terms
of the condition attributes that are relevant and significant
in determining the runtime. Thus, the set of attributes that
have a strong dependency relation with the runtime can
form a good similarity template. Having cast the problem
of application runtime as a rough information system, we
can examine the fundamental concepts that are applicable
in determining the similarity template.
 The objective of similarity templates in application
runtime estimation is to identify a set of characteristics on
the basis of which we can compare applications. We could
try identical matching, i.e. if n characteristics are recorded
in the history, two applications are similar if they are
identical with respect to all n properties. However, this
considerably limits our ability to find similar applications
because not all recorded properties are necessarily relevant
in determining the runtime. Such an approach could also
lead to errors, as applications that have important
similarities might be considered dissimilar even if they
differed in a characteristic that had little bearing on the
runtime.

A similarity template should consist of the most
important set of attributes that determine the runtime
without any superfluous attributes. A reduct consists of the
minimal set of condition attributes that have the same
discerning power as the entire information system. In other
words, the similarity template is equivalent to a reduct that
includes the most significant attributes. Finding a reduct is
similar to feature selection problem. All reducts of a
dataset can be found by constructing a kind of
discernibility function from the dataset and simplifying it.
Unfortunately, it has been shown that finding minimal
reduct or all reducts are both NP-hard problems. Some
heuristics algorithms have been proposed. Hu gave an
algorithm using significant of attribute as heuristics [4].
Starzyk used strong equivalence to simplify discernibility
function [5]. Some algorithms using genetic algorithm
have been also proposed. However, there are no universal
solutions. It’s still an open problem in rough set theory.

Rough sets theory has highly suitable and appropriate
constructs for identifying the properties that best define
similarity for estimating application runtime. A similarity
template must include attributes that significantly affect
the runtime and eliminate those that don't. This ensures
that the criteria with which we compare applications for
similarity have a significant bearing on determining
runtime. Consequently, applications that have the same
characteristics with respect to these criteria will have
similar runtimes.

In this paper, we propose a feature ranking mechanism
which can be used in fast heuristic reduct computation.

Based on the mechanism, a sampling method for finding
approximate reduct is presented.

3.2 Approximate Reduct Algorithm
In this section, we first recall necessary rough set notions
[6] used in this section, then introduces the feature ranking
mechanism, and finally present the sampling approximate
reduct algorithm.

3.3 Related Rough Set Concepts
Definition 1 (information system) An information system
is an ordered pair S=(U, A∪{d}), where U is a non-empty,
finite set called the universe, A is a non-empty, finite set of
conditional attributes, d is a decision attribute. A∩{d} =Φ.
The elements of the universe are called objects or
instances.

Information system contains knowledge about a set of
objects in term of a predefined set of attributes. The set of
objects is called concept in rough set theory. In order to
represent or approximate these concepts, an equivalence
relation is defined. The equivalence classes of the
equivalence relation, which are the minimal blocks of the
information system, can be used to approximate these
concepts.

Definition 2(Indiscernibility relation) Let S=(U,A∪
{d}) be an information system, every subset B⊆A defines
an equivalence relation IND(B),called an indiscernibility
relation,defined as IND(B)={(x,y)∈U×U:a(x)=a(y) for
every a∈ B}.

Definition 3 (Positive region) Given an information
system S= (U,A∪{d}), let X⊆U be a set of objects and
B⊆A a selected set of attributes. The lower approximation
of X with respect to B is B*(X)={x∈U:[x]B ⊆ X}. The
upper approximation of X with respect to B is
B*(X)={x∈U: [x]B∩X≠Φ}. The positive region of decision
d with respect to B is POSB(d)=∪{B*(X):X∈U/IND(d)}

The positive region of decision attribute with respect
to B represents approximate quantity of B. Not all
attributes are necessary while preserving the approximate
quantity of the original information system. Reduct is the
minimal set of attribute preserving approximate quantity.

Definition 4 (Reduct) An attribute a is dispensable in
B⊆A if POSB(d)= POSB-{a}(d). A reduct of B is a set of
attributes B’ ⊆ B such that all attributes a∈B-B’ are
dispensable, and POSB(d)= POSB’(d).

There are usually many reducts in an information
system. In fact, one can show that the number of reducts of
an information system may be up to C

|A|/2
|A|. In order to

find reducts, discernibility matrix and discernibility
function are introduced.

Definition 5 (discernibility matrix) The discernibility
matrix of an information system is a symmetric |U|×|U|
matrix with entries cij defined as {a∈A|a(xi)≠a(xj)} if
d(xi)≠d(xj), Φ otherwise. A discernibility function can be
constructed from discernibility matrix by or-ing all

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

attributes in cij and then and-ing all of them together. After
simplifying the discernibility function using absorption
law, the set of all prime implicants determines the set of all
reducts of the information system.

3.4 The feature ranking mechanism
In a discernibility matrix, every entry represents a set of
attributes discerning two objects. As we know, if an entry
consists of only one attribute, the unique attribute must be
a member of core, i.e., it has higher significance. By
generalizing the idea, we recognize that shorter entry is
more significant than longer ones. To make the difference
computable, a weight w(a) is assigned to every attribute a.
The weight is initialized to zero and recomputed
according the following formula when a new entry C is
arrived:

w(ai)=w(ai)+|A|/|C| ai∈C
where |A| is the cardinality of attribute set A of
the information system. The formula embodies
the following idea:

 The more times an attribute appears in the
discernibility, the more important the
attribute might be.

 The shorter the entry is, the more important
the attributes in the entry might be.

For example, let w(a1)=3, w(a3)=4, the system has 10
attributes in total, and the new entry is {a1,a3}. Then
weights after this entry can be computed: w(a1)=3+10/2=8;
w(a3)=4+10/2=9.

3.5 Sampling approximate reduct Algorithm
The approximate reduct algorithm is based on the feature
ranking mechanism and rough set concept. Generally,
constructing a discernibility matrix requires a lot of
memory and O(|A||U|2) time. In the worst case, a
discernibility matrix can have up to |U|(|U|-1)/2 entries and
thus take up huge amount of memory. When a dataset
becomes so large that it cannot fit in memory, computing
discernibility matrix is very difficult because lots of disk
I/O are needed. And the computing time becomes
unbearable.

Sampling is an efficient way for large datasets. Due to
the nature of sampling, it is impossible to find real reduct.
However, approximate reduct with low error can be found
rapidly. As we know, approximate reducts can be very
useful in classification, for they are typically robust than
regular reducts.

Sampling can find satisfactory approximate reduct in
short time. However, how to do it efficiently? Our method
consists of two phases. Phase I is called generating phase.
In this phase, we select several samples of original dataset
and count frequency of every attribute using discernibility
matrix. These frequencies are sorted for later use. Phase II
is called testing phase. In this phase, more samples are
used together with frequencies counted in phase I to
produce a good approximate reduct. Fig.1 presents the
sampling approximate reduct algorithm written in

pseudo-code. The algorithm is designed according to the
principle given in previous subsection.

In phase I it seems natural to generate all reducts for
one sample, and then gather most stable one. For large set
of attributes, even a small number of instances, computing
all reducts is a computationally impossible task.

We compute weight of attributes using the feature
ranking method in the process of generating discernibility
matrix for every sample. After all samples are processed,
weights of every attribute are summed. A sorting
procedure is then employed on the weights. This ends
Phase I.

After phase I, an ordered list of attributes is obtained.
The goal of phase II is to determine which attribute should
be included in the reduct. More samples are sampled to do
this job. First, discernibility matrix of a sample is
computed. The attribute list is tested against the matrix. If
result is a super-reduct (i.e., intersection with every entry
of the matrix are not empty), the attribute with lowest
weight is dropped from the list. Above process is repeated
until the test fails. Last non-failed attribute list is referred
as candidate reduct.

The candidate reduct is then tested against another
sample. If the test fails, the candidate reduct (i.e., the
attribute list) falls back by one attribute. The process is
repeated until candidate reduct passes the test. Repeat the
process to rest of the samples. At last we get an
approximate reduct that passes test for all testing samples.

This phase ensure that the resulting approximate
reduct has enough supports.
Input: sample times γ, sample rate ε, information system
S=(U, A∪{d});
Output: an attribute set Red;
Phase I: ranking the attribute by sampling.
Red=Φ, AttrList=Φ, w(ai)=0, weight(ai)=0, for i=1,…|A|.
for k=1 to γ do

S'=sample(S, ε);
Generating discernibility matrix for S' and computing
weight(ai) for every ai∈A
w(ai)= w(ai)+weight(ai) for i=1,..,n.

endfor
AttrList=Sorting A according to w(ai);
Phase II: test the ranked attribute list by sampling.
S'=Sample(S, ε);
Generating discernibility matrix M for S'.
While (!Test(AttrList, M)) remove the attribute with
lowest weight from AttrList;

Add the last removed attribute back to AttrList;
for k=2 to γ do

S'=Sample(S, ε);
Generating discernbility matrix M for S'.
While (!Test(AttrList, M)) Add back the last

removed attribute back to AttrList;
endfor

Red=AttrList;
return Red
Figure 1 Sampling for approximate reduct algorithm

Sample(S, ε) samples S with sampling rate ε. w(a)
sums up frequency computing by weight(a) which is
explained before. Test(AttrList, M) tests whether AttrList

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

is a super-reduct of discernibility matrix M. If so, it returns
true.

Using the reduct, We can predict the data mining
application run time. Detail information see[7,8].

4 Cost Model
In the following cost model we assume that each
input dataset is initially stored on at least a single
machine mh, while the knowledge model extracted
must be moved to a machine mk. Due to decisions
taken by the scheduler, datasets may be replicated
onto other machines, or partitioned among the
machines composing a cluster.

Sequential execution. Dataset Di is stored on a
single machine mh. Task ti is sequentially executed on
machine mj, and its execution time is eij. The
knowledge model extracted | () |i iDa must be
returned to machine mk. We have to consider the
communications needed to move Di from mh to mj ,
and those to move the results to mk. Of course, the
relative communication costs involved in dataset
movements are zeroed if either h = j or j = k. The total
execution time is thus:

| | / | () | /ij i hj ij i i jkE D b e D bα= + +

Parallel execution. Task ti is executed in parallel
on a cluster clJ , with an execution time of eiJ. In
general, we have also to consider the
communications needed to move and partition Di
from machine mh to cluster clJ , and to return the
results | () |i iDa to machine mk. Of course, the
relative communication costs are zeroed if the dataset
is already distributed, and is allocated on the
machines of clJ. The total execution time is thus:

| | / | | | () | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑

Finally, consider that the parallel algorithm we are
considering requires coallocation and coscheduling
of all the machines of the cluster. A different model
of performance should be used if we adopted a more
asynchronous distributed DM algorithm, where first
independent computations are performed on distinct
dataset partitions, and then the various results of
distributed mining analysis are collected and
combined to obtain the final results.

To optimize scheduling, our mapper has to
forecast the completion time of tasks. To this end, the
mapper has also to consider the tasks that were
previously scheduled, and that are still queued or
running. Therefore, in the following we analyze the
actual completion time of a task for the sequential
case. A similar analysis could be done for the parallel
case. Let Cij be the wall-clock time at which all

communications and sequential computation
involved in the execution of ti on machine mj
complete. To derive Cij we need to define the starting
times of communications and computation on the
basis of the ready times of interconnection links and
machines. Let shj be the starting time of the
communication needed to move Di from mh to mj , sj
the starting time of the sequential execution of task ti
on mj, finally, sjk the starting time of the
communication needed to move ()i iDa from mj to
mk. From the above definitions:

1 2 1 2
| | | () |()i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +

Where
1 2

| |() 0, () 0i
j hj jk j ij

hj

Ds s s s e
b

d d= - + ³ = - + ³

If jm is the specific machine chosen by our

scheduling algorithm for executing a task ti, where T
is the set of all the tasks to be scheduled, we define

i ijC C= . The makespan for the complete scheduling

is thus defined as max ()
it T iCΞ , and its minimization

roughly corresponds to the maximization of the
system thoughput.

5 task scheduling
The cost model represent the response time for
mining a dataset at different available servers. The
cost formula for a given server is dependent on the
location of the server (i.e. whether the server is
located at the client’s site or at the service provider’s
site), since this determines the adopted mining
strategy , the location of the dataset, the estimated
computation time at the server and the waiting time at
the server. Thus, having developed the estimates and
the cost matrix for DDM tasks, the question of task
allocation for minimising the response time becomes
a Generalised Assignment Problem (GAP)[9], which
is a well-known class of NP-complete problems.

Generalised Assignments Problems have been
widely studied in the literature and are described as
the task of optimally assigning n tasks to m
processors (or n jobs to m agents). Given the profit pij
and the amount of resource wij for the assignment of
task j to processor i and the total resource ci available
for each processor I, the objective is to assign the
tasks such that the total profit P is maximised as
follows:

1 1

Maximise
m n

ij ij
i j

P p x
= =

= ε ε (1)

The above maximisation is subject to the
following constraints:

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

1.
1

, {1,2,..., }
m

ij ij i
i

w x c i M m
=

£ Ξ =ε

2.
1

1, {1,2,..., }
m

ij
i

x j N n
=

= Ξ =ε

3.
0 or 1, , where

1 if task j is assigned to i

0 otherwise

ij

ij

x i M j N

x

= Ξ Ξ
µοο= νοοξ

The first constraint specifies that the amount of
resource required for assigning a task to a processor
must be less than the total resource available for that
processor, the second constraint specifies that a task
is assigned to exactly one processor and the third
constraint specifies the values of xij. The
minimisation version of the problem is expressed in
terms of the cost cij of assigning a task j to a processor
i and the objective is to minimise the overall cost C as
follows:

1 1

m n

ij ij
i j

Minimise C c x
= =

= ε ε

The minimisation process is subject to the same
constraints as the maximisation process. Generalised
Assignment Problems are known to be NP-complete
and do not necessarily have a feasible solution owing
to constraint (2) above. However, it has been shown
in [9] that an equivalent and feasible solution is
possible by relaxing or eliminating this constraint.
Several exact and approximate algorithms have been
proposed in the literature for GAP problems
including [10]. Exact solutions involve variations of
branch-and-bound algorithms [9]. We note that given
the typical size of a cost matrix for a DDM task in
grid environment is not a high-dimensional matrix, it
does not preclude exact algorithms. However, to
preserve generality to cope with larger matrices we
have adopted an approximate solution, which is good
enough and is not as computationally expensive as an
exact solution.

In this paper, we apply an approximate
technique that has two phases to determine the task
allocation strategy from the cost model. We first use
the polynomial-time algorithm proposed by Martello
and Toth [10] to determine the initial allocation of
tasks and then apply a Tabu search to improve the
initial allocation by exchanges. In the following
discussion, we formally represent the requirement of
determining the minimum response time strategy
from the cost matrices in GAP terms and present our
application of an initial allocation search followed by
a local search to identify the appropriate task
allocation strategy.

Given a mxn cost matrix CM, the elements

cmijΞCM, where i=1, 2, …, m and j=1, 2, …, n
represent the composite response time (having
considered both the communication and computation
times) for mining a dataset originally located at
server Sj at server Si. Therefore in GAP terms the
servers represent “processors” and the datasets
represent “tasks”. The “cost” of processing a task (i.e.
the dataset) j at a processor (i.e. the server) i is
represented as the element cmij in the cost matrix CM.
The cost matrix enumerates this cost with respect to
all the processors that are available including those at
the client’s site and at the service provider’s site. The
selection of the minimum response strategy from cost
matrix can be expressed using equation 1.

We relax the constraint

1

, {1,2,..., }
m

ij ij i
i

w x c i M m
=

£ Ξ =ε that is imposed

on traditional GAP problems, since the variables
represented as “amount of resource required for
assigning a task to a processor” and the “total
resource available for that processor” are not relevant
in our computation. The a priori estimates of the
response time form the “cost” in the cost models,
thereby eliminating the need to include separate
“resources required” and “total resources available”
criteria into the equation. For example, the cost
elements specify the estimated time to process a task
at a server. The case of the server being currently
unavailable is modelled using the “wait time”
variable (W), which in turn is derived from the
estimates for the tasks that have been currently
assigned to that processor. The question is how to
determine the minimum time to perform the
requested task given the current computational
resources that are available.

Having formulated our task allocation problem
in GAP terms, we now discuss our approach to
determining the minimum response time strategy
from the cost matrix. We first apply the
polynomial-time, approximate algorithm developed
by [10] to perform an initial allocation of datasets to
servers. For the sake of completeness we include an
overview of the algorithm [10] adopted in this
dissertation. The algorithm operates by first
computing a measure of desirability (fij) for assigning
a dataset j to server i, where j=1, 2, …, n and i=1,
2, …, m and uses this measure to determine the initial
allocations. The steps of the algorithm are as follows:

1. Let fij be the measure of desirability for
assigning dataset j to server i, where j=1, 2, …, n and
i=1, 2, …, m.

2. Since the the cost cmijΞCM represent the
estimated response times and the objective is to
minimise the response time, the desirability of

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

allocating a dataset to a server increases as the
estimated response time decreases. It is evident that
there is an inverse relationship between the cost
elements of the matrix and the desirability factor.
Therefore, we compute the desirability function for
the elements of the cost matrix as fij = 1/cmij (note:
cmij >=0, since the estimated response time can never
be zero or negative).

3. The allocation is performed by iteratively
considering all the unassigned datasets, and
determining the dataset j* that has the maximum
difference between the largest fij and the second
largest fij (iΞ{1, 2, .., m).

4. The dataset j* is then assigned to the server for
which fij* is maximum.

At the end of the initial task allocation phase,
each dataset is assigned to a server that is optimal in
that it has the minimum response time for that dataset.
However, at this stage the optimisation is local to that
dataset and this solution may not represent a global
minimisation of response time. For example, two or
more datasets might be assigned to a particular server
since that provides the best response time for those
datasets. While individually each dataset has been
assigned to the server that provides the minimum
response time, it is possible that having the datasets in
question assigned to the same server does not result in
the overall minimisation of the response time.
Therefore, in some instances a sub-optimal allocation
for individual datasets may lead to further reduction
in the overall response time. The second phase of the
task allocation strategy applies a Tabu search to
improve the initial task allocation through local
exchanges. The Tabu search that we use belongs to
the class of strict Tabu searches known as Reverse
Elimination Tabu searches [11].

6 conclusion
In summary, we have developed reduct algorithm and
a cost model for a priori estimation of the
communication and computation response time in
grid environment. A sampling method for finding
approximate reduct is presented. The approximate
reduct algorithm is based on a feature ranking
mechanism. We have discussed the task allocation
strategy for minimising the response time using the
estimates. The estimation technique presented in this
paper is generic and can be applied to others
optimization problems.

References:
[1] J. Darlington, M. Ghanem, Y. Guo, and H. W.

To. Performance models for co-ordinating
parallel data classification. In Proc. of the
Seventh International Parallel Computing
Workshop, 1997.

[2] A.B. Downey , "Predicting Queue Times on
Space-Sharing Parallel Computers,"Proc. 11th
Int'l ParallelProcessing Symp. (IPPS 97), IEEE
CS Press, 1997.

[3] R. Gibbons , "A Historical Application Profiler
for Use by Parallel Schedulers,"Job Scheduling
Strategies for Parallel Processing , LNCS 1291,
Springer-Verlag, 1997.

[4] X.Hu, Knowledge discovery in databases: An
attribute-oriented rough set approach, Ph.D
thesis, Regina university, 1995.

[5] J.Starzyk, D.E.Nelson, K.Sturtz, Reduct
generation in information systems, Bulletin of
international rough set society, volume 3, 1998.

[6] S.K.Pal, A.Skowron, Rough Fuzzy Hybridization-A
new trend in decision-making, Springer, 1999.

[7] Kun Gao, Kexiong Chen, Meiqun Liu, Jiaxun
Chen, Rough Set Based Data Mining Tasks
Scheduling on Knowledge Grid, Lecture Notes in
Computer Science, Volume 3528, May 2005,
Pages 150 - 155

[8] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun Chen,
Rough Set Based Computation Times Estimation
on Knowledge Grid, Lecture Notes in Computer
Science, Volume 3470, July 2005, Pages 557 –
566.

[9] Martello, S., and Toth, P., (1990), “Knapsack
Problems – Algorithms and Computer
Implementations”, John Wiley and Sons Ltd,
England, UK.

[10] Martello, S., and Toth, P., (1981), “An
Algorithm for the Generalised Assignment
Problem”, Operational Research’81, Amsterdam,
pp. 589-603.

[11] Glover, F., (1990), “Tabu Search – Part II”,
ORSA Journal on Computing, Vol. 2, No. 1,
pp. 4-32.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp25-30)

