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Abstract: - Due to the distributed nature of data and the need for high performance, it makes Grid a suitable 
environment for distributed data mining. Since distributed data mining applications are typically data intensive, 
one of the main requirements of such a DDM Grid environment is the efficient workflow scheduling. We 
propose an architecture for a Knowledge Grid scheduler that results in the minimal response time. The 
experimental result demonstrates that the architecture has good performance. 
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1   Introduction 
The Grid has emerged recently as an integrated 
infrastructure for high performance distributed 
computation. Data mining is the process of 
autonomously extracting useful information or 
knowledge from large data stores or sets. Because of 
the importance of data mining and grid technologies, 
it is very useful to develop data mining environments 
on grid platforms by deploying grid services for the 
extraction of knowledge from large distributed data 
repositories. The effort that has been done in the 
direction of data intensive applications on the grid is 
the Data Grid project that aims to implement a data 
management architecture based on two main 
services: storage system and metadata management 
[1]. This project is not concerned with data mining 
issues, but its basic services could be used to 
implement higher-level grid services such as the ones 
we intend to develop. Motivated by these 
considerations, in [2] a specialized grid infrastructure 
named Knowledge Grid (K-Grid) has been proposed. 
This architecture was designed to be compatible with 
lower-level grid mechanisms and also with the Data 
Grid ones. The authors subdivide the K-Grid 
architecture into two layers: the core K-grid and the 
high level K-grid services. The former layer refers to 
services directly implemented on the top of generic 
grid services, the latter refers to services used to 
describe, develop and execute parallel and distributed 
knowledge discovery (PDKD) computations on the 
K-Grid. Moreover, the layer offers services to store 
and analyze the discovered knowledge.      

We concentrate our attention on the K-Grid core 
services, i.e. RAEM (Resource Allocation and 
Execution Management) services. The RAEM 
service provides a specialized broker of Grid 
resources for DDM computations: given a user 

request for performing a DM analysis, the broker 
takes allocation and scheduling decisions, and builds 
the execution plan, establishing the sequence of 
actions that have to be performed in order to prepare 
execution, actually execute the task, and return the 
results to the user. The execution plan has to satisfy 
given requirements (such as performance and 
response time) and constraints (such as data 
locations, available computing power, storage size, 
memory, network bandwidth and latency). Once the 
execution plan is built, it is passed to the Grid 
Resource Management service for execution. 
Clearly, many different execution plans can be 
devised, and the RAEM service has to choose the one 
which maximizes or minimizes some metrics of 
interest (e.g. throughput, average service time). 

Data mining applications running on the K-Grid 
can be parallelized. Such, we can parallelize single 
data mining application to several subtasks; several 
tasks may be combined to form a workflow. In this 
paper, we propose a workflow scheduling solution 
for those subtasks to minimize total response time. 
The rest of this paper is organised as follows: in 
section 2, we present how to map a data mining 
application to DAG. In section 3, we present the 
architecture for a Knowledge Grid scheduler that 
results in the minimal response time. In section 4, we 
conduct experiments to evaluate the architecture. 
Finally section 5 concludes this paper. 

 
 

2 Decomposing Data Mining 
Application to DAG 
K-Grid services can be used to construct complex 
Problem Solving Environments, which exploit DM 
kernels as basic software components that can be 
applied one after the other, in a modular way. A 



general DM task on the K-Grid can therefore be 
described as a Directed Acyclic Graph (DAG) whose 
nodes are the DM algorithms being applied, and the 
links represent data dependencies among the 
components. In this section, we present how to map 
data mining application to DAG. 
 
 
2.1 Modeling Data Mining Applications 
We surveyed three major classes of data mining 
applications, namely association rule mining, 
classification rule mining, and pattern discovery in 
combinatorial databases. We note the resemblance 
among the computation models of these three 
application classes.  

A task is the main computation applied on a 
pattern. Not only are all tasks of any one application 
of the same kind, but tasks of different applications 
are actually very similar. They all take a pattern and a 
subset of the database and count the number of 
records in the subset that match the pattern. In the 
classification rule mining case, counts of matched 
records are divided into c baskets, where c is the 
number of distinct classes. 
     The similarities among the specifications of these 
applications are obvious, which inspired us to study 
the similarities among their computation models. 
They usually follow a generate-and-test 
paradigm-generate a candidate pattern, then test 
whether it is any good. Furthermore, there is some 
interdependence among the patterns that gives rise to 
pruning, i.e., if a pattern occurs too rarely, then so 
will any superpattern. These interdependences entail 
a lattice of patterns, which can be used to guide the 
computation.  

In fact, this notion of pattern lattice can apply to 
any data mining application that follows this 
generate-and-test paradigm. We call this application 
class pattern lattice data mining. In order to 
characterize the computation models of these 
applications more concretely, we define them more 
carefully in Section 2.2. 

 
 

2.2 Defining Data Mining Applications 
1. A database D. 
2. Patterns and a function len(pattern p) which 

returns the length of p. The length of a pattern is a 
non-negative integer. We use {} to represent 
zero-length patterns in association rule mining. 

3. A function goodness(pattern p) which returns a 
measure of p according to the specifications of the 
application. 

4. A function good(p) which returns 1 if p is a 
good pattern or a good subpattern and 0 otherwise. 
Zero-length patterns are always good. 

The result of a data mining application is the set 
of all good patterns. If a pattern is not good, neither 
will any of its superpatterns be. In other words, it is 
necessary to consider a pattern if and only if all of its 
subpatterns are good. 

Let us define an immediate subpattern of a pattern 
q to be a subpattern p of q where len(p) = len(q)-1. 
Conversely, q is called an immediate superpattern of 
p. 

Except for the zero-length pattern, all the patterns 
in a data mining problem are generated from their 
immediate subpatterns. In order for all the patterns to 
be uniquely generated, a pattern q and one of its 
immediate subpatterns p have to establish a 
childparent relationship (i.e., q is a child pattern of p 
and p is the parent pattern of q). Except for the 
zero-length pattern, each pattern must have one and 
only one parent pattern. For example, in sequence 
pattern discovery, *FRR* can be a child pattern of 
*FR*; in association rule mining, {2, 3, 4} can be a 
child pattern of {2, 3}; and in classification rule 
mining, (C = c1)^(B = b2)^(A = a1) can be a child 
pattern of (C = c1)^(B = b2). 

 
 

2.3 Solving Data Mining Applications 
Having defined data mining applications as above, it 
is easy to see that an optimal sequential program that 
solves a data mining application does the following: 

1. generates all child patterns of the zero-length 
pattern; 

2. computes goodness(p) if all of p's immediate 
subpatterns are good; 

3. if good(p) then generate all child patterns of p; 
4. applies 2 and 3 repeatedly until there are no 

more patterns to be considered. 
Because the zero-length pattern is always good 

and the only immediate subpatterns of its children is 
the zero-length pattern itself, the computation starts 
on all its children, which are all length 1 patterns. 
After these patterns are computed, good patterns 
generate their child sets. Not all of these new patterns 
will be computed-only those whose every immediate 
subpattern is good will be. 

 
 

2.4 Mapping data mining application to 
DAG. 

We propose to use a directed acyclic graph (dag) 
structure called exploration dag (E-dag, for short) to 
characterize pattern lattice data mining applications. 



We first describe how to map a data mining 
application to an E-dag.  

The E-dag constructed for a data mining 
application has as many vertices as the number of all 
possible patterns (including the zero-length pattern). 
Each vertex is labeled with a pattern and no two 
vertices are labeled with the same pattern. Hence 
there is a one-to-one relation between the set of 
vertices of the E-dag and the set of all possible 
patterns. Therefore, we refer to a vertex and the 
pattern it is labeled with interchangeably. 

There is an incident edge on a pattern p from 
each immediate subpattern of p. All patterns except 
the zero-length pattern have at least one incident 
edge on them. The zero-length pattern has an 
outgoing edge to each pattern of length 1. Figure 1 
shows an E-dag mapped from an association rule 
mining application. 

 
Figure 1: A complete E-DAG for an association 
rule mining application on the set of items {1, 2, 
3, 4}. 
 
 
3 Knowledge Grid Scheduler 
 
3.1 serialization process 
We consider that the basic building blocks of a DM 
task are algorithms and datasets. They can be 
combined in a structured way, thus forming a DAG. 
DM components correspond to a particular algorithm 
to be executed on a given dataset, provided a certain 
set of input parameters for the algorithm. We can 
therefore describe each DM components L with the 
triple: L = (A, D, {P}). Where A is the data mining 
algorithm, D is the input dataset, and {P} is the set of 
algorithm parameters. For example if A corresponds 
to “Association Mining”, then {P} could be the 
minimum confidence for a discovered rule to be 

meaningful. It is important to notice that A does not 
refer to a specific implementation. We could 
therefore have more different implementations for 
the same algorithm, so that the scheduler should take 
into account a multiplicity of choices among 
different algorithms and different implementations. 
The best choice could be chosen considering the 
current system status, the programs availability and 
implementation compatibility with different 
architectures. 

Scheduling DAGs on a distributed platform is a 
non-trivial problem which has been faced by a 
number of algorithms in the past. See [3] for a review 
of them. Although it is crucial to take into account 
data dependencies among the different components 
of the DAGs present in the system, we first want to 
concentrate ourselves on the cost model for DM tasks 
and on the problem of bringing communication costs 
into the scheduling policy. For this reason, we 
introduce in the system an additional component that 
we call serializer (Figure 2), whose purpose is to 
decompose the tasks in the DAG into a series of 
independent tasks, and send them to the scheduler 
queue as soon as they become executable w.r.t. the 
DAG dependencies. 

 
Figure 2 Serializer 

Such serialization process is not trivial at all and 
leaves many important problems opened, such as 
determine the best ordering among tasks in a DAG 
that preserve data dependencies and minimizes 
execution time. 

Nevertheless, at this stage of the analysis, we are 
mainly concerned with other aspects in the system, 
namely the definition of an accurate cost model for 
single DM tasks and the inclusion of communications 
into the scheduling policy. 

 
 

3.2 Cost Model 
The following cost model assumes that each input 
dataset is initially stored on a single machine mh, 
while the knowledge model extracted must be moved 
to a machine mk. Due to decisions taken by the 
scheduler, datasets may be moved to other machines 
and thus replicated, or may be partitioned among 
diverse machines composing a cluster for parallel 
execution. Therefore, the scheduler has to take into 
account that several copies (replicated or distributed) 
of a dataset may exist on the machines of its Grid.  



Sequential execution. Suppose that the whole 
dataset is stored on a single machine mh. Task ti is 
executed sequentially by a code running on machine 
mj, with an execution time of eij . In general we also 
have to consider the communications needed to move 
Di from machine h to machine mj, and the further 
communications to move the results | ( ) |i iDa to 
machine mk. The total execution time is thus:  

| | / | ( ) | /ij i hj ij i i jkE D b e D bα= + +  

Of course, the relative communication costs 
involved in dataset movements are zeroed if either 
h=j or j = k. 

Parallel execution. Task ti is executed in parallel 
by a code running on a cluster clJ , with an execution 
time of eiJ. In general, we have also to consider the 
communications needed to move Di from machine mh 
to cluster clJ, and to move the results | ( ) |i iDa to 
machine mk. The total execution time is thus: 

| | / | | | ( ) | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑
 

Of course, the relative communication costs are 
zeroed if the dataset is already distributed, and is 
allocated on the machines of clJ. 

Performance metrics. Eij and EiJ are the expected 
total execution times of task ti when no load is present 
in the system. When load is present on machines and 
networks, scheduling will delay the start and thus the 
completion of a task. In the following we will analyze 
the actual completion time of a task for the sequential 
case. A similar analysis could be done for the parallel 
case. 

Let Cij be the wall-clock time at which all 
communications and sequential computation 
involved in the execution of ti complete. To define Cij 
we need to define the starting times of 
communications and computation. Let shj be the start 
time of communication needed to move the input 
dataset from machine h to machine j, let sj be the start 
time of the sequential execution of task ti on machine 
j, and, finally, let sjk be the start time of 
communication needed to move the knowledge result 
model extracted from machines j to machine k. From 
the above definitions: 

1 2 1 2
| | | ( ) |( )i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +
 

Where, 
1 2

| |( ) 0, ( ) 0i
j hj jk j ij

hj

Ds s s s e
b

d d= - + ³ = - + ³  

So, if Ai is the arrival time of task ti, and ti is the 
only task in execution on the system, then the optimal 
completion time of the task on machine mj is: 

ij i ijC A E= +  

Suppose that jm  is the specific machine chosen 

by our scheduling algorithm for executing a task ti. 

Let i ijC C=  and i ijC C= . Let T be the set of tasks 

to be scheduled. The makespan for the complete 
scheduling is defined as max ( )

it T iCΞ , and measures 
the overall thoughput of the system. 

 
 

3.3 Predicting DM Tasks Execution Time 
Data mining application computation times depend 
on many factors: data size, specific mining 
parameters provided by users and actual status of the 
Grid etc. Moreover, the correlations between the 
items present in the various transactions of a dataset 
largely influence the response times of data mining 
applications. Thus, predicting its performance 
becomes very difficult. 

Our application runtime prediction algorithms 
operate on the principle that applications with similar 
characteristics have similar runtimes. Thus, we 
maintain a history of applications that have executed 
along with their respective runtimes. To estimate a 
given application's runtime, we identify similar 
applications in the history and then compute a 
statistical estimate of their runtimes. We use this as 
the predicted runtime.  

The fundamental problem with this approach is 
the definition of similarity; diverse views exist on the 
criteria that make two applications similar. For 
instance, we can say that two applications are similar 
because the same user on the same machine 
submitted them or because they have the same 
application name and are required to operate on the 
same size data. Thus, we must develop techniques 
that can effectively identify similar applications. 
Such techniques must be able to accurately choose 
applications' attributes that best determine similarity. 
Having identified a similarity template, the next step 
is to estimate the applications' runtime based on 
previous, similar applications. We can use several 
statistical measures to compute the prediction, 
including measures of central tendency such as the 
mean and linear regression. 

Rough sets theory as a mathematical tool to deal 
with uncertainty in data provides us with a sound 
theoretical basis to determine the properties that 
define similarity. Rough sets operate entirely on the 
basis of the data that is available in the history and 
require no external additional information. The 
history represents an information system in which the 
objects are the previous applications whose runtimes 
and other properties have been recorded. The 
attributes in the information system are these 
applications' properties. The decision attribute is the 
application runtime, and the other recorded 



properties constitute the condition attributes. This 
history model intuitively facilitates reasoning about 
the recorded properties so as to identify the 
dependency between the recorded attributes and the 
runtime. So, we can concretize similarity in terms of 
the condition attributes that are relevant and 
significant in determining the runtime. Thus, the set 
of attributes that have a strong dependency relation 
with the runtime can form a good similarity template.  

The objective of similarity templates in 
application runtime estimation is to identify a set of 
characteristics on the basis of which we can compare 
applications. We could try identical matching, i.e. if n 
characteristics are recorded in the history, two 
applications are similar if they are identical with 
respect to all n properties. However, this 
considerably limits our ability to find similar 
applications because not all recorded properties are 
necessarily relevant in determining the runtime. Such 
an approach could also lead to errors, as applications 
that have important similarities might be considered 
dissimilar even if they differed in a characteristic that 
had little bearing on the runtime. 

A similarity template should consist of the most 
important set of attributes that determine the runtime 
without any superfluous attributes. A reduct consists 
of the minimal set of condition attributes that have 
the same discerning power as the entire information 
system. In other words, the similarity template is 
equivalent to a reduct that includes the most 
significant attributes. Finding a reduct is similar to 
feature selection problem. All reducts of a dataset can 
be found by constructing a kind of discernibility 
function from the dataset and simplifying it.  

For further detailed information see [4]. 
 
 

3.4 Scheduling Policy and Execution Model 
We now describe how this cost model can be used by 
a scheduler that receives a list of jobs to be executed 
on the K-Grid, and has to decide for each of them 
which is the best resource to start the execution on. 

Choosing the best resource implies the definition 
of a scheduling policy, targeted at the optimization of 
some metric. One frequent choice [5] is to minimize 
the completion time of each job. This is done by 
taking into account the actual ready time for the 
machine that will execute the job and the cost of 
execution on that machine, plus the communications 
needed. Therefore for each job, the scheduler will 
chose the machine that will finish the job earlier. For 
this reason in the following we refer to such policy as 
Minimum Completion Time (MCT). 

Jobs L (A, D, {P}) arrive at the scheduler from 
an external source, with given timestamps. They 

queue in the scheduler and wait. We assume the jobs 
have no dependencies among one another and their 
interarrival time is given by an exponential 
distribution. 

The scheduler internal structure can be modeled 
as a network of three queues, plotted in Figure 3, with 
different policies. 

Jobs arrive in the main queue Qm, where 
predicting jobs are generated and appended to the 
predicting queue Qp. Both queues are managed with a 
FIFO policy. From Qp jobs are inserted into the 
system for execution. Once predicting is completed, 
the job in inserted in the final queue Qf , where it is 
processed for the real execution. Since the scheduler 
knows the duration of jobs in Qf , due to the prior 
predicting, Qf is managed with a Shortest Remaining 
Time First (SRTF) policy in order to avoid light 
(interactive) jobs being blocked by heavier (batch) 
jobs. 

 
Figure 3: The model of the scheduler. 

The life-cycle of a job in the system is the 
following:  

1. Jobs arrive in the main queue Qm with a given 
timestamp. They are processed with FIFO policy. 
When a job is processed, the scheduler generates a 
predicting job and put this request in the predicting 
queue, with the same timestamp. 

2. If a job in Qm has parameters equals to that of a 
previously processed job, it is directly inserted into 
the final queue Qf , with the same timestamp. 

3. If the predicting job has finished, it is inserted 
in the Qf queue, and timestamp given by the current 
time. Every time a job leaves the scheduler, a global 
execution plan is updated, that contains the busy 
times for every host in the system, obtained by the 
cost model associated to every execution. 

4. Every time a job has finished we update the 
global execution plan. 

5. When predicting is successfully finished, jobs 
are inserted in Qf , where different possibilities are 
evaluated and the best option selected. Jobs in Qf are 
processed in an SRFT fashion. Each job has an 
associated duration, obtained from the execution of 
predicting.  
 
 

Qp 
 
Predicting 



4 Some Preliminary Results 
We adopted the MCT(Minimum Completion 
Time)[6]+rough set approach to validate that our 
hypothesis is feasible and efficient. The mapper does 
not consider node multitasking, and is responsible for 
choosing the schedule for computations involved in 
the execution of a given task, but also of starting 
tasks and checking their completion. The MCT 
mapping heuristics is very simple. Each time a task is 
submitted, the mapper evaluates the expected ready 
time of each machine. The expected ready time is an 
estimate of the ready time, the earliest time a given 
resource is ready after the execution of jobs 
previously assigned to it. Such estimate is based on 
both estimated and actual execution times of all the 
tasks that have been assigned to the resource in the 
past. To update resource ready times, when 
computations involved in the execution of a task 
complete, a report is sent to the mapper. The mapper 
then evaluate all possible execution plans for other 
task and chooses the one that reduce the completion 
time of the task. To evaluate our MCT scheduler that 
exploits rough set as a technique for performance 
prediction, we designed a simulation framework that 
allowed us to compare our approach with a Blind 
mapping strategy, which does not base its decisions 
on performance predictions at all. Since the blind 
strategy is unaware of predicted runtime, so it 
scheduled tasks according the principle of FCFS 
(first come first serve). 
     The simulated environment is composed of fifteen 
machines installed with GT3. Those machines have 
different physical configurations, operating systems 
and bandwidth of network. We used histories with 
500 records as the condition attributes for estimation 
applications runtime. Data Ming tasks to be 
scheduled arrive in a burst, according to an 
exponential distribution, and have random execution 
costs. Datasets are all of medium size, and are 
randomly located on those machines. Figure 4 shows 
the improvements in makespans obtained by our 
technique over the blind one when the percentage of 
heavy tasks is varied. 

 
Figure 4 Preliminary Experimental Results 
 
 

5   Conclusion 
We propose a new solution for data mining task 
scheduling in Grid environment. First, we propose 
map a data mining application to DAG. Then, we 
propose a cost model for predicting the data transfer 
time and data mining execution time on Grid. Finally, 
according the priori estimation of cost, we propose 
the method for tasks scheduling to minimize total 
response time in grid environment. 
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