
Workflow-based Tasks Scheduling on Grid

Kun Gao1,2, Ning Zhou3, Kexiong Chen2, Meiqun Liu3, Jiaxun Chen1
1Information Science and Technology College, Donghua University, P.R.C

2Aviation University of Air Force, P.R.C
3Administration of Radio Film and Television of Jilin Province, P.R.C

Abstract: - Due to the distributed nature of data and the need for high performance, it makes Grid a suitable
environment for distributed data mining. Since distributed data mining applications are typically data intensive,
one of the main requirements of such a DDM Grid environment is the efficient workflow scheduling. We
propose an architecture for a Knowledge Grid scheduler that results in the minimal response time. The
experimental result demonstrates that the architecture has good performance.

Key-Words: - Workflow, Scheduling, Data mining, Knowledge Grid

1 Introduction
The Grid has emerged recently as an integrated
infrastructure for high performance distributed
computation. Data mining is the process of
autonomously extracting useful information or
knowledge from large data stores or sets. Because of
the importance of data mining and grid technologies,
it is very useful to develop data mining environments
on grid platforms by deploying grid services for the
extraction of knowledge from large distributed data
repositories. The effort that has been done in the
direction of data intensive applications on the grid is
the Data Grid project that aims to implement a data
management architecture based on two main
services: storage system and metadata management
[1]. This project is not concerned with data mining
issues, but its basic services could be used to
implement higher-level grid services such as the ones
we intend to develop. Motivated by these
considerations, in [2] a specialized grid infrastructure
named Knowledge Grid (K-Grid) has been proposed.
This architecture was designed to be compatible with
lower-level grid mechanisms and also with the Data
Grid ones. The authors subdivide the K-Grid
architecture into two layers: the core K-grid and the
high level K-grid services. The former layer refers to
services directly implemented on the top of generic
grid services, the latter refers to services used to
describe, develop and execute parallel and distributed
knowledge discovery (PDKD) computations on the
K-Grid. Moreover, the layer offers services to store
and analyze the discovered knowledge.

We concentrate our attention on the K-Grid core
services, i.e. RAEM (Resource Allocation and
Execution Management) services. The RAEM
service provides a specialized broker of Grid
resources for DDM computations: given a user

request for performing a DM analysis, the broker
takes allocation and scheduling decisions, and builds
the execution plan, establishing the sequence of
actions that have to be performed in order to prepare
execution, actually execute the task, and return the
results to the user. The execution plan has to satisfy
given requirements (such as performance and
response time) and constraints (such as data
locations, available computing power, storage size,
memory, network bandwidth and latency). Once the
execution plan is built, it is passed to the Grid
Resource Management service for execution.
Clearly, many different execution plans can be
devised, and the RAEM service has to choose the one
which maximizes or minimizes some metrics of
interest (e.g. throughput, average service time).

Data mining applications running on the K-Grid
can be parallelized. Such, we can parallelize single
data mining application to several subtasks; several
tasks may be combined to form a workflow. In this
paper, we propose a workflow scheduling solution
for those subtasks to minimize total response time.
The rest of this paper is organised as follows: in
section 2, we present how to map a data mining
application to DAG. In section 3, we present the
architecture for a Knowledge Grid scheduler that
results in the minimal response time. In section 4, we
conduct experiments to evaluate the architecture.
Finally section 5 concludes this paper.

2 Decomposing Data Mining
Application to DAG
K-Grid services can be used to construct complex
Problem Solving Environments, which exploit DM
kernels as basic software components that can be
applied one after the other, in a modular way. A

general DM task on the K-Grid can therefore be
described as a Directed Acyclic Graph (DAG) whose
nodes are the DM algorithms being applied, and the
links represent data dependencies among the
components. In this section, we present how to map
data mining application to DAG.

2.1 Modeling Data Mining Applications
We surveyed three major classes of data mining
applications, namely association rule mining,
classification rule mining, and pattern discovery in
combinatorial databases. We note the resemblance
among the computation models of these three
application classes.

A task is the main computation applied on a
pattern. Not only are all tasks of any one application
of the same kind, but tasks of different applications
are actually very similar. They all take a pattern and a
subset of the database and count the number of
records in the subset that match the pattern. In the
classification rule mining case, counts of matched
records are divided into c baskets, where c is the
number of distinct classes.
 The similarities among the specifications of these
applications are obvious, which inspired us to study
the similarities among their computation models.
They usually follow a generate-and-test
paradigm-generate a candidate pattern, then test
whether it is any good. Furthermore, there is some
interdependence among the patterns that gives rise to
pruning, i.e., if a pattern occurs too rarely, then so
will any superpattern. These interdependences entail
a lattice of patterns, which can be used to guide the
computation.

In fact, this notion of pattern lattice can apply to
any data mining application that follows this
generate-and-test paradigm. We call this application
class pattern lattice data mining. In order to
characterize the computation models of these
applications more concretely, we define them more
carefully in Section 2.2.

2.2 Defining Data Mining Applications
1. A database D.
2. Patterns and a function len(pattern p) which

returns the length of p. The length of a pattern is a
non-negative integer. We use {} to represent
zero-length patterns in association rule mining.

3. A function goodness(pattern p) which returns a
measure of p according to the specifications of the
application.

4. A function good(p) which returns 1 if p is a
good pattern or a good subpattern and 0 otherwise.
Zero-length patterns are always good.

The result of a data mining application is the set
of all good patterns. If a pattern is not good, neither
will any of its superpatterns be. In other words, it is
necessary to consider a pattern if and only if all of its
subpatterns are good.

Let us define an immediate subpattern of a pattern
q to be a subpattern p of q where len(p) = len(q)-1.
Conversely, q is called an immediate superpattern of
p.

Except for the zero-length pattern, all the patterns
in a data mining problem are generated from their
immediate subpatterns. In order for all the patterns to
be uniquely generated, a pattern q and one of its
immediate subpatterns p have to establish a
childparent relationship (i.e., q is a child pattern of p
and p is the parent pattern of q). Except for the
zero-length pattern, each pattern must have one and
only one parent pattern. For example, in sequence
pattern discovery, *FRR* can be a child pattern of
FR; in association rule mining, {2, 3, 4} can be a
child pattern of {2, 3}; and in classification rule
mining, (C = c1)^(B = b2)^(A = a1) can be a child
pattern of (C = c1)^(B = b2).

2.3 Solving Data Mining Applications
Having defined data mining applications as above, it
is easy to see that an optimal sequential program that
solves a data mining application does the following:

1. generates all child patterns of the zero-length
pattern;

2. computes goodness(p) if all of p's immediate
subpatterns are good;

3. if good(p) then generate all child patterns of p;
4. applies 2 and 3 repeatedly until there are no

more patterns to be considered.
Because the zero-length pattern is always good

and the only immediate subpatterns of its children is
the zero-length pattern itself, the computation starts
on all its children, which are all length 1 patterns.
After these patterns are computed, good patterns
generate their child sets. Not all of these new patterns
will be computed-only those whose every immediate
subpattern is good will be.

2.4 Mapping data mining application to
DAG.

We propose to use a directed acyclic graph (dag)
structure called exploration dag (E-dag, for short) to
characterize pattern lattice data mining applications.

We first describe how to map a data mining
application to an E-dag.

The E-dag constructed for a data mining
application has as many vertices as the number of all
possible patterns (including the zero-length pattern).
Each vertex is labeled with a pattern and no two
vertices are labeled with the same pattern. Hence
there is a one-to-one relation between the set of
vertices of the E-dag and the set of all possible
patterns. Therefore, we refer to a vertex and the
pattern it is labeled with interchangeably.

There is an incident edge on a pattern p from
each immediate subpattern of p. All patterns except
the zero-length pattern have at least one incident
edge on them. The zero-length pattern has an
outgoing edge to each pattern of length 1. Figure 1
shows an E-dag mapped from an association rule
mining application.

Figure 1: A complete E-DAG for an association
rule mining application on the set of items {1, 2,
3, 4}.

3 Knowledge Grid Scheduler

3.1 serialization process
We consider that the basic building blocks of a DM
task are algorithms and datasets. They can be
combined in a structured way, thus forming a DAG.
DM components correspond to a particular algorithm
to be executed on a given dataset, provided a certain
set of input parameters for the algorithm. We can
therefore describe each DM components L with the
triple: L = (A, D, {P}). Where A is the data mining
algorithm, D is the input dataset, and {P} is the set of
algorithm parameters. For example if A corresponds
to “Association Mining”, then {P} could be the
minimum confidence for a discovered rule to be

meaningful. It is important to notice that A does not
refer to a specific implementation. We could
therefore have more different implementations for
the same algorithm, so that the scheduler should take
into account a multiplicity of choices among
different algorithms and different implementations.
The best choice could be chosen considering the
current system status, the programs availability and
implementation compatibility with different
architectures.

Scheduling DAGs on a distributed platform is a
non-trivial problem which has been faced by a
number of algorithms in the past. See [3] for a review
of them. Although it is crucial to take into account
data dependencies among the different components
of the DAGs present in the system, we first want to
concentrate ourselves on the cost model for DM tasks
and on the problem of bringing communication costs
into the scheduling policy. For this reason, we
introduce in the system an additional component that
we call serializer (Figure 2), whose purpose is to
decompose the tasks in the DAG into a series of
independent tasks, and send them to the scheduler
queue as soon as they become executable w.r.t. the
DAG dependencies.

Figure 2 Serializer

Such serialization process is not trivial at all and
leaves many important problems opened, such as
determine the best ordering among tasks in a DAG
that preserve data dependencies and minimizes
execution time.

Nevertheless, at this stage of the analysis, we are
mainly concerned with other aspects in the system,
namely the definition of an accurate cost model for
single DM tasks and the inclusion of communications
into the scheduling policy.

3.2 Cost Model
The following cost model assumes that each input
dataset is initially stored on a single machine mh,
while the knowledge model extracted must be moved
to a machine mk. Due to decisions taken by the
scheduler, datasets may be moved to other machines
and thus replicated, or may be partitioned among
diverse machines composing a cluster for parallel
execution. Therefore, the scheduler has to take into
account that several copies (replicated or distributed)
of a dataset may exist on the machines of its Grid.

Sequential execution. Suppose that the whole
dataset is stored on a single machine mh. Task ti is
executed sequentially by a code running on machine
mj, with an execution time of eij . In general we also
have to consider the communications needed to move
Di from machine h to machine mj, and the further
communications to move the results | () |i iDa to
machine mk. The total execution time is thus:

| | / | () | /ij i hj ij i i jkE D b e D bα= + +

Of course, the relative communication costs
involved in dataset movements are zeroed if either
h=j or j = k.

Parallel execution. Task ti is executed in parallel
by a code running on a cluster clJ , with an execution
time of eiJ. In general, we have also to consider the
communications needed to move Di from machine mh
to cluster clJ, and to move the results | () |i iDa to
machine mk. The total execution time is thus:

| | / | | | () | / | |
J J
t J t J

i J i i J
iJ iJm cl m cl

ht tk

D cl D clE e
b b

α
∈ ∈

= + +∑ ∑

Of course, the relative communication costs are
zeroed if the dataset is already distributed, and is
allocated on the machines of clJ.

Performance metrics. Eij and EiJ are the expected
total execution times of task ti when no load is present
in the system. When load is present on machines and
networks, scheduling will delay the start and thus the
completion of a task. In the following we will analyze
the actual completion time of a task for the sequential
case. A similar analysis could be done for the parallel
case.

Let Cij be the wall-clock time at which all
communications and sequential computation
involved in the execution of ti complete. To define Cij
we need to define the starting times of
communications and computation. Let shj be the start
time of communication needed to move the input
dataset from machine h to machine j, let sj be the start
time of the sequential execution of task ti on machine
j, and, finally, let sjk be the start time of
communication needed to move the knowledge result
model extracted from machines j to machine k. From
the above definitions:

1 2 1 2
| | | () |()i i i

ij hj ij hj hj
hj jk

D DC s e s E
b b

αδ δ δ δ= + + + + + = + + +

Where,
1 2

| |() 0, () 0i
j hj jk j ij

hj

Ds s s s e
b

d d= - + ³ = - + ³

So, if Ai is the arrival time of task ti, and ti is the
only task in execution on the system, then the optimal
completion time of the task on machine mj is:

ij i ijC A E= +

Suppose that jm is the specific machine chosen

by our scheduling algorithm for executing a task ti.

Let i ijC C= and i ijC C= . Let T be the set of tasks

to be scheduled. The makespan for the complete
scheduling is defined as max ()

it T iCΞ , and measures
the overall thoughput of the system.

3.3 Predicting DM Tasks Execution Time
Data mining application computation times depend
on many factors: data size, specific mining
parameters provided by users and actual status of the
Grid etc. Moreover, the correlations between the
items present in the various transactions of a dataset
largely influence the response times of data mining
applications. Thus, predicting its performance
becomes very difficult.

Our application runtime prediction algorithms
operate on the principle that applications with similar
characteristics have similar runtimes. Thus, we
maintain a history of applications that have executed
along with their respective runtimes. To estimate a
given application's runtime, we identify similar
applications in the history and then compute a
statistical estimate of their runtimes. We use this as
the predicted runtime.

The fundamental problem with this approach is
the definition of similarity; diverse views exist on the
criteria that make two applications similar. For
instance, we can say that two applications are similar
because the same user on the same machine
submitted them or because they have the same
application name and are required to operate on the
same size data. Thus, we must develop techniques
that can effectively identify similar applications.
Such techniques must be able to accurately choose
applications' attributes that best determine similarity.
Having identified a similarity template, the next step
is to estimate the applications' runtime based on
previous, similar applications. We can use several
statistical measures to compute the prediction,
including measures of central tendency such as the
mean and linear regression.

Rough sets theory as a mathematical tool to deal
with uncertainty in data provides us with a sound
theoretical basis to determine the properties that
define similarity. Rough sets operate entirely on the
basis of the data that is available in the history and
require no external additional information. The
history represents an information system in which the
objects are the previous applications whose runtimes
and other properties have been recorded. The
attributes in the information system are these
applications' properties. The decision attribute is the
application runtime, and the other recorded

properties constitute the condition attributes. This
history model intuitively facilitates reasoning about
the recorded properties so as to identify the
dependency between the recorded attributes and the
runtime. So, we can concretize similarity in terms of
the condition attributes that are relevant and
significant in determining the runtime. Thus, the set
of attributes that have a strong dependency relation
with the runtime can form a good similarity template.

The objective of similarity templates in
application runtime estimation is to identify a set of
characteristics on the basis of which we can compare
applications. We could try identical matching, i.e. if n
characteristics are recorded in the history, two
applications are similar if they are identical with
respect to all n properties. However, this
considerably limits our ability to find similar
applications because not all recorded properties are
necessarily relevant in determining the runtime. Such
an approach could also lead to errors, as applications
that have important similarities might be considered
dissimilar even if they differed in a characteristic that
had little bearing on the runtime.

A similarity template should consist of the most
important set of attributes that determine the runtime
without any superfluous attributes. A reduct consists
of the minimal set of condition attributes that have
the same discerning power as the entire information
system. In other words, the similarity template is
equivalent to a reduct that includes the most
significant attributes. Finding a reduct is similar to
feature selection problem. All reducts of a dataset can
be found by constructing a kind of discernibility
function from the dataset and simplifying it.

For further detailed information see [4].

3.4 Scheduling Policy and Execution Model
We now describe how this cost model can be used by
a scheduler that receives a list of jobs to be executed
on the K-Grid, and has to decide for each of them
which is the best resource to start the execution on.

Choosing the best resource implies the definition
of a scheduling policy, targeted at the optimization of
some metric. One frequent choice [5] is to minimize
the completion time of each job. This is done by
taking into account the actual ready time for the
machine that will execute the job and the cost of
execution on that machine, plus the communications
needed. Therefore for each job, the scheduler will
chose the machine that will finish the job earlier. For
this reason in the following we refer to such policy as
Minimum Completion Time (MCT).

Jobs L (A, D, {P}) arrive at the scheduler from
an external source, with given timestamps. They

queue in the scheduler and wait. We assume the jobs
have no dependencies among one another and their
interarrival time is given by an exponential
distribution.

The scheduler internal structure can be modeled
as a network of three queues, plotted in Figure 3, with
different policies.

Jobs arrive in the main queue Qm, where
predicting jobs are generated and appended to the
predicting queue Qp. Both queues are managed with a
FIFO policy. From Qp jobs are inserted into the
system for execution. Once predicting is completed,
the job in inserted in the final queue Qf , where it is
processed for the real execution. Since the scheduler
knows the duration of jobs in Qf , due to the prior
predicting, Qf is managed with a Shortest Remaining
Time First (SRTF) policy in order to avoid light
(interactive) jobs being blocked by heavier (batch)
jobs.

Figure 3: The model of the scheduler.

The life-cycle of a job in the system is the
following:

1. Jobs arrive in the main queue Qm with a given
timestamp. They are processed with FIFO policy.
When a job is processed, the scheduler generates a
predicting job and put this request in the predicting
queue, with the same timestamp.

2. If a job in Qm has parameters equals to that of a
previously processed job, it is directly inserted into
the final queue Qf , with the same timestamp.

3. If the predicting job has finished, it is inserted
in the Qf queue, and timestamp given by the current
time. Every time a job leaves the scheduler, a global
execution plan is updated, that contains the busy
times for every host in the system, obtained by the
cost model associated to every execution.

4. Every time a job has finished we update the
global execution plan.

5. When predicting is successfully finished, jobs
are inserted in Qf , where different possibilities are
evaluated and the best option selected. Jobs in Qf are
processed in an SRFT fashion. Each job has an
associated duration, obtained from the execution of
predicting.

Qp

Predicting

4 Some Preliminary Results
We adopted the MCT(Minimum Completion
Time)[6]+rough set approach to validate that our
hypothesis is feasible and efficient. The mapper does
not consider node multitasking, and is responsible for
choosing the schedule for computations involved in
the execution of a given task, but also of starting
tasks and checking their completion. The MCT
mapping heuristics is very simple. Each time a task is
submitted, the mapper evaluates the expected ready
time of each machine. The expected ready time is an
estimate of the ready time, the earliest time a given
resource is ready after the execution of jobs
previously assigned to it. Such estimate is based on
both estimated and actual execution times of all the
tasks that have been assigned to the resource in the
past. To update resource ready times, when
computations involved in the execution of a task
complete, a report is sent to the mapper. The mapper
then evaluate all possible execution plans for other
task and chooses the one that reduce the completion
time of the task. To evaluate our MCT scheduler that
exploits rough set as a technique for performance
prediction, we designed a simulation framework that
allowed us to compare our approach with a Blind
mapping strategy, which does not base its decisions
on performance predictions at all. Since the blind
strategy is unaware of predicted runtime, so it
scheduled tasks according the principle of FCFS
(first come first serve).
 The simulated environment is composed of fifteen
machines installed with GT3. Those machines have
different physical configurations, operating systems
and bandwidth of network. We used histories with
500 records as the condition attributes for estimation
applications runtime. Data Ming tasks to be
scheduled arrive in a burst, according to an
exponential distribution, and have random execution
costs. Datasets are all of medium size, and are
randomly located on those machines. Figure 4 shows
the improvements in makespans obtained by our
technique over the blind one when the percentage of
heavy tasks is varied.

Figure 4 Preliminary Experimental Results

5 Conclusion
We propose a new solution for data mining task
scheduling in Grid environment. First, we propose
map a data mining application to DAG. Then, we
propose a cost model for predicting the data transfer
time and data mining execution time on Grid. Finally,
according the priori estimation of cost, we propose
the method for tasks scheduling to minimize total
response time in grid environment.

References:
[1] A. Chervenak, I. Foster, C. Kesselman, C.

Salisbury, and S. Tuecke. The Data Grid: towards
an architecture for the distributed management
and analysis of large scientific datasets. Journal of
Network and Computer Applications,
(23):187–200, 2001.

[2] D. Talia and M. Cannataro. Knowledge grid: An
architecture for distributed knowledge discovery.
Comm. of the ACM, 2002

[3] Yu-Kwong Kwok and Ishfaq Ahmad.
Benchmarking and comparison of the task graph
scheduling algorithms. Journal of Parallel and
Distributed Computing, 59(3):381–422, 1999.

[4] Kun Gao, Youquan Ji, Meiqun Liu, Jiaxun Chen,
Rough Set Based Computation Times Estimation
on Knowledge Grid, Lecture Notes in Computer
Science, Volume 3470, July 2005, Pages 557 –
566.

[5] H. J. Siegel and A. Shoukat. Techniques for
mapping tasks to machines in heterogeneous
computing systems. Journal of Systems
Architecture, 2000.

[6] Tracy D. Braun, Howard Jay Siegel, Noah Beck.:
A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,
Journal of Parallel and Distributed Computing,
2001

