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Abstract: -In this paper, we propose a new solution for data mining task scheduling in Grid environment. First, 
we propose a sample-based application run time evaluation. Then, we propose a cost model for predicting the 
data transfer time on Grid. Finally, according the priori estimation of the application response time and the data 
transfer time, we propose the method for tasks scheduling in grid environment. 
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1   Introduction 

Data mining is the process of autonomously 
extracting useful information or knowledge from 
large data stores or sets. Due to the distributed nature 
of input data, both computational and data intensive, 
the Grid is a natural platform for deploying a high 
performance data mining service. Data mining 
application is typical irregular problems [1], where 
patterns of computations and communications are 
unstructured and/or changing dynamically. The 
performance costs of many DM tools depend not 
only on the size of data, but also on the specific 
mining parameters provided by the user. Consider for 
example the Association Rule Mining (ARM) 
analysis: its complexity not only depends on the size 
of the input dataset, but also on the user-provided 
support and confidence thresholds. Moreover, the 
correlation between the items present in the various 
transactions of a dataset largely influences the 
number and the maximal length of the rules found by 
an ARM tool. Therefore, it becomes difficult to 
predict in advance either the computational and 
input/output costs, or the size of the output data.  

In order to deal with these issues, we first propose to 
exploit sampling as a method to acquire preventive 
knowledge about the rough execution costs of DM jobs. In 
order to predicting the data transfer time, we then propose 
the cost model for data mining task on Grid. Finally, 
according the priori estimation of the application response 
time and the data transfer time, we propose the method for 
tasks scheduling in grid environment. The paper is 
organized as follows. Section 2 introduces some related 
works. Section 3 presents the method that evaluates data 
mining task run time. Section 4 presents the cost model for 
predicting the data transfer time. Section 5 presents the 
solution for scheduling data mining tasks on Grid. Finally 
concludes this paper. 

 
 

2 Related Works  
Early work in the parallel computing area proposed 
using similarity templates of application 
characteristics to identify similar tasks in a history. A 
similarity template is a set of attributes that we use to 
compare applications in order to determine if they 
are similar. Thus, for histories recorded from parallel 
computer workloads, one set of researchers selected 
the queue name as the characteristic to determine 
similarity [2]. They considered that applications 
assigned to the same queue were similar. In other 
work [3], researchers used several templates for the 
same history, including user, application name, 
number of nodes, and age. 

Manually selecting similarity templates had the 
following limitations: 

•  Identifying the characteristics that best 
determine similarity isn't always possible.  

•  It's not generic: Although a particular set of 
characteristics might be appropriate for one domain, 
it's not always applicable to other domains. 

In this paper, we develop a rough sets based 
technique to address the problem of automatically 
selecting characteristics that best define similarity in 
Grid environment. 

 
 

3 sample-based application run time 
evaluation 

3.1  Principle of Computation Times 
Estimation 

Rough sets theory as a mathematical tool to deal with 
uncertainty in data provides us with a sound theoretical 
basis to determine the properties that define similarity. 
Rough sets operate entirely on the basis of the data that is 
available in the history and require no external additional 
information. The history represents an information system 
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in which the objects are the previous applications whose 
runtimes and other properties have been recorded. The 
attributes in the information system are these applications' 
properties. The decision attribute is the application 
runtime, and the other recorded properties constitute the 
condition attributes. This history model intuitively 
facilitates reasoning about the recorded properties so as to 
identify the dependency between the recorded attributes 
and the runtime. So, we can concretize similarity in terms 
of the condition attributes that are relevant and significant 
in determining the runtime. Thus, the set of attributes that 
have a strong dependency relation with the runtime can 
form a good similarity template. Having cast the problem 
of application runtime as a rough information system, we 
can examine the fundamental concepts that are applicable 
in determining the similarity template. 
      The objective of similarity templates in application 
runtime estimation is to identify a set of characteristics on 
the basis of which we can compare applications. We could 
try identical matching, i.e. if n characteristics are recorded 
in the history, two applications are similar if they are 
identical with respect to all n properties. However, this 
considerably limits our ability to find similar applications 
because not all recorded properties are necessarily relevant 
in determining the runtime. Such an approach could also 
lead to errors, as applications that have important 
similarities might be considered dissimilar even if they 
differed in a characteristic that had little bearing on the 
runtime. 

A similarity template should consist of the most 
important set of attributes that determine the runtime 
without any superfluous attributes. A reduct consists of the 
minimal set of condition attributes that have the same 
discerning power as the entire information system. In other 
words, the similarity template is equivalent to a reduct that 
includes the most significant attributes. Finding a reduct is 
similar to feature selection problem. All reducts of a 
dataset can be found by constructing a kind of 
discernibility function from the dataset and simplifying it. 
Unfortunately, it has been shown that finding minimal 
reduct or all reducts are both NP-hard problems. Some 
heuristics algorithms have been proposed. Hu gave an 
algorithm using significant of attribute as heuristics [4]. 
Starzyk used strong equivalence to simplify discernibility 
function [5]. Some algorithms using genetic algorithm 
have been also proposed. However, there are no universal 
solutions. It’s still an open problem in rough set theory. 

Rough sets theory has highly suitable and appropriate 
constructs for identifying the properties that best define 
similarity for estimating application runtime. A similarity 
template must include attributes that significantly affect 
the runtime and eliminate those that don't. This ensures 
that the criteria with which we compare applications for 
similarity have a significant bearing on determining 
runtime. Consequently, applications that have the same 
characteristics with respect to these criteria will have 
similar runtimes. 

In this paper, we propose a feature ranking mechanism 
which can be used in fast heuristic reduct computation. 

Based on the mechanism, a sampling method for finding 
approximate reduct is presented. 

 
 

3.2 Approximate Reduct Algorithm 
In this section, we first recall necessary rough set notions 
[6] used in this section, then introduces the feature ranking 
mechanism, and finally present the sampling approximate 
reduct algorithm. 
 
 
3.3 Related Rough Set Concepts 
Definition 1 (information system) An information system 
is an ordered pair S=(U, A∪{d}), where U is a non-empty, 
finite set called the universe, A is a non-empty, finite set of 
conditional attributes, d is a decision attribute. A∩{d} =Φ. 
The elements of the universe are called objects or 
instances. 

Information system contains knowledge about a set of 
objects in term of a predefined set of attributes. The set of 
objects is called concept in rough set theory. In order to 
represent or approximate these concepts, an equivalence 
relation is defined. The equivalence classes of the 
equivalence relation, which are the minimal blocks of the 
information system, can be used to approximate these 
concepts. 

Definition 2(Indiscernibility relation) Let S=(U,A∪
{d}) be an information system, every subset B⊆A defines 
an equivalence relation IND(B),called an indiscernibility 
relation,defined as IND(B)={(x,y)∈U×U:a(x)=a(y) for 
every a∈ B}. 

Definition 3 (Positive region) Given an information 
system S= (U,A∪{d}), let X⊆U be a set of objects and 
B⊆A a selected set of attributes. The lower approximation 
of X with respect to B is B*(X)={x∈U:[x]B ⊆ X}. The 
upper approximation of X with respect to B is 
B*(X)={x∈U: [x]B∩X≠Φ}. The positive region of decision 
d with respect to B is POSB(d)=∪{B*(X):X∈U/IND(d)} 

The positive region of decision attribute with respect 
to B represents approximate quantity of B. Not all 
attributes are necessary while preserving the approximate 
quantity of the original information system. Reduct is the 
minimal set of attribute preserving approximate quantity. 

Definition 4 (Reduct) An attribute a is dispensable in 
B⊆A if POSB(d)= POSB-{a}(d). A reduct of B is a set of 
attributes B’ ⊆ B such that all attributes a∈B-B’ are 
dispensable, and POSB(d)= POSB’(d). 

There are usually many reducts in an information 
system. In fact, one can show that the number of reducts of 
an information system may be up to C

|A|/2
|A|. In order to 

find reducts, discernibility matrix and discernibility 
function are introduced. 

Definition 5 (discernibility matrix) The discernibility 
matrix of an information system is a symmetric |U|×|U| 
matrix with entries cij defined as {a∈A|a(xi)≠a(xj)} if 
d(xi)≠d(xj), Φ otherwise. A discernibility function can be 
constructed from discernibility matrix by or-ing all 
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attributes in cij and then and-ing all of them together. After 
simplifying the discernibility function using absorption 
law, the set of all prime implicants determines the set of all 
reducts of the information system. 

 
 

3.4 The feature ranking mechanism 
In a discernibility matrix, every entry represents a set of 
attributes discerning two objects. As we know, if an entry 
consists of only one attribute, the unique attribute must be 
a member of core, i.e., it has higher significance. By 
generalizing the idea, we recognize that shorter entry is 
more significant than longer ones. To make the difference 
computable, a weight w(a) is assigned to every attribute a. 
The weight is initialized to zero and recomputed 
according the following formula when a new entry C is 
arrived: 

w(ai)=w(ai)+|A|/|C| ai∈C 
where |A| is the cardinality of attribute set A of 
the information system. The formula embodies 
the following idea: 

 The more times an attribute appears in the 
discernibility, the more important the 
attribute might be.  

 The shorter the entry is, the more important 
the attributes in the entry might be. 

For example, let w(a1)=3, w(a3)=4, the system has 10 
attributes in total, and the new entry is {a1,a3}. Then 
weights after this entry can be computed: w(a1)=3+10/2=8; 
w(a3)=4+10/2=9. 

 
 

3.5 Sampling approximate reduct Algorithm 
The approximate reduct algorithm is based on the feature 
ranking mechanism and rough set concept. Generally, 
constructing a discernibility matrix requires a lot of 
memory and O(|A||U|2) time. In the worst case, a 
discernibility matrix can have up to |U|(|U|-1)/2 entries and 
thus take up huge amount of memory. When a dataset 
becomes so large that it cannot fit in memory, computing 
discernibility matrix is very difficult because lots of disk 
I/O are needed. And the computing time becomes 
unbearable. 

Sampling is an efficient way for large datasets. Due to 
the nature of sampling, it is impossible to find real reduct. 
However, approximate reduct with low error can be found 
rapidly. As we know, approximate reducts can be very 
useful in classification, for they are typically robust than 
regular reducts. 

Sampling can find satisfactory approximate reduct in 
short time. However, how to do it efficiently? Our method 
consists of two phases. Phase I is called generating phase. 
In this phase, we select several samples of original dataset 
and count frequency of every attribute using discernibility 
matrix. These frequencies are sorted for later use. Phase II 
is called testing phase. In this phase, more samples are 
used together with frequencies counted in phase I to 
produce a good approximate reduct. Fig.1 presents the 
sampling approximate reduct algorithm written in 

pseudo-code. The algorithm is designed according to the 
principle given in previous subsection. 

In phase I it seems natural to generate all reducts for 
one sample, and then gather most stable one. For large set 
of attributes, even a small number of instances, computing 
all reducts is a computationally impossible task. 

We compute weight of attributes using the feature 
ranking method in the process of generating discernibility 
matrix for every sample. After all samples are processed, 
weights of every attribute are summed. A sorting 
procedure is then employed on the weights. This ends 
Phase I. 

After phase I, an ordered list of attributes is obtained. 
The goal of phase II is to determine which attribute should 
be included in the reduct. More samples are sampled to do 
this job. First, discernibility matrix of a sample is 
computed. The attribute list is tested against the matrix. If 
result is a super-reduct (i.e., intersection with every entry 
of the matrix are not empty), the attribute with lowest 
weight is dropped from the list. Above process is repeated 
until the test fails. Last non-failed attribute list is referred 
as candidate reduct. 

The candidate reduct is then tested against another 
sample. If the test fails, the candidate reduct (i.e., the 
attribute list) falls back by one attribute. The process is 
repeated until candidate reduct passes the test. Repeat the 
process to rest of the samples. At last we get an 
approximate reduct that passes test for all testing samples. 

This phase ensure that the resulting approximate 
reduct has enough supports. 
Input: sample times γ, sample rate ε, information system 
S=(U, A∪{d}); 
Output: an attribute set Red; 
Phase I: ranking the attribute by sampling. 
Red=Φ, AttrList=Φ, w(ai)=0, weight(ai)=0, for i=1,…|A|. 
for k=1 to γ do 

S'=sample(S, ε); 
Generating discernibility matrix for S' and computing 
weight(ai) for every ai∈A 
w(ai)= w(ai)+weight(ai) for i=1,..,n. 

endfor 
AttrList=Sorting A according to w(ai); 
Phase II: test the ranked attribute list by sampling. 
S'=Sample(S, ε); 
Generating discernibility matrix M for S'. 
While (!Test(AttrList, M)) remove the attribute with 
lowest weight from AttrList; 

Add the last removed attribute back to AttrList; 
for k=2 to γ do 

S'=Sample(S, ε); 
Generating discernbility matrix M for S'. 
While (!Test(AttrList, M)) Add back the last 

removed attribute back to AttrList; 
endfor 

Red=AttrList; 
return Red 
Figure 1 Sampling for approximate reduct algorithm 

Sample(S, ε) samples S with sampling rate ε. w(a) 
sums up frequency computing by weight(a) which is 
explained before. Test(AttrList, M) tests whether AttrList 
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is a super-reduct of discernibility matrix M. If so, it returns 
true. 

Using the reduct, We can predict the data mining 
application run time. Detail information see[7,8]. 

 
 
4 Cost Model 
In the following cost model we assume that each 
input dataset is initially stored on at least a single 
machine mh, while the knowledge model extracted 
must be moved to a machine mk. Due to decisions 
taken by the scheduler, datasets may be replicated 
onto other machines, or partitioned among the 
machines composing a cluster. 

Sequential execution. Dataset Di is stored on a 
single machine mh. Task ti is sequentially executed on 
machine mj, and its execution time is eij. The 
knowledge model extracted | ( ) |i iDa must be 
returned to machine mk. We have to consider the 
communications needed to move Di from mh to mj , 
and those to move the results to mk. Of course, the 
relative communication costs involved in dataset 
movements are zeroed if either h = j or j = k. The total 
execution time is thus: 

| | / | ( ) | /ij i hj ij i i jkE D b e D bα= + +  

Parallel execution. Task ti is executed in parallel 
on a cluster clJ , with an execution time of eiJ. In 
general, we have also to consider the 
communications needed to move and partition Di 
from machine mh to cluster clJ , and to return the 
results | ( ) |i iDa to machine mk. Of course, the 
relative communication costs are zeroed if the dataset 
is already distributed, and is allocated on the 
machines of clJ.  The total execution time is thus: 

| | / | | | ( ) | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑
 

Finally, consider that the parallel algorithm we are 
considering requires coallocation and coscheduling 
of all the machines of the cluster. A different model 
of performance should be used if we adopted a more 
asynchronous distributed DM algorithm, where first 
independent computations are performed on distinct 
dataset partitions, and then the various results of 
distributed mining analysis are collected and 
combined to obtain the final results. 

To optimize scheduling, our mapper has to 
forecast the completion time of tasks. To this end, the 
mapper has also to consider the tasks that were 
previously scheduled, and that are still queued or 
running. Therefore, in the following we analyze the 
actual completion time of a task for the sequential 
case. A similar analysis could be done for the parallel 
case. Let Cij be the wall-clock time at which all 

communications and sequential computation 
involved in the execution of ti on machine mj 
complete. To derive Cij we need to define the starting 
times of communications and computation on the 
basis of the ready times of interconnection links and 
machines. Let shj be the starting time of the 
communication needed to move Di from mh to mj , sj 
the starting time of the sequential execution of task ti 
on mj, finally, sjk the starting time of the 
communication needed to move ( )i iDa  from mj to 
mk. From the above definitions: 

1 2 1 2
| | | ( ) |( )i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +
 

Where 
1 2

| |( ) 0, ( ) 0i
j hj jk j ij

hj

Ds s s s e
b

d d= - + ³ = - + ³  

If jm is the specific machine chosen by our 

scheduling algorithm for executing a task ti, where T 
is the set of all the tasks to be scheduled, we define 

i ijC C= . The makespan for the complete scheduling 

is thus defined as max ( )
it T iCΞ , and its minimization 

roughly corresponds to the maximization of the 
system thoughput. 

 
 

5 task scheduling 
The cost model represent the response time for 
mining a dataset at different available servers. The 
cost formula for a given server is dependent on the 
location of the server (i.e. whether the server is 
located at the client’s site or at the service provider’s 
site), since this determines the adopted mining 
strategy , the location of the dataset, the estimated 
computation time at the server and the waiting time at 
the server. Thus, having developed the estimates and 
the cost matrix for DDM tasks, the question of task 
allocation for minimising the response time becomes 
a Generalised Assignment Problem (GAP)[9], which 
is a well-known class of NP-complete problems. 

Generalised Assignments Problems have been 
widely studied in the literature and are described as 
the task of optimally assigning n tasks to m 
processors (or n jobs to m agents). Given the profit pij 
and the amount of resource wij for the assignment of 
task j to processor i and the total resource ci available 
for each processor I, the objective is to assign the 
tasks such that the total profit P is maximised as 
follows: 

1 1

Maximise 
m n

ij ij
i j

P p x
= =

= ε ε          (1) 

The above maximisation is subject to the 
following constraints: 
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1. 
1

, {1,2,..., }
m

ij ij i
i

w x c i M m
=

£ Ξ =ε  

2. 
1

1, {1,2,..., }
m

ij
i

x j N n
=

= Ξ =ε  

3. 
0 or 1, ,  where

1 if task j is assigned to i
 

0 otherwise

ij

ij

x i M j N

x

= Ξ Ξ
µοο= νοοξ

 

The first constraint specifies that the amount of 
resource required for assigning a task to a processor 
must be less than the total resource available for that 
processor, the second constraint specifies that a task 
is assigned to exactly one processor and the third 
constraint specifies the values of xij. The 
minimisation version of the problem is expressed in 
terms of the cost cij of assigning a task j to a processor 
i and the objective is to minimise the overall cost C as 
follows: 

1 1

 
m n

ij ij
i j

Minimise C c x
= =

= ε ε  

The minimisation process is subject to the same 
constraints as the maximisation process. Generalised 
Assignment Problems are known to be NP-complete 
and do not necessarily have a feasible solution owing 
to constraint (2) above. However, it has been shown 
in [9] that an equivalent and feasible solution is 
possible by relaxing or eliminating this constraint. 
Several exact and approximate algorithms have been 
proposed in the literature for GAP problems 
including [10]. Exact solutions involve variations of 
branch-and-bound algorithms [9]. We note that given 
the typical size of a cost matrix for a DDM task in 
grid environment is not a high-dimensional matrix, it 
does not preclude exact algorithms. However, to 
preserve generality to cope with larger matrices we 
have adopted an approximate solution, which is good 
enough and is not as computationally expensive as an 
exact solution. 

In this paper, we apply an approximate 
technique that has two phases to determine the task 
allocation strategy from the cost model. We first use 
the polynomial-time algorithm proposed by Martello 
and Toth [10] to determine the initial allocation of 
tasks and then apply a Tabu search to improve the 
initial allocation by exchanges. In the following 
discussion, we formally represent the requirement of 
determining the minimum response time strategy 
from the cost matrices in GAP terms and present our 
application of an initial allocation search followed by 
a local search to identify the appropriate task 
allocation strategy. 

Given a mxn cost matrix CM, the elements 

cmijΞCM, where i=1, 2, …, m and j=1, 2, …, n 
represent the composite response time (having 
considered both the communication and computation 
times) for mining a dataset originally located at 
server Sj at server Si. Therefore in GAP terms the 
servers represent “processors” and the datasets 
represent “tasks”. The “cost” of processing a task (i.e. 
the dataset) j at a processor (i.e. the server) i is 
represented as the element cmij in the cost matrix CM. 
The cost matrix enumerates this cost with respect to 
all the processors that are available including those at 
the client’s site and at the service provider’s site. The 
selection of the minimum response strategy from cost 
matrix can be expressed using equation 1. 

We relax the constraint 

1

, {1,2,..., }
m

ij ij i
i

w x c i M m
=

£ Ξ =ε that is imposed 

on traditional GAP problems, since the variables 
represented as “amount of resource required for 
assigning a task to a processor” and the “total 
resource available for that processor” are not relevant 
in our computation. The a priori estimates of the 
response time form the “cost” in the cost models, 
thereby eliminating the need to include separate 
“resources required” and “total resources available” 
criteria into the equation. For example, the cost 
elements specify the estimated time to process a task 
at a server. The case of the server being currently 
unavailable is modelled using the “wait time” 
variable (W), which in turn is derived from the 
estimates for the tasks that have been currently 
assigned to that processor. The question is how to 
determine the minimum time to perform the 
requested task given the current computational 
resources that are available. 

Having formulated our task allocation problem 
in GAP terms, we now discuss our approach to 
determining the minimum response time strategy 
from the cost matrix. We first apply the 
polynomial-time, approximate algorithm developed 
by [10] to perform an initial allocation of datasets to 
servers. For the sake of completeness we include an 
overview of the algorithm [10] adopted in this 
dissertation. The algorithm operates by first 
computing a measure of desirability (fij) for assigning 
a dataset j to server i, where j=1, 2, …, n and i=1, 
2, …, m and uses this measure to determine the initial 
allocations. The steps of the algorithm are as follows: 

1. Let fij be the measure of desirability for 
assigning dataset j to server i, where j=1, 2, …, n and 
i=1, 2, …, m. 

2. Since the the cost cmijΞCM represent the 
estimated response times and the objective is to 
minimise the response time, the desirability of 
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allocating a dataset to a server increases as the 
estimated response time decreases. It is evident that 
there is an inverse relationship between the cost 
elements of the matrix and the desirability factor. 
Therefore, we compute the desirability function for 
the elements of the cost matrix as fij = 1/cmij (note: 
cmij >=0, since the estimated response time can never 
be zero or negative). 

3. The allocation is performed by iteratively 
considering all the unassigned datasets, and 
determining the dataset j* that has the maximum 
difference between the largest fij and the second 
largest fij (iΞ{1, 2, .., m). 

4. The dataset j* is then assigned to the server for 
which fij* is maximum. 

At the end of the initial task allocation phase, 
each dataset is assigned to a server that is optimal in 
that it has the minimum response time for that dataset. 
However, at this stage the optimisation is local to that 
dataset and this solution may not represent a global 
minimisation of response time. For example, two or 
more datasets might be assigned to a particular server 
since that provides the best response time for those 
datasets. While individually each dataset has been 
assigned to the server that provides the minimum 
response time, it is possible that having the datasets in 
question assigned to the same server does not result in 
the overall minimisation of the response time. 
Therefore, in some instances a sub-optimal allocation 
for individual datasets may lead to further reduction 
in the overall response time. The second phase of the 
task allocation strategy applies a Tabu search to 
improve the initial task allocation through local 
exchanges. The Tabu search that we use belongs to 
the class of strict Tabu searches known as Reverse 
Elimination Tabu searches [11]. 

 
 

6 conclusion 
In summary, we have developed reduct algorithm and 
a cost model for a priori estimation of the 
communication and computation response time in 
grid environment. A sampling method for finding 
approximate reduct is presented. The approximate 
reduct algorithm is based on a feature ranking 
mechanism. We have discussed the task allocation 
strategy for minimising the response time using the 
estimates. The estimation technique presented in this 
paper is generic and can be applied to others 
optimization problems. 
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