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Abstract: - In this contribution Newton techniques based on Numerical Differentiation (ND), Direct Approach 
(DA) and Difference Matrix (DM) procedures are applied for the computation of the periodic steady state 
solution of single phase nonlinear electric networks containing magnetizing branches of transformers and 
alternating current arc furnaces. The results obtained with the Newton methods are compared in terms of 
computational effort required to obtain the steady state solution and their related reliability towards convergence. 
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1   Introduction 
 
The dynamic behaviour of an practical electric power 
system can be represented by a state space equation. 
The solution process can be achieved through the 
application of a conventional Brute Force (BF) 
numerical solution method e.g. Euler’s algorithm, 
Runge-Kutta or trapezoidal rule. However in cases 
where the electric power system components have an 
intrinsic poor damping the transient or steady state 
solution is obtained after considerable computation 
time. In [1] Newton methods are proposed, that allow 
a fast convergence of the state variables to the limit 
Cycle. These Newton techniques are based on 
Numerical Differentiation (ND), Direct Approach 
(DA) and Exponential Matrix (EM) procedures [1]. 
They have been applied to the efficient steady state 
solution of circuits containing TCRs [2], arc furnaces 
[2], TCSC [3] among other commutated devices. 
Besides, they have been used with parallel processing 
techniques based on Multithreading [4] and PVM [5]. 
A recently developed Newton technique based on a 
Difference matrix [6] allows the computation of 
nonlinear electric circuits. In this contribution, two 
nonlinear electric circuits are solved using the ND, 
DA and DM methods in order to compare its 
robustness and efficiency to obtain the steady state 
solution. 
 
2 Newton Methods 
 
The behavior of nonlinear components or loads can 
be described in the time domain by the nonlinear 
Ordinary Differential Equation (ODE), 

 

( , )x f x t=
i

     (1) 
 
if (1) has periodic time-varying parameters, then 
 
( ) ( ), ,f x t mT f x t+ =      (2) 

 
The integration of (2) is carried-out over time periods 
T. After m periods the state xn is obtained, an 
additional period results in xm+1, this is called the 
Base Cycle [7]. In [7] m = 7 is suggested for poorly 
damped systems and m = 4 for the opposite case. If a 
disturbance on the trajectory is assumed so that x0 is 
perturbed as x0+∆x0, or more generally 
( ) ( ) ( )x t x t x t→ +∆ , then equation (1) takes the form 

 ( , )x x f x x t+ ∆ ≈ + ∆
i i

    (3) 
 
The linearization of (3) with respect to x taking the 
first order terms in the Taylor series results in 
 

( ) ( ), ,xx x f x t D f x t x+ ∆ ≈ + ∆
i i

    (4) 

 
Since the underline part of equation (4) is satisfied by 
(1) then (4) can be written as  
 

( )x J t x∆ ≈ ∆
i

      (5) 
 
where the Jacobian is given by 
 
( ) ( ),xJ t D f x t=     (6) 
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where xD  determine the partial derivatives  of  
( ),f x t  with respect to x. Thus, a time-varying 

Jacobian J(t) has been obtained. 
 
The solution of (5) has the form 
 

( ) ( ) 0x t t∆ = Φ ∆x     (7) 
 
where 
 

( ) ( )
0

T
J t dt

t e∫Φ =      (8) 
 
2.1 Extrapolation of the Limit Cycle 
 
The extrapolation of the solution to the Limit Cycle 
[9] is achieved with the recursive equation [1], 
 

( )iii xxCxx −+= +∞ 1     (9) 
 
where, 
 

( ) 1C I −= −Φ      (10) 
 
x∞ state variables at limit cycle. 
xi state variables at the beginning of the base                       
cycle [1]. 

  

xi+1 state variables at the end of the base cycle. 
C, Φ, I, iteration, identification and unit matrix 
respectively. 
 
The solution of (9) implies a quadratic convergence 
process if Φ and C are updated for each evaluation of 
and linear for their single or partial iterative 
evaluation [1]. The matrix Φ is of  order, where n 
is the number of state variables. Usually J(t) can be 
analytically obtained, but this is not always the case, 
in special with highly nonlinear or commutated 
components. Alternatively Φ can be obtained by 
columns by the sequential perturbation of state 
variables 

nn ×

 
2.1 Numerical Differentiation (ND) 
 
In this method a sequential perturbation of the form  

 is applied where ε is a small number, e.g. 10ii ex ε+ -6 
p.u. and   is the column i of the unit matrix I. 
Figure 1 illustrates the identification process of Φ 
used by the Numerical Differentiation (ND) method 
[1].  
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Figure 1. Numerical Differentiation Method 

 
2.2 Direct Approach (DA) 
 
An alternative to the ND procedure is the use of the 
Direct Approach methodology; it consist of the 
integration of ( ) xtJx ∆=∆  with initial vectors   being 
sequentially the columns of the identity matrix I, 
generating as a result the matrix Φ. The fundamental 
steps on which the DA method is based are detailed 
in Figure 2. 
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Figure 2. Direct Approach Method 

 
2.3 Difference Matrix Technique (DM) 
 
A set of Ordinary Differential Equations (ODEs) of 
the form given by equation (1), can be represented 
into a N-dimensional representation as follows [6] 
 
 ( ),jk k k kD x f x t=     (11) 
 
where N is an odd value and Djk is calculates as 
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( )

( )

0
1

2sin
kj

j k

D j k
j k

N
π

=⎧
⎪ −⎪= ≠⎨

⎛ ⎞⎪ −⎜ ⎟⎪ ⎝ ⎠⎩

   (12) 

 
This N-dimensional representation allows a 
discretization of Equation (1) generating a set of 
algebraic equations. 
 
Equation (11) can be represented in compact form as: 
 

=Dx f       (13) 
 
The solution of (11) can be obtained with the 
application of the Newton-Raphson algorithm, using 
the initial conditions vector x0, obtained with the 
application of the Fourth Order Runge-Kutta method. 
 

 
( )
( )1 '

i
i i

i

f x
x x

f x+ = −     (14) 

 
The vector of initial conditions required by the 
Runge-Kutta method is  
 
    (15) [0 0 0 0 T

kx = " ]
 
whereas the time vector is 
 
 [ ]/ 2 / 3 / / T

kt T N T N T N kT N= "   (16) 
 
Figure 3 illustrates the solution process associated 
with the application of the DM technique.  
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Figure 3. Difference Matrix Method 

 
Sparsity Techniques Applied to the Difference Matrix 
Technique 
 
Because the sparse characteristic associated with the 
formulation of (13), sparsity techniques are 
incorporated to increase the computational efficiency 
of the iterative solution process. Since there is no 
change of topology during the iterative process of 
solution of (13), the ordering and factorization of (13) 
are carried-out only once, in the first iteration, and the 
resulting factors are used throughout the iterative 
solution process. 
 
3 Test Cases 
 
The described Newton methodologies are now 
applied to obtain the periodic steady state solution of 
the nonlinear electric circuits of the case studies to be 
presented. The results are compared in terms of the 
computational effort required by each Newton 
technique to obtain the steady state solution. 
 
Case 1: 
 
The circuit illustrated in Figure 4 consists of an 
electric arc furnace connected to a voltage source 
across a transmission line represented by a simplified 
r-l branch. The circuit can be modeled by means of 
four ODE’s. The arc furnace is represented by two 
ODE’s detailed in Appendix A. The source is 
represented by a sinusoidal function of 1.0 p.u. of 
amplitude. In all cases a convergence criterium of 10-

10 p.u. is used to obtain the steady state solution. 
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Figure 4. Test case 1 

 
Table 1 illustrates the application of the four 
methodologies to obtain steady state solution of 
electric system illustrated by Fig 3. Column 1 gives 
the number of full cycles needed to obtain the steady 
state and columns 2-5 the absolute errors between 
successive estimations of the unknown state 
variables. Note that 188 full cycles (periods of time) 
are needed to reach the steady state solution. With the 
BF method, whereas the ND and DA methods require 
48. This represents 25 % of the total number of cycles 
needed by the BF method. To obtain the numerical 
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solution with the four methods 512 time steps per 
period were used. Four iterations are required by the 
Newton methods to meet the selected convergence 
criterium.   
 
Table 1. Maximum errors during the convergence process 

using BF, ND, DA and DM techniques, Test Case I 

Maximum Mistake Number 
of full 
cycles BF ND DA DM 

1 7.6816E+00 7.6816E+00 7.6816E+00 7.6816E+00
2 1.0513E+00 1.0513E+00 1.0513E+00 1.0513E+00
3 3.4924E-01 3.4924E-01 3.4924E-01 3.4924E-01

#  #  #  #  #  
8 2.6290E-03 2.6290E-03 2.6290E-03 2.6290E-03

18 2.8827E-03 4.8388E-03 4.8388E-03 1.7702E-01
28 4.5487E-04 1.0429E-03 1.0429E-03 7.8717E-04
38 7.2121E-05 1.2488E-06 1.2479E-06 1.9815E-06
48 1.1439E-05 2.6645E-14 1.7764E-14 7.3300E-12

#  #     
188 9.5487E-11    

 
Case 2: 
 
The electrical system shown in Figure 5 contains 3 
transmission lines, two magnetizing branches, one 
generator, two capacitors banks and one electric arc 
furnace. The dynamics of the electric system is 
represented by a set of nine ODE’s in which fluxes 
through lines, flux in the arc furnace, capacitor 
voltages and arc furnace radius have been selected as 
state variables. 
  

1ψ1ψ

 
Figure 5. Test case 2 

 
Table 2 illustrates the number of full cycles required 
by the BF, ND and DA methods to reach the steady 
state solution. The number of cycles required by the 
ND and DA methods represent the 42.85% of the 
those needed by the BF method. An additional 
iteration is required by the DM method. 
 

Table 2. Maximum errors during the convergence process 
of the  BF, ND, DA and DM techniques, Test Case II 
Cycles BF ND DA DM 

1 8.6655E+00 8.6655E+00 8.6655E+00 8.6655E+00
2 9.8720E-01 9.8720E-01 9.8720E-01 9.8720E-01
3 3.3283E-01 3.3283E-01 3.3283E-01 3.3283E-01
#  #  #  #  #  
8 1.9843E-02 1.9843E-02 1.9843E-02 1.9843E-02

18 2.8624E-03 4.6431E-03 4.6430E-03 4.2029E-01
28 4.5231E-04 7.0651E-05 7.0648E-05 6.1948E-02
38 7.1745E-05 1.3098E-10 1.2453E-10 6.3007E-04
48 1.1384E-05 3.5388E-15 3.1560E-15 6.5624E-07
58 1.8065E-06     1.2000E-13

#  #     
112 8.7051E-11       

 
The Brute Force procedure requires 1.05 seconds to 
reach the steady state whereas the DN and DA 
methods 0.19 and 0.2 seconds, respectively, 
representing the 18% and 19 % respectively, of the 
time consuming by the BF. The DM requires 1421 
seconds without sparsity techniques and 398 using 
sparsity techniques. These values represent 1353 and 
379 times the computing time required by the BF. 
The advantage of applying is clearly evident since the 
computation time is reduced to 28% of the needed by 
the DM method without sparsity techniques used. 
 
Figure 6 illustrates selected waveforms and their 
harmonic spectra. These results were obtained using 
the DM technique. The waveforms obtained by the 
application of the ND and DA methods are identical 
in steady state. 
 
Figures 6(a) and 6(b) show the flux waveform and its 
harmonic spectrum for the flux 1. It can be noticed 
that the third harmonic represents the 3.0 % of the 
fundamental and the higher order harmonics are 
smaller than 0.7% of the fundamental. Figures 6(c) 
and 6(d) illustrate the waveform and the harmonic 
spectrum of the arc furnace flux respectively. The 
third harmonic is 1.8% of the fundamental whereas 
the fifth harmonic the 0.8%. Finally Figure 6(e) 
illustrates the electric arc furnace radius vs time. 
Figures 6(a) and 6(c) indicate the moment when a 
Newton method is applied. The harmonic 
components are obtained with the Discrete Fast 
Fourier Transformation algorithm [9]. 
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Application of the Newton 
Technique

Application of the Newton 
Technique

 
(a) 

 
(b) 

Application of the
Newton Technique

 
(c) 

 
(d) 

Application of the
Newton Technique

 
(e) 

Figure 6. State variables vs. time and harmonic spectrum 
(a) ψ1 vs time, (b) harmonic spectrum 

(c)  ψarc vs  time, (d) harmonic spectrum 
(e) arc furnace radius. 

 
The algorithms were coded in C language and the 
digital simulations executed in a Pentium IV, 3.06 
GHz personal computer. GNUPLOT [10] was used 
for the graphical representation of the state variables 
and their harmonic spectrum.  
 
5 Conclusion 
 
This investigation has detailed three Newton 
methods, Numerical Differentiation, Direct Approach 
and Difference Matrix methods for the periodic 
steady state solution of nonlinear electric systems.   
 
It has been observed that the methods are robust to 
obtain the steady state solution under non-sinusoidal 
conditions. On average, the ND and DA methods  
require less than 43% of the total number of cycles 
required by the BF method.  
 
Regarding the computation effort the ND and DA 
methods are 5.52 and 5.25 times respectively, faster 
than the BF method and 7105 times than the DM 
method. The high dimension resulting in the DM 
method resulted in the iterative solution being on 
average 7100 times slower than the ND and DA 
methods and 1353 times slower than BF method. 
Using sparsity techniques the DM is 2094 and 1990 
and 379 timer slower than the ND, DA and BF 
methods, respectively. 
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Appendix A. Arc Furnace Model 
 
Based on the model the arc furnace presented in [8], 
the arc furnace is represented by two differential 
equations; the first one represents the arc voltage as, 
 

( )
2

2
3

m h

h

dv k r
dt L

ψ− + ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
     (17) 

 
and the electric arc furnace radius is obtained as,  
 

 ( )3 13 1

2 2

m narc

arc

k kdr r
dt k L k

ψ− + r −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
−    (18)  

 
where constants k1, k2 and k3 are associated with 
power balance equation for the arc. 
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