

Automated Neural Network Structure Determination via Discrete
Particle Swarm Optimization (for Non-Linear Time Series Models)

Alex Kalos

Research & Engineering Sciences, Core Research & Development
The Dow Chemical Company

Freeport, Texas, 77541
USA

Abstract: - Due to their universal function approximation capability, artificial neural networks have enjoyed
widespread use from research and engineering, to finance and banking applications. However, there are two
barriers to their acceptance as mainstream data mining tools: 1) the trial-and-error nature of designing the
optimal structure, suitable for a particular application and 2) difficulty of interpretation of results. In this paper,
we attempt to address the former aspect by describing the use of a discrete version of Particle Swarm
Optimization for automating the design of neural networks. The methodology is applied to a case study for
selecting the optimal structure for multivariate nonlinear time series models for the day-ahead forecasting of
electricity prices.

Key-Words: - Neural network structure optimization, Discrete Particle Swam Optimization

1 Introduction
With the exception of self-organizing maps (SOM),
particularly Kohonen type networks which are
inherently self-adaptive [1], [2], [3], the general class
of feedforward neural networks has traditionally
required a fair amount of manual tuning and
manipulation. Because of this, despite their universal
function approximation capability [4], neural
networks are often avoided or even viewed with
mistrust and this has provided a barrier to their use by
non-experts. Contributions have been made recently
addressing various aspects of this general problem,
including self-tuning of network training parameters
[5], automated determination of the number of inputs
via genetic algorithms [6], improvements in the
training algorithms for radial basis function networks
[7] and automated basis function selection [8], and the
use of alternate training algorithms instead of back
propagation, such as genetic programming [9], or
Levenberg-Marquardt optimization [10] for
estimating network weights. Evolutionary computing
techniques have been used to cooperatively co-evolve
sub-components of neural network structures [11].
 Recently, we reported a heuristic method of
growing neural network structures via combinatorial
exhaustive search of various network structural
elements, such as the variable input pattern, the
number of nodes in the hidden layer and the lag
structure in nonlinear time series models [10].
 Although the heuristic exhaustive search approach
guarantees finding the optimal structure, it is
computationally intensive requiring the evaluation of

a very large number of neural networks. On the other
hand, the heuristic method also showed that several
suitable models exist, near the optimum point.
Therefore, it appeared reasonable to attempt to cast
the heuristic approach within an optimization
framework, with the expectation that even if the
“best” possible structure could not be found, at least
one or several useful models would be obtained. We
considered the use of various optimization techniques
and finally settled on Particle Swarm Optimization
(PSO) because it is a) relatively simple to implement,
b) has a small number of control parameters and it is
robust in the sense that one set of parameters is
suitable for a variety of applications, with explicit
control over the exploration vs. exploitation modes,
and c) because of its population-oriented nature, it has
the potential to return an entire set of near-optimum
models.
 The methodology is applicable to classical “static”
feed-forward neural networks. Here, we use it for
developing nonlinear multivariate autoregressive time
series forecasting models for energy price indices
(natural gas and electrical price indices). The system
was implemented in Mathematica [12].

2 Methodology
2.1 General Problem
The general problem we wish to solve falls in the
class of multivariate autoregressive models (1).
Elements that need to be tuned include the number

and identity of inputs (i.e., which of the potential
candidate variables to include), the number of nodes
in the hidden layer of the network and the optimal lag
structure:

))()..1(),()...1(()(ˆ kkk Ltxtxltytyfty −−−−= (1)

where, k=1…p, p is the number of x (input) variables,
y is the output variable, t is time, l and Lk are the lag
steps for the y and each of the x variables respectively,
and ŷ is the predicted output.
 In the case study discussed later, we wish to find a
network that can make a step-ahead prediction for an
energy index (e.g., the natural gas opening price on
the New York Mercantile Exchange (NYMEX)),
based on historical data of that index as well as other
energy price indices and related data. Ideally, the best
combination of elements would be found
automatically within an optimization framework.

2.2 Optimization Framework
2.2.1 Classic Particle Swarm Optimization (PSO).
PSO is a stochastic optimization technique inspired by
bird flocking or fish schooling that was introduced by
Kennedy and Eberhart [13], [14]. It shares many
features with other evolutionary techniques in that it
is population based and uses random techniques to
search for the optimum fitness, however, unlike
genetic algorithms it has no evolutionary operators
such as crossover or mutation. In PSO, particles are
“thrown” into the search/state space and they “fly” in
this space by adjusting their position in a direction
that is essentially a weighted average of three possible
components: the direction that the particle is already
on, the direction of its best prior fitness, and the
direction of the best fitness achieved by either the
particle’s neighbors or the entire population. The
contribution of each of these components can be
adjusted by control parameters. The basic algorithm
of classic PSO is shown in (2):

() ()

+=

−+−+=

++

+

11

,22,111

ttt

ttgttitt

vxx

xprcxprcvv

(2)

where,

rates n"exploratio" and on"exploitati" ,
 (0,1)between numbers andom ,

 step at time position, previousbest global
 step at time position, previousbest sparticle'

 step at timeposition sparticle'
 step at time velocity sparticle'

21

21

,

,

=
=

=

=
=
=

cc
rrr

tp
tp

tx
tv

tg

ti

t

t

Many variations of the basic algorithm have been
reported, including hybrids of PSO with other local
optimizers [15].
 One reason for selecting PSO particularly for this
application, where automation is the primary
motivation, is that it has few adjustable parameters,
and it is robust in the sense that one version with a
few slight modifications can work well for a wide
range of problems.

2.2.2 Adaptation of PSO to Operate in Discrete
Parameter Space.
Generally, in the classic version of PSO, both the
parameter search space and the state space are
continuous. In our case, the state space (i.e., the
fitness function RMSE, resulting from neural network
evaluation) is continuous, but the parameter search
space is discrete. We need to have integers, not
fractional values, for the number of nodes (M) and
the number of lag steps (L), IntegersLM ∈),(.
Also, a certain input variable to the network is either
used or is not. In the later case, the parameters are
binary. Binary versions of PSO have been reported
[16]. It is relatively easy to formulate a generalized
version of PSO, discrete in the search space, by
restricting velocity step changes to take on only
integer values and as a consequence for the positions
to also be integers, Integersvx ∈),(in (2). For
example, for a given range in velocity changes of {-
10, 10}, the following velocity changes are calculated
(see Table 1). The Velocity for several iterations are
shown, which result in the positions shown in Table 2.

Table 1. Velocity changes via discrete PSO for a 5-
particle population in a dimension with velocity range
{-10,10}.

 Velocity Changes
i P1 p2 p3 p4 p5
1 -8 -7 8 -3 -3
2 -8 2 8 0 -2
3 -8 10 -2 3 -4
4 4 3 -8 2 -4
5 10 -8 -2 -1 2
6 10 -6 7 -2 8
7 -5 5 6 1 8
8 -8 10 -3 4 8
9 2 2 -8 2 -2

10 9 -8 -2 2 -8
11 2 -6 7 -1 -2

Table 2. Particle positions after discrete velocity
adjustments shown in Table 1.

 Particle Positions
i P1 p2 p3 p4 p5
1 18 7 24 18 15
2 10 8 31 18 14
3 2 18 28 21 10
4 6 21 20 22 6
5 16 12 18 21 8
6 26 6 25 18 16
7 21 11 30 19 24
8 12 21 27 22 31
9 14 22 20 24 28

10 23 14 18 26 20
11 26 8 25 25 18

2.2.3 Encoding/Decoding of Input Variable
Patterns
In driving toward implementing the evolution of
neural network structures within an optimization
framework, it would be convenient to represent
possible input variable patterns as a single numbers,
rather than combinatorial lists. The optimizer would
then manipulate a single number, instead of the actual
variable patterns themselves. For example, if we have
three input variables to the neural network, the
following is the complete set of possible variable
patterns: {{1}, {2}, {3}, {1,2}, {1,3}, {2,3},
{1,2,3}}.
 In our initial explorations, where we performed an
exhaustive evaluation of all possible variable patters,
this was indeed the way we would generate such
patterns - the algorithm would then step through each
pattern and evaluate each of these patterns as
individual neural networks. Now, in our optimization
approach, we aim for the optimizer to choose to
generate neural nets for only a small subset of these
patterns.
 One approach would be to have the optimizer
explicitly control the presence/absence of each
variable. For example, we could have the optimizer
generate patterns like {0, 0, 1}, {0, 1, 0}, {1, 0 1},
etc, where the first pattern would mean to use only the
third input variable, and the last pattern would
indicate to use input variables one and three. There
are two problems with this approach: a) as the number
of input variables increases we would end up with a
high-dimensional but rather shallow parameter search
space, and b) which is more of an implementation
issue, due to how the optimizers are set up, each of
the input variables would have to be coded as a
specific optimization parameter, which would require
some wrapper around the function in order to make it

generic, as the number of variables change from
problem to problem.
 An alternative would be to let the optimizer
manipulate just one number. This number would
essentially take the range of the 2p - 1(where p is the
number of variables). For example, again for three
potential input variables, the maximum value for this
optimization parameter would be 7. The binary
representation of 7 is 111, the list-oriented
representation being {1, 1, 1}. The optimizer would
then be constrained to generate an integer between 0
and 7. So, for this example, the value (0 or 1) of each
binary digit in this number would indicate whether the
corresponding variable would be used.
 In addition to permitting a very simple and
compact representation of potentially complex
variable patterns via just a single integer, what is also
useful about this is that it can significantly cut down
the number of parameters that have to be explicitly
manipulated by the optimizer, so this should speed up
computing. As it is, what goes on inside the objective
function is so complex and non-linear already, using a
single indirectly manipulated variable vs. many
directly manipulated ones, should not be of
consequence in terms of "contributing" to the non-
linear behavior. Furthermore, this representation
paves the way for potential implementation using
other evolutionary techniques (e.g., genetic
algorithms) which work well using binary encoded
representations.
 Finally, this approach facilitates visualization of
the optimization process. For example, it is easy to
see all twelve input variables on one 2-dimensional
plot). In addition, the methodology is easy to extend.
Such an extension is explored later, where the lag
structure is “tied” to the input variable pattern.

2.3 Neural Network Evaluation – Fitness
Function
To generate the fitness values, we evaluate the neural
networks according to the procedure that was reported
for heuristically growing of neural networks [10]. A
brief overview is provided below:

2.3.1 Data Pre-processing
We partition the data into three sets: the training set
(consisting of the estimation, validation subsets), and
the test set. There are various strategies for
partitioning the data. Since we are building time series
models, we have opted to partition the data such that
the sets are consecutive in time. This kind of
partitioning allows to objectively evaluate our
models’ performance in the future. We try to adhere

as much as possible to the 80/20 split [17] between
the training/test sets, so we end up with, i.e., 60:20:20
for estimation, validation, and test sets respectively.
Finally, the target output variable as well as all
potential input variables are standardized to avoid
instabilities in the resulting neural network models
[4].

2.3.2 Neural Network Weight Estimation
The Levenberg-Marquardt (LM) [18] optimization
method is used for estimating the network weights
[19]. This method is a hybrid of the Gauss-Newton
(NG) conjugate-gradient method and of the steepest
descent (SD) method, as a result it works well for ill-
defined minimization problems (i.e., where the
Hessian is ill-defined [4]). Equation (3) shows the
learning law for the LM method:

∆w = – (JTJ + λI)-1JTε (3)

where ε is the error vector, J is the Jacobian of the
error vector with respect to the weights, JT is the
transpose of the Jacobian, I is the identity matrix and
λ is the control parameter.
 The LM method is more robust than standard back
propagation (SB) [20], due to this switching between
the two modes, which ensures less entrapment in local
minima, with quick search at near minimum
conditions. On the other hand SB, being strictly a
steepest descent method, is more prone to getting
stuck in local minima, requiring manual tuning of the
momentum parameter. The other advantage of LM is
that the control parameter is manipulated
automatically, and so it is preferred especially in this
type of application which requires a large number of
unattended runs.
 The stop-search (or early stopping) method of
cross-validation is used for determining the optimal
set of weights for a given neural network [4], [21],
[22]. With this method (see Figure 1), the weights are
adjusted during training on the basis of the root mean-
squared error (RMSE) shown in (4), of the estimation
data set, but the accepted set of weights is that which
corresponds to the minimum RMSE for the validation
data set.

∑
=

−=
N

i
kiii xwfy

N
RMSE

1

2)),((1

(4)

for k=1…p, where p is the number of x (input)
variables, y is the measured output variable, N is the
number of (xki, yi) observations, w is the weight vector
determined during training, and f is the neural
network model.

0 2 4 6 8 10 12 14 16 18 20Iterations

0.1

0.2

0.3

0.4

RMSE

Estimation set

R
M

SE Validation set

Minimum

Fig. 1. Illustration of the Stop-Search Method of
Cross-Validation.

3 Case Study
We wish to find a model to forecast the day-ahead on-
peak electricity price in the southern region of the
United States. Daily values of on-peak and off-peak
electricity prices from various regions in the United
States from the Electric Reliability Council of Texas
(ERCOT) database [23], as well as natural gas prices
from the New York Mercantile Exchange (NYMEX)
database [24] are used (see Table 3). The data spans
from 8-March-2002 to 24-Feb-2004, a total of 493
data points with a 64%:18%:18% split between the
estimation, validation and test sets respectively.

Table 3. Variables used in Case Study

Variable Description
x1 Seller on-peak electricity price
x2 North USA on-peak electricity price

x3
Houston USA on-peak electricity
price

x4 West USA on-peak electricity price
x5 North USA off-peak electricity price

x6
Houston USA off-peak electricity
price

x7 West USA off-peak electricity price
x8 South USA off-peak electricity price
x9 NYMEX natural gas opening price
x10 NYMEX natural gas high price
x11 NYMEX natural gas low price
x12 NYMEX natural closing price
y South USA on-peak electricity price

3.1 Optimization Runs
3.1.1 Neural Networks with a Constant Number
of Nodes and a Fixed lag structure (Case 1)
This is the simplest case, where the number of nodes
in the single hidden layer is kept fixed to M=3, and
the number of lags is also kept fixed to L=4. Only the

variable pattern, encoded to vary from 1 to 212 - 1 =
4095, as described in section 2.2.3, is controlled by
PSO.

3.1.2 Neural Networks with a Variable Number of
Nodes and a Fixed Lag Structure (Case 2)
In this case, the number of nodes is also a parameter
optimized by PSO, but it is an ordinary parameter (not
encoded as is the input variable pattern) and is
allowed to vary between {0, 3}, inclusive.

3.1.3 Optimization Including the Lag Structure
(Cases 3 and 4)
The simplest way of allowing optimization of the lags
is to use one global parameter for all variables in the
input variable pattern. In this case, the value returned
by PSO is used to set the number of lag steps between
{1, Lmax}, inclusive. The value of Lmax is determined
by examining the spectral density plots and
autocorrelation plots from classical auto regressive/
moving average (ARMA) time series analysis [25].
For this case study the value Lmax = 4 was used. This
is a somewhat rigid lag structure in that every input
variable has to use the same number of lag steps and
the same offset from the y variable.

Table 4. Decoding of the Lag Structure
Corresponding to the Optimizer Manipulated
Parameter for a 2-Lag Step Input Variable

Manipulated
parameter

Lag
structure

Meaning

0 {0 ,0, 0}
variable not used at
all

1 {0 ,0, 1}
variable only, no
lags

2 {0 ,1, 0} t-1 lag step only

3 {0 ,1, 1}
variable and t-1 lag
step

4 {1 ,0, 0} t-2 lag step only

5 {1 ,0, 1}
variable and t-2 lag
step

6 {1 ,1, 0}
t-1 and t-2 lag
steps

7 {1 ,1, 1}
variable and both
lag steps

 Another approach to incorporate a more flexible
lag structure into the optimization framework would
be to “tie” the lags to the input variable pattern.
Otherwise, if the input variable pattern and lag
structure are decoupled, the optimizer may generate
lag structures for non-existent input variable patterns
or visa-versa. To accommodate this, an extension of
encoding/decoding scheme can be used where each
input variable and its corresponding lag structure is

represented by a single number. For example, if an
input variable has a maximum of two lag steps the
manipulated parameter would range from 0 to 7, and
each value would correspond to the pattern shown in
Table 4. The disadvantage of this approach is that for
our case study, we would have 13 parameters to
optimize instead of 3; 12 coded variables for each
input and its corresponding lag structure, plus 1 for
the number of nodes, as opposed to 1 coded variable
for all 12 inputs, plus 1 for the number of nodes, plus
1 for the global number of lag steps.

3.2 Evaluation of Optimization Performance
The main observations are that by using discrete PSO:
a) we often found at least one model with the best or
at least a near-best fitness value, and b) we did so with
a substantially reduced number of neural network
evaluations that would have been required otherwise.
 To illustrate, we first performed one exhaustive
evaluation of all networks that can be constructed
from all possible combinations of the 12 input
variables (singlets, pairs, triplets, etc), with 0 to 3
nodes (Case 3, for a total of 16380 networks); and
another, where the number of lag steps was also
varied between 1 to 4 (Case 4, for a total of 65520
networks). It is noted that when the number of nodes
is 0, this reduces to a linear system. The plot of the
fitness values for Case 3 is shown in Fig. 2. The
corresponding plot for Case 4 is shown in Fig 3. The
plot of the top 200 models with the fitness values
sorted according to best fitness (lowest RMSE) for
case 3 is shown in Fig. 4.

Fig. 2. Fitness values for Case 3.

 For each of these cases, 100 PSO runs were
executed. Each run for Case 3 was set up with the
following PSO parameters: 20 particles, 20 iterations,
with exploitation rate of 1.0, and exploration rate of
0.5. The same parameters were used for Case 4,
except that the number of iterations was set to 40. The
results for Case 3 are shown in Table 5.

Fig. 3. Fitness values for Case 4.

Fig. 4. Fitness values for the top 200 models of Case
3, sorted from best to worst (left to right).

Table 5. Performance of Discrete PSO for Case 3.

Ranking
of

Fitness
value (%)

Number
of

Solutions
with this
rank or

less

Percent
of PSO

runs
0.1 16 24
0.2 33 37
0.3 49 54
0.4 66 71
0.5 82 76
0.6 98 85
0.7 115 90
0.8 131 93
0.9 147 94
1.0 164 98

 The first entry in the table shows that 24% of the
PSO runs found at least one of the top 0.1% best
fitness values (16 out of 16380 possible values). The
last entry shows that 98% of the PSO runs found at
least one of the top 1% best fitness values. Usually,
several “hits” were found in each category. While,
sometimes a hit would be found after the first
iteration, other times it was found at the last iteration.
The overall mean iteration count for finding at least
one model with a fitness value among the top 1% of

the best models was 10. This corresponds to an
average of 200 neural net evaluations, out of a total
16380 possible (or 1.2%).
 The corresponding results for Case 4 are shown in
Table 6. In this case, the overall mean iteration count
for finding a model with a fitness in the top 1% of the
top models, was 0.7%, 440 neural net evaluations out
of a total possible 65520.

Table 6. Performance of Discrete PSO for Case 4.

Ranking
of

Fitness
value (%)

Number
of

Solutions
with this
rank or

less

Percent
of PSO

runs
0.1 66 29
0.2 131 59
0.3 197 75
0.4 262 88
0.5 328 92
0.6 393 98
0.7 459 100
0.8 524 100
0.9 590 100
1.0 655 100

4 Conclusions
We have developed a discrete version of Particle
Swarm Optimization and used it to select structural
design elements to automatically construct feed-
forward multivariate neural networks. We applied the
methodology to develop nonlinear time series models
for predicting day-ahead electricity prices. We found
that PSO works well for this application and is able to
consistently find useful, near-optimum models,
requiring a relatively small number of neural network
evaluations.

References:
[1] T. Kohonen, Self-Organizing Maps, Springer,

Berlin, 1997.
[2] G. Leng, G. Prasad, and T.M. McGinnity, An on-

line algorithm for creating self-organizing neural
networks, Neural Networks, 17, 2004, pp.487-
493.

[3] B. Hammer, A. Micheli, A. Sperduti, and M.
Strickert, Recursive self-organizing network
models Neural Networks, 17, 2004, pp. 1061-
1085.

[4] S. Haykin, Neural Networks: A Comprehensive
Foundation, Second Edition, Prentice Hall, New
Jersey, 1999

[5] C-T. Chen and W-D. Chang, A Feedforward
Neural Network with Function Shape Auto-
tuning, Neural Networks, Vol. 9, No. 4, 1996,
pp.627-641.

[6] S-K. Oh and W. Pedrycz, A new approach to self-
organizing multi-layer fuzzy polynomial neural
networks based on genetic optimization,
Advanced engineering Infomatics, 18, 2004, pp.
29-39.

[7] I. Pitas, C. Kotropoulos, N. Nikolaidis, and A.
Bors, Robust and Adaptive Techniques in Self-
Organizing Neural Networks, Nonlinear Analysis,
Theory & Applications, Vol. 30, No. 7, 1997, pp
4517-4528.

[8] A. Ghodi and D. Schuurmans, Automatic basis
selection techniques for RBF networks, Neural
Networks, 16, 2003, pp. 809-816.

[9] D. B. Fogel, L. J. Fogel, and V. W. Porto,
Evolving Neural Networks, Biol. Cybern., 66,
1990, pp. 487-493.

[10] A. N. Kalos, Automated Heuristic Growing of
Neural Networks for Nonlinear Time Series
Models, IEEE International Joint Conference On
Neural Networks, Montreal, Canada, 2005, in
press.

[11] N. Garcia-Pedrajas, C. Hervas-Martinez, and J.
Munoz-Perz, Multi-objective cooperative
coevolution of artificial neural networks (multi-
objective cooperative networks), Neural
Networks, 15, 2004, pp. 1259-1278.

[12] Mathematica 5.0 by Wolfram Research,
http://www.wolfram.com. The Neural Networks
package is an add-on component to the standard
Mathematica software and must be purchased
separately.

[13] J. Kennedy and R. C. Eberhart, Particle Swarm
Optimization, IEEE International Conference on
Neural Networks, Perth, Australia, IEEE Service
Center, Piscataway, NJ, 1995.

[14] J. Kennedy, R.C. Eberhart, and Y. Shi, Swarm
Intelligence, San Francisco: Morgan Kaufmann,
CA, 2001.

[15] S. R. Katare, A. N. Kalos, D. H. West, A Hybrid
Swarm Optimizer for Efficient Parameter
Estimation, Proceedings of the 2004 Congress on
Evolutionary Computation, CEC2004, Portland,
Oregon, June 19-23, 2004, pp. 309-315.

[16] Kennedy, J. and R. C. Eberhart, A discrete binary
version of the particle swarm algorithm,
International Conference on Systems, Man, and
Cybernetics, 1997.

[17] M. Kearns, A bound on error of cross validation
using the approximation and estimation rates,
with consequences for the training-test split,
Advances in Neural Information Processing
Systems, Vol. 8, Cambridge, MA, 1996, pp. 183-
189.

[18] D.W. Marquardt, Journal of the Society for
Industrial and Applied Mathematics, vol. 11,
1963, pp. 431-441.

[19] R. Fletcher, Practical Methods of Optimization,
John Wiley & Sons, Chippenham, Great Britain,
1987.

[20] P. J. Werbos, Beyond regression: New tools for
prediction and analysis in the behavioral
sciences, Ph.D. Thesis, Harvard University,
Cambridge, MA, 1974.

[21] J. Sjoberg and L. Ljung, Overtraining,
Regularization, and Searching for Minimum with
Application to Neural Nets, Int. J. Control, vol.
62, no. 6, 1995, pp. 1391–1407.

[22] J. Sjoberg and M. Viberg, Separable Non-linear
Least-squares minimization—Possible
Improvements for Neural Net Fitting, IEEE
Workshop in Neural Networks for Signal
Processing, Amelia Island Plantation, Florida,
Sep. 24–26, 1997, pp. 345–354.

[23] Electric Reliability Council of Texas (ERCOT),
http://www.ercot.com/.

[24] New York Mercantile Exchange (NYMEX),
http://www.nymex.com/.

[25] G. Box, G. Jenkins, and G. Reinsel, Time Series
Analysis - Forecasting and Control, Third
Edition., Pearson Education, Inc, 1994.

