
A Flexible Multi-layered Virtual Machine Design
for Virtual Laboratories in Grid Systems

DOHAN KIM, ROBERT KENT, AKSHAI AGGARWAL, PAUL PRENEY

School of Computer Science
University of Windsor

401 Sunset Avenue, Windsor, Ontario, N9B 3P4
CANADA

 http://www.hpc.uwindsor.ca/

Abstract: - We propose a flexible Multi-layered Virtual Machine (MVM) design intended to improve
efficiencies in grid computing and to overcome known problems that exist in grid systems. We present a novel
approach to building virtual laboratories by adapting MVMs within distributed and grid systems, thereby
providing enhanced flexibility and reconfigurability. The MVM is a service-oriented grid architecture to
discover, describe and retrieve platform independent configuration models for each resource usage pattern and
provides virtual laboratory users with a logical view of the grid. It consists of three layers: OS-level, Queue-
level, and Component-level VMs. MVMs virtualize system resources, topologies, networks, policies and
services. In our framework, the virtual machines can be created “on-demand” and their applications can be
distributed at the source-code level, compiled and instantiated in run-time.

Key-Words: - Multi-layered Virtual Machine, Grids, Service-Oriented Architecture

1 Introduction
In recent decades, virtual laboratories have provided
an environment to test various research models, in
the modelling phase, for cost and time savings [1]. A
virtual laboratory can be dynamically organized,
whereby its topology is adapted on-demand by
research communities. Our goal is to create a virtual
laboratory framework, using multi-layered virtual
machines (MVM), in which virtual machines are
scalable, reconfigurable, and flexible. These design
goals are based on the following: Reconfigurability -
Any group of virtual machines should be able to be
reconfigured at run-time. Flexibility – Data, resource
and network service components must interact
seamlessly in a grid environment. Dynamicity -
Virtual machines require the ability to be created
and destroyed on-demand, regardless of network
location while providing at least one simplified,
logical view of any relevant underlying system.
Fault/Attack Isolation – If a service suffers from
faults or attacks, side effects should be minimized.

We assert that reconfigurable and layered
abstract machines can simplify the complexities of
current distributed and grid systems. By raising the
level of abstraction for both resources and their
networks, we can apply the logical resource usage
models to a wide variety of heterogeneous
environments.

The MVM model consists of three layers: OS-
level, Queue-level, and Component-level VM
layers. The OS-level layer is a virtualized operating

system that can be dynamically deployed and moved
around computer networks; the queue-level layer
virtualizes data communication interfaces and the
component-level layer provides services in an
architecture-independent, transparent manner. These
components specify the virtual topology, parallel
communication patterns, and resource
characteristics, and can be thought as Platform
Independent Models (PIMs) of Model Driven
Architecture (MDA) [2]. Further, component VM
layer maps these PIMs into Platform Specific
Models (PSMs).

This paper presents a virtual machine
architecture for a virtual laboratory framework that
meets the goals described above. Our multi-layered,
flexible virtual machine architecture allows us to
reconfigure the virtual machine itself at run-time
rather than at compile- or deployment-time.

Section 2 presents the design of the Multi-
layered Virtual Machine (MVM) and its three
layers. Section 3 discusses the design of our
framework by using MVMs including our virtual
network model for grid computing. Section 4
presents some implementation and experimental
results using MVMs. Finally section 5 presents
concluding remarks and future work.

2 A Multi-layered Virtual Machine

2.1 OS-level VM layer

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

We take advantage of existing OS-level VM
technology [3] to satisfy part of our design goals,
especially fault/attack isolation. In our MVM
design, distinct OS-level VMs can be multiplexed
on a hardware abstraction layer called the Virtual
Machine Monitor (VMM). In addition to the
isolation feature of the OS-level VM technology, the
OS-level VM can be used to set up a virtual
network, which allows the setting up and testing of
experimental services.

Among other matters, we intend to support
scenarios in which multiple, independent jobs are
running on the same physical machine, but
simulating two virtual machines, each with its own
processor, sharing and resource management rules.

One is then able to customize each OS-level VM
with its own specific sharing, connectivity, jobs and
resource management rules as if multiple,
autonomous, dedicated host machines were running.
In such cases OS-level VMs are allocated on
appropriate VMMs.

Current projects, including VMPlant [4] and
SODA [5], show that the on-demand, dynamic
instantiation of VMs can be accessed through a
Service Oriented Architecture (SOA). In a similar
way, we can store a wide variety of OS-level VMs
in the virtual backend, and then retrieve and
assemble them with the Queue-level VMs by
utilizing existing grid middleware methods.

The OS-level VM in the MVM can also facilitate
the underlying system to be maintained in a
partitioned way. This means that nearly all
manipulations inside an OS-level VM do not affect
the configuration values in another OS-level VM on
the underlying system.

The principal advantages to the OS-level VM
approach is that of virtualizing user accounts,
monitoring facilities, logging and system services.

Yet another advantage of utilizing the OS-level
VM as a building block of the MVM is that we can
migrate the processes in the OS-level VM including
the OS-level VM itself to other locations across a
network, grid, or off-line storage. The strength of
OS-level VM based checkpointing is that all volatile
execution states of running processes (including
disks, memory, CPU registers, I/O devices, etc) can
be encapsulated [6]. Indeed, the entire running
MVM, including queue-level and component-level
VMs, and all of their respective applications, can be
encapsulated.

2.2 Queue-level VM layer
The queue-level VM virtualizes data communication
interfaces by using virtual queues. We advocate that

“enqueuing” and “dequeuing” are the most common
characteristics of any computer systems available.
Any computer system should enqueue and dequeue
its data including instructions. The actual
computation is determined by how a given machine
decodes items from the queue, and how it encodes
its output. Our design of the queue-level VM in the
MVM is intended to be fully generic and flexible,
allowing us to (re)configure and control how to
communicate with an arbitrary computer system.
Once this is configured at run-time, one can build a
flexible and scalable system on top of it.

The queue-level VM consists of VM interface
logics, VM interface controller, and VM
encoder/decoder. The VM interface logics include
the virtual queue types (i.e. FIFO queue, priority
queue, etc) and policies for queue management.
They are specified by service-oriented components
which enable virtual machines to register and
retrieve information on how to encode, decode, and
process those items.

The “enqueuing” and “dequeuing” portions of
the queue-level VM can be extended to a group of
nodes. When a group of queue-level VMs are
organized under certain sharing rules for the specific
experiment, it provides a Single System Image (SSI)
to an external user. Several virtual queues can be
allocated for the enqueuing process in the queue-
level VM, so that we can assign different queues to
different jobs, allowing each job to be run
concurrently in each queue in SSI. Each connected
VM can provide either instruction stream, or data
stream, for the parallel computation. Thus, we can
simulate Flynn’s MIMD architecture [7], by
organizing a group of queue-level VMs of MVMs.

While we may not know exactly how to interact
with data communication interfaces for an arbitrary
computing system, with MVM one is able to look at
the virtualized queues, extract items, and then apply
various rules to these items.

2.3 Component-level VM layer
Our VM middleware shares certain problems,
including resource discovery, resource allocation,
resource management, authorization/authentication,
policy enforcement, as with the existing grid
middleware. As a consequence of virtualization, we
can dynamically reconfigure and customize all VM
components using service-oriented technologies
such as web services.

Another advantage of the component-based
technology is reusability. Once we register the
connectivity, resource, and job profiles for a certain
experiment, we might reuse the same profiles, with

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

different parameters later and, possibly, in different
job scenarios and topologies.

3 A Proposed Virtual Laboratory
The proposed virtual laboratory has three different
layers to serve as the basis of a dynamic, flexible
test environment for a wide range of research
scenarios including: virtualized resources,
virtualized networks, and policy-based
reconfigurable components. For scalability, the
virtual front-ends and the virtual clusters in
virtualized resources are organized in a
decentralized way. However, a pure decentralized
system has several drawbacks, such as bandwidth
overuse by message flooding, and maintenance
difficulties [8]. Thus, we advocate using a super-
peer based P2P system for aggregating virtual
resources. Each virtual community has one or more
peer groups, and each peer group has a super-peer.
The super-peer in each peer group acts as the virtual
front-end, in that it provides a group of peers with
virtual back-end information. This data includes
URI location of the virtual backend, and the ways on
how to retrieve information from the virtual back-
end.

3.1 Virtualized Resources
The virtualized resource layer consists of virtual
back-ends, virtual front-ends and virtual clusters.
The virtual back-ends consist of several remote
servers that provide the virtual front-ends and virtual
clusters with our VM image, resource discovery,
bootstrapping, storage service, and so on. Servers in
the virtual back-end can be one of these types: high
performance computers; workstation clusters; or
data stores. The main building blocks of the back-
end servers are bootstrap nodes, information service
servers, image servers, and authentication and
authorization servers. Service-oriented grid
architectures, such as OGSA, virtualize back-end
servers as “services”. We also use service-oriented
grid architecture for platform independent
configuration models for each resource usage
scenario. The virtual front-end is the super-peer
module of our virtual laboratory. We use the term
“virtual front-end” rather than “front-end”, in that
the virtual front-end node is itself a MVM node with
additional flexibility and reconfigurability.

The primary purpose of the virtual front-end is to
schedule the incoming jobs to the available
resources in the virtual cluster by using the queue-
level VM. We note that scheduling problems in grid

computing are known to be NP-complete problems
[9].

Using the component-level VM, we can
configure scheduling policies to our schedulers in
the virtual front-end nodes, giving flexibility to the
local and global schedulers. For a specific
experiment in the virtual community, the virtual
front-end controls the connectivity and sharing rules
for the virtual cluster. The connectivity and sharing
rules consist of the service-oriented components,
and are manipulated by the component-level VM in
the MVM. Thus, we are able to map the logical
connectivity (virtual topology) and sharing rules to
the physical connectivity and sharing rules for the
virtual cluster.

The virtual cluster in our virtual laboratory is
organized as a group of MVMs, dynamically and
on-demand. The virtual front-end node initially
retrieves the available resource information of the
virtual cluster from the information service server.
Then the virtual front-end node notifies a group of
available nodes in the community and organizes the
virtual cluster.

3.2 Virtualized Networks
Certain kinds of grid applications require virtual
topologies to specify the logical arrangement of
tasks. In some situations we are required to specify
each stage in the topology for high performance
pipelined computing, such as the butterfly
computation of the Fast Fourier Transform (FFT)
[10]. However, in current grid applications, we need
to denote the virtual topology at the source-code
level.

We emphasize that there is no requirement for
the source/destination field for the message passing
API in the MVM toolkit; instead, we specify the
virtual topology and network information outside,
rather than inside the programming source codes.
All connectivity information is determined outside
the grid program, enabling efficiency and runtime-
reconfigurability for job execution. Additionally,
this scheme allows a grid resource scheduler or
allocator to select and map process-to-processor in
grid environments in dynamic and adaptive ways, as
the message passing API for MVM is not bound to
specific source or destination job id at the source-
code level. Further, we provide job distribution at
the source-code level, allowing us to compile and
instantiate jobs at runtime rather than at deployment
time. The virtual topology for grid job execution is
one of our platform independent configuration
models which is a grid service.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

3.3 Policy-based Reconfigurable Components
According to Appleby [11], “policy-based
computing” is “a software paradigm that
incorporates a set of decision-making technologies
into its management components in order to simplify
and automate the administration of computer
systems”. The policy components in the MVM are
designed to achieve this viewpoint, allowing
dynamic adjustment of the behaviour of the group of
MVMs in run-time, without modifying its internal
implementation. The policies in our virtual
laboratory framework are deployed and reconfigured
at different levels of abstraction. We divide the
policies into three levels: inter-domain level, domain
(virtual community) level, and general node level.
The inter-domain level policies may require a
mediator to manage semantic heterogeneity and
integration of multiple heterogeneous policies for
each domain. We mandate that inter-domain
resource sharing in the virtual laboratory be subject
to the inter-domain policies.

The domain level policies apply to the virtual
community to specify the security rules, resource
sharing rules, privileges for each participant, fault
recovery mechanisms, scheduling and monitoring
mechanisms, and so forth. The domain-level policies
include how and when the partitioning takes place,
and how to monitor each partition. For both inter-
domain and domain level policies, the Policy
Management Point (PMP), Policy Decision Point
(PDP), and policy repository should be located in
the virtual back-ends. Our “policy-based
reconfigurable components” are located in the
Policy Enforcement Point (PEP); that is, the broker
module of the highest level super peer in the
hierarchical tree. Once the highest level super peer
in the virtual community enforces these policies, the
lower level super peers in the hierarchical tree
retrieve them from the highest level super peer if
needed.

The general node level policies determine the
interface logics, such as encoding/decoding types,
queue type, maximum number of queue-level VMs,
and so forth. They also specify how to monitor the
performance and availability of each node, and what
metrics are used for them. The general node level
policies do not require external PDP and PMP,
thereby allowing the user to set his/her policies for
MVM.

The policy-based reconfigurable components
consist of three main building blocks: security
handlings, fault tolerance, scheduling and
monitoring. Full implementation of these
components is not yet complete, but our work is
based on the following considerations:

The security handlings deal with both
authentication and authorization. The authentication
policy specifies what kind of authentication
mechanism is used for a certain virtual community.
For scalability, we advocate the PKI-based GSI
authentication model [12], which supports “single
sign on” and “delegation” capabilities.

The authorization policy determines whether a
certain user is allowed to do an action by using a
certain amount of resources. The Role-based Access
Control (RBAC) [13] is emerging as an
authorization mechanism for large-scale systems in
which both policies and user roles are stored in
attribute certificates to provide integrity. It is based
on user-to-role and role-to-permission assignments.
We note that context and content-based constraints
for the extended RBAC Model are discussed in [14].

The monitoring reconfigurable policy determines
how often the resources in a virtual community are
monitored, and what metrics are used to monitor
them. Each monitoring result is reported to the
super-peer which determines what policy
components should be replaced to optimize the
virtual cluster. The scheduling reconfiguration
policy determines what policy will be applied for
resource scheduling in a virtual community. The
optimal scheduling policy depends on each
monitoring result, allowing the scheduling policy to
be dynamically adjusted for system status in the
virtual community. The scheduling policy is also
affected by the resource reservation policy. The
resource reservation policy determines whether the
reservation is allowed, how the reservation is made,
and what requirements need to be satisfied for
resource reservation.

The fault tolerance reconfigurable components
consist of MVM checkpointing and MVM failure
recovery policy components. The MVM
checkpointing policy determines what kind of
checkpointing method is used for a virtual
community and how often the checkpointing is to be
conducted.

We envision that the automatic runtime policy
reconfiguration and enforcement allows our virtual
machines to be self-configurable in order to
optimize themselves in grid systems.

4 Implementation and Results
We have developed the MVM toolkit to evaluate the
essential functionality of the MVM framework. This
toolkit is a testing tool for MVM framework in
distributed systems and grids and it is still work in
progress. We have used the Apache web server

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

2.0.52, gSOAP 2.7.0 [15], Globus 3.2.1[16], POSIX
IPC, POSIX Threads, and BSD Sockets, running
under Fedora Core 3 Linux systems (kernel 2.6.9)
for our implementation and various experiments.
The current features of MVM toolkit are as follows:

(1) Source-code level grid job distribution:
Traditional computing architectures, such as MPI
and PVM, need to recompile jobs for every
participating node at deployment time. In addition,
one must connect each machine, update each
program, and recompile or reconfigure them for
each job scenario. Within the MVM framework,
users modify job profiles and MVM automatically
reconfigures, deploys and runs the system.

(2) Component-based grid job (re)configuration:
In the MVM framework, each user sends a job
profile to a resource broker to request a unique
runtime environment for each resource usage case.
The MVM toolkit takes the job profile data structure
and renders it as a SOAP document intended to
provide resource sharing over grid environments
using standard web services.

(3) Virtual network approach for grid job
execution: Each user can create a virtual network at
runtime, specifying the virtual topology for grid
jobs. All connectivity information is determined
outside the grid application, allowing reuse or
redeployment of grid communication patterns.

(4) P2P Web services and P2P socket approach:
Each node has both server and client modules for
socket and web services. This means that each node
publishes its service using WSDL and accesses other
nodes using a SOAP interface. Additionally, similar
transactions can happen through traditional sockets.

(5) On-demand creation and termination: The
MVM processes do not have to run continuously.
Whenever a node is invoked from other nodes, it can
initialize itself and launch tasks for a particular use.

In more detail, the “on-demand” creation and
termination mechanism for the MVM is as follows:
a. Only the server runs for each node and the

MVM process is not loaded yet.
b. After contacting a bootstrap node, the MVM

client retrieves the broker address and invokes
the components of the broker node by using
SOAP. The MVM client sends a job profile
data structure to the broker node at this phase.

c. The MVM process is loaded by the SOAP
invocation, and the process instantiates the
MVM proxy and the MVM queue threads, if
required.

d. The broker node selects a job group and
awakens all the nodes in that job group. Each
node in a job group instantiates its proxy and
queue-level VM module if required.

e. Each node communicates with other nodes by
using its proxy with BSD sockets.

f. The broker node generates the job instantiation
messages for each participating node, and
sends these messages to each participating
node in a concurrent way. According to the job
instantiation messages, queue-level VM
spawns child processes and initializes the inter-
process communication (IPC) subsystem.
Processes in a local host enqueue or dequeue
their data and instructions via IPC, and
processes between different hosts enqueue or
dequeue their data via their proxies.

g. When a job has finished its operation, it reports
to its resource broker. The resource broker then
broadcasts a job termination message to a job
group. A proxy module for each job group
reads the message, and sends a terminate signal
to all on-demand created processes.

Using various services within Globus, we have
tested the MVM framework by writing codes that
are semantically equivalent to those of a series of
programs developed under Globus using MPICH2
[17]. The MVM framework properly, dynamically,
creates the proper topologies to run the various job
instances. Although the job run-time performances
are lacking, relative to MPICH2, this is due to the
fact that the current MVM model is not performance
optimized at the API level. Further, it is important
to note that, in contrast to MPI based programming,
all topology considerations are dealt with exclusive
to the program and within MVM itself.

5 Conclusion and Future Work

In this paper we have presented an architecture for a
Multi-layered Virtual Machine design intended to
provide a foundational mechanism for supporting
virtual laboratory infrastructure.

Through the use of virtualization we have
reduced, if not eliminated, the costs associated with
topology configuration and the deployment of codes
on a grid. We described how virtualization
technology can provide runtime flexibility and
automation for grids. By specifying virtual topology
and network information outside, rather than inside,
source codes, we may reuse grid communication
patterns by reusing virtual topologies.

In our framework, multi-layered virtual machines
can also be created and destroyed “on-demand”.
This capability provides further flexibility and
automation in grid environments. It lessens the need

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

for manual effort and intervention in configuring
and deploying jobs, thereby reducing management
and maintenance costs.

We have not yet implemented all features of our
system. We envision enhancing our
“reconfigurability” mechanism as a policy-based
web service. In the spirit of autonomic computing,
automatic runtime policy reconfiguration and
enforcement will permit our virtual machines to be
self-configuring to some degree.

The implementation and testing of interface
modules for existing OS-level VMs has to be
extended to complete our framework. Specifically,
in the area of security, we aim to implement a grid-
based trust system and protection against malicious
codes and attacks.

We are also planning to extend our virtual data
communication interface model to optical networks
and wireless networks. Hence, we plan to
incorporate User-Controlled Light Path (UCLP) [18]
services into the MVM framework by using our
component-level VM layer services.

References:
[1] P.D. Preney, R.D. Kent, "Toward a Model of

Models. Part 1", High Performance Computing
Systems and Applications, Andrew Pollard et al,
eds, Kluwer Academic Publisher, pp:33-38,
2000.

[2] Object Management Group, "OMG Technology
Explained", webpage: http://www.omg.org,
2001.

[3] J. Sugerman, G. Venkitachalam, B. H. Lim,
“Virtualizing I/O Devices on VMware
Workstation's Hosted Virtual Machine Monitor”,
USENIX Annual Technical Conference, pp: 1-
14, USENIX Association, 2001.

[4] I. Krsul, A. Ganguly, J.Zhang, J. A. B. Fortes, R.
Figueiredo, “VMPlants: Providing and
Managing Virtual Machine Execution
Environments for Grid Computing”, SC 2004,
webpage: http://www.sc-
conference.org/sc2004/schedule/
pdfs/pap305.pdf, 2004.

[5] X. Jiang, D. Xu, “SODA: a Service-On-Demand
Architecture for Application Service Hosting
Utility Platforms”, IEEE International
Symposium on High Performance Distributed
Computing (HPDC-12), pp:174-183, 2003.

[6] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. Lam, M. Rosenblum, “Optimizing the
Migration of Virtual Computers”, ACM SIGOPS
Operating Systems Review, vol. 36, Issue: SI, pp:
377-390, 2002.

[7] M. Flynn, "Very High-Speed Computing
Systems" , Proc. of the IEEE, vol. 54, Issue:12,
pp:1901-1909, 1966.

[8] N. Daswani, H. Garcia-Molina, “Query-Flood
DoS Attacks in Gnutella”, ACM CCS, pp: 181 -
192, 2002.

[9] J.L. Träff, “Implementing the MPI Process
Topology Mechanism”, Proc. of the 2002
ACM/IEEE conference on Supercomputing, pp:
1-14, 2002.

[10] Kent, R.D., Majmudar, N., Schlesinger, M.,
“Distributing Fast Fourier Transform Algorithms
for Grid Computing”, High Performance
Computing Systems and Applications, Kluwer
Academic Publishers, Nikitas J. Dimopoulos
(eds.), pp:407-426, 2001.

[11] K. Appleby, S.B.Calo, J.R. Giles, K.W. Lee,
“Policy-based automated provisioning”, IBM
Systems Journal, vol. 43, num. 1, utility
computing, webpage:
http://www.research.ibm.com/journal/sj/431/app
leby.html, 2004.

[12] I. Foster, C. Kesselman, S. Tuecke, "The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations," International J.
Supercomputer Applications, vol.15, Issue:3,
pp:200-222, 2001.

[13] W. Zhau, C. Meinel, “Implementing role based
access control with attribute certificates”, Proc.
Of the 6th International Conference on
Advanced Communication Technology(ICACT
2004), vol. 1, pp:536-541, 2004.

[14] Joshi, J.B.D. Bhatti, R. Bertino, E. Ghafoor,
A., “Access-Control Language for Multidomain
Environments", Internet Computing, IEEE, vol.8,
Issue:6, pp: 40-50, 2004.

[15] gSOAP 2.7.0, webpage: http://www.cs.fsu.edu
/~engelen/soap.html.

[16] Globus 3.2.1, webpage: http://www-
unix.globus.org/toolkit/downloads/3.2.1/

[17] MPICH2 v.1.0.1, webpage: http://www-
unix.mcs.anl.gov/mpi/mpich2/

[18] UCLP: User-Controlled LightPaths, webpages:
http://www.canarie.ca/canet4/uclp/

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp7-12)

