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Abstract: - Due to their universal function approximation capability, artificial neural networks have enjoyed 
widespread use from research and engineering, to finance and banking applications.  However, there are two 
barriers to their acceptance as mainstream data mining tools: 1) the trial-and-error nature of designing the 
optimal structure, suitable for a particular application and 2) difficulty of interpretation of results.  In this paper, 
we attempt to address the former aspect by describing the use of a discrete version of Particle Swarm 
Optimization for automating the design of neural networks.  The methodology is applied to a case study for 
selecting the optimal structure for multivariate nonlinear time series models for the day-ahead forecasting of 
electricity prices. 
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1 Introduction 
With the exception of self-organizing maps (SOM), 
particularly Kohonen type networks which are 
inherently self-adaptive [1], [2], [3], the general class 
of feedforward neural networks has traditionally 
required a fair amount of manual tuning and 
manipulation. Because of this, despite their universal 
function approximation capability [4], neural 
networks are often avoided or even viewed with 
mistrust and this has provided a barrier to their use by 
non-experts.  Contributions have been made recently 
addressing various aspects of this general problem, 
including self-tuning of network training parameters 
[5], automated determination of the number of inputs 
via genetic algorithms [6], improvements in the 
training algorithms for radial basis function networks 
[7] and automated basis function selection [8], and the 
use of alternate training algorithms instead of back 
propagation, such as genetic programming [9], or 
Levenberg-Marquardt optimization [10] for 
estimating network weights.  Evolutionary computing 
techniques have been used to cooperatively co-evolve 
sub-components of neural network structures [11]. 
     Recently, we reported a heuristic method of 
growing neural network structures via combinatorial 
exhaustive search of various network structural 
elements, such as the variable input pattern, the 
number of nodes in the hidden layer and the lag 
structure in nonlinear time series models [10].   
     Although the heuristic exhaustive search approach 
guarantees finding the optimal structure, it is 
computationally intensive requiring the evaluation of 

a very large number of neural networks.  On the other 
hand, the heuristic method also showed that several 
suitable models exist, near the optimum point.  
Therefore, it appeared reasonable to attempt to cast 
the heuristic approach within an optimization 
framework, with the expectation that even if the 
“best” possible structure could not be found, at least 
one or several useful models would be obtained.  We 
considered the use of various optimization techniques 
and finally settled on Particle Swarm Optimization 
(PSO) because it is a) relatively simple to implement, 
b) has a small number of control parameters and it is 
robust in the sense that one set of parameters is 
suitable for a variety of applications, with explicit 
control over the exploration vs. exploitation modes, 
and c) because of its population-oriented nature, it has 
the potential to return an entire set of near-optimum 
models. 
     The methodology is applicable to classical “static” 
feed-forward neural networks.  Here, we use it for 
developing nonlinear multivariate autoregressive time 
series forecasting models for energy price indices 
(natural gas and electrical price indices).  The system 
was implemented in Mathematica [12]. 
 
 
2 Methodology 
2.1 General Problem 
The general problem we wish to solve falls in the 
class of multivariate autoregressive models (1). 
Elements that need to be tuned include the number 



   
   
   
   
  

and identity of inputs (i.e., which of the potential 
candidate variables to include), the number of nodes 
in the hidden layer of the network and the optimal lag 
structure:  

))()..1(),()...1(()(ˆ kkk Ltxtxltytyfty −−−−= (1) 
 
where, k=1…p, p is the number of x (input) variables, 
y is the output variable, t  is time, l and Lk are the lag 
steps for the y and each of the x variables respectively, 
and ŷ is the predicted output.   
     In the case study discussed later, we wish to find a 
network that can make a step-ahead prediction for an 
energy index (e.g., the natural gas opening price on 
the New York Mercantile Exchange (NYMEX)), 
based on historical data of that index as well as other 
energy price indices and related data.  Ideally, the best 
combination of elements would be found 
automatically within an optimization framework. 
 
 
2.2 Optimization Framework 
2.2.1 Classic Particle Swarm Optimization (PSO). 
PSO is a stochastic optimization technique inspired by 
bird flocking or fish schooling that was introduced by 
Kennedy and Eberhart [13], [14].   It shares many 
features with other evolutionary techniques in that it 
is population based and uses random techniques to 
search for the optimum fitness, however, unlike 
genetic algorithms it has no evolutionary operators 
such as crossover or mutation.  In PSO, particles are 
“thrown” into the search/state space and they “fly” in 
this space by adjusting their position in a direction 
that is essentially a weighted average of three possible 
components: the direction that the particle is already 
on, the direction of its best prior fitness, and the 
direction of the best fitness achieved by either the 
particle’s neighbors or the entire population.  The 
contribution of each of these components can be 
adjusted by control parameters.  The basic algorithm 
of classic PSO is shown in (2): 
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Many variations of the basic algorithm have been 
reported, including hybrids of PSO with other local 
optimizers [15].   
     One reason for selecting PSO particularly for this 
application, where automation is the primary 
motivation, is that it has few adjustable parameters, 
and it is robust in the sense that one version with a 
few slight modifications can work well for a wide 
range of problems. 
 
2.2.2 Adaptation of PSO to Operate in Discrete 
Parameter Space. 
Generally, in the classic version of PSO, both the 
parameter search space and the state space are 
continuous.  In our case, the state space (i.e., the 
fitness function RMSE, resulting from neural network 
evaluation) is continuous, but the parameter search 
space is discrete.  We need to have integers, not 
fractional values, for the number of nodes (M) and  
the number of lag steps (L), IntegersLM ∈),( .  
Also, a certain input variable to the network is either 
used or is not.  In the later case, the parameters are 
binary.  Binary versions of PSO have been reported 
[16].  It is relatively easy to formulate a generalized 
version of PSO, discrete in the search space, by 
restricting velocity step changes to take on only 
integer values and as a consequence for the positions 
to also be integers, Integersvx ∈),( in (2).   For 
example, for a given range in velocity changes of {-
10, 10}, the following velocity changes are calculated 
(see Table 1).  The Velocity for several iterations are 
shown, which result in the positions shown in Table 2. 
 
Table 1.  Velocity changes via discrete PSO for a 5- 
particle population in a dimension with velocity range 
{-10,10}. 

 Velocity Changes 
i P1 p2 p3 p4 p5 
1 -8 -7 8 -3 -3 
2 -8 2 8 0 -2 
3 -8 10 -2 3 -4 
4 4 3 -8 2 -4 
5 10 -8 -2 -1 2 
6 10 -6 7 -2 8 
7 -5 5 6 1 8 
8 -8 10 -3 4 8 
9 2 2 -8 2 -2 

10 9 -8 -2 2 -8 
11 2 -6 7 -1 -2 

 
 



   
   
   
   
  

Table 2.  Particle positions after discrete velocity 
adjustments shown in Table 1. 

 Particle Positions 
i P1 p2 p3 p4 p5
1 18 7 24 18 15
2 10 8 31 18 14
3 2 18 28 21 10
4 6 21 20 22 6
5 16 12 18 21 8
6 26 6 25 18 16
7 21 11 30 19 24
8 12 21 27 22 31
9 14 22 20 24 28

10 23 14 18 26 20
11 26 8 25 25 18

 
2.2.3 Encoding/Decoding of Input Variable 
Patterns 
In driving toward implementing the evolution of 
neural network structures within an optimization 
framework, it would be convenient to represent 
possible input variable patterns as a single numbers, 
rather than combinatorial lists.  The optimizer would 
then manipulate a single number, instead of the actual 
variable patterns themselves.  For example, if we have 
three input variables to the neural network, the 
following is the complete set of possible variable 
patterns: {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, 
{1,2,3}}. 
     In our initial explorations, where we performed an 
exhaustive evaluation of all possible variable patters, 
this was indeed the way we would generate such 
patterns - the algorithm would then step through each 
pattern and evaluate each of these patterns as 
individual neural networks.  Now, in our optimization 
approach, we aim for the optimizer to choose to 
generate neural nets for only a small subset of these 
patterns. 
     One approach would be to have the optimizer 
explicitly control the presence/absence of each 
variable. For example, we could have the optimizer 
generate patterns like {0, 0, 1}, {0, 1, 0}, {1, 0 1}, 
etc, where the first pattern would mean to use only the 
third input variable, and the last pattern would 
indicate to use input variables one and three.  There 
are two problems with this approach: a) as the number 
of input variables increases we would end up with a 
high-dimensional but rather shallow parameter search 
space, and b) which is more of an implementation 
issue, due to how the optimizers are set up, each of 
the input variables would have to be coded as a 
specific optimization parameter, which would require 
some wrapper around the function in order to make it 

generic, as the number of variables change from 
problem to problem. 
     An alternative would be to let the optimizer 
manipulate just one number. This number would 
essentially take the range of the 2p - 1(where p is the 
number of variables). For example, again for three 
potential input variables, the maximum value for this 
optimization parameter would be 7.  The binary 
representation of 7 is 111, the list-oriented 
representation being {1, 1, 1}.  The optimizer would 
then be constrained to generate an integer between 0 
and 7.  So, for this example, the value (0 or 1) of each 
binary digit in this number would indicate whether the 
corresponding variable would be used. 
     In addition to permitting a very simple and 
compact representation of potentially complex 
variable patterns via just a single integer, what is also 
useful about this is that it can significantly cut down 
the number of parameters that have to be explicitly 
manipulated by the optimizer, so this should speed up 
computing.  As it is, what goes on inside the objective 
function is so complex and non-linear already, using a 
single indirectly manipulated variable vs. many 
directly manipulated ones, should not be of 
consequence in terms of "contributing" to the non-
linear behavior.  Furthermore, this representation 
paves the way for potential implementation using 
other evolutionary techniques (e.g., genetic 
algorithms) which work well using binary encoded 
representations. 
     Finally, this approach facilitates visualization of 
the optimization process.  For example, it is easy to 
see all twelve input variables on one 2-dimensional 
plot).  In addition, the methodology is easy to extend.  
Such an extension is explored later, where the lag 
structure is “tied” to the input variable pattern. 
 
 
2.3 Neural Network Evaluation – Fitness 
Function 
To generate the fitness values, we evaluate the neural 
networks according to the procedure that was reported 
for heuristically growing of neural networks [10].  A 
brief overview is provided below: 
 
2.3.1 Data Pre-processing 
We partition the data into three sets: the training set 
(consisting of the estimation, validation subsets), and 
the test set.  There are various strategies for 
partitioning the data. Since we are building time series 
models, we have opted to partition the data such that 
the sets are consecutive in time.  This kind of 
partitioning allows to objectively evaluate our 
models’ performance in the future. We try to adhere 



   
   
   
   
  

as much as possible to the 80/20 split [17] between 
the training/test sets, so we end up with, i.e., 60:20:20 
for estimation, validation, and test sets respectively.  
Finally, the target output variable as well as all 
potential input variables are standardized to avoid 
instabilities in the resulting neural network models 
[4]. 
 
2.3.2 Neural Network Weight Estimation 
The Levenberg-Marquardt (LM) [18] optimization 
method is used for estimating the network weights 
[19].  This method is a hybrid of the Gauss-Newton 
(NG) conjugate-gradient method and of the steepest 
descent (SD) method, as a result it works well for ill-
defined minimization problems (i.e., where the 
Hessian is ill-defined [4]).  Equation (3) shows the 
learning law for the LM method:  

∆w = – (JTJ + λI)-1JTε (3) 
 
where ε is the error vector, J is the Jacobian of the 
error vector with respect to the weights, JT is the 
transpose of the Jacobian, I is the identity matrix and 
λ is the control parameter.  
     The LM method is more robust than standard back 
propagation (SB) [20], due to this switching between 
the two modes, which ensures less entrapment in local 
minima, with quick search at near minimum 
conditions.   On the other hand SB, being strictly a 
steepest descent method, is more prone to getting 
stuck in local minima, requiring manual tuning of the 
momentum parameter. The other advantage of LM is 
that the control parameter is manipulated 
automatically, and so it is preferred especially in this 
type of application which requires a large number of 
unattended runs.   
     The stop-search (or early stopping) method of 
cross-validation is used for determining the optimal 
set of weights for a given neural network [4], [21], 
[22].  With this method (see Figure 1), the weights are 
adjusted during training on the basis of the root mean-
squared error (RMSE) shown in (4), of the estimation 
data set, but the accepted set of weights is that which 
corresponds to the minimum RMSE for the validation 
data set.   
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for k=1…p, where p is the number of x (input) 
variables, y is the measured output variable, N is the 
number of (xki, yi) observations, w is the weight vector 
determined during training, and f is the neural 
network model.   
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Fig. 1.  Illustration of the Stop-Search Method of 
Cross-Validation. 
 
 
3 Case Study 
We wish to find a model to forecast the day-ahead on-
peak electricity price in the southern region of the 
United States. Daily values of on-peak and off-peak 
electricity prices from various regions in the United 
States from the Electric Reliability Council of Texas 
(ERCOT) database [23], as well as natural gas prices 
from the New York Mercantile Exchange (NYMEX) 
database [24] are used (see Table 3).  The data spans 
from 8-March-2002 to 24-Feb-2004, a total of 493 
data points with a 64%:18%:18% split between the 
estimation, validation and test sets respectively. 
 
Table 3.  Variables used in Case Study 

Variable Description 
x1 Seller on-peak electricity price 
x2 North USA on-peak electricity price 

x3 
Houston USA on-peak electricity 
price 

x4 West USA on-peak electricity price 
x5 North USA off-peak electricity price 

x6 
Houston USA off-peak electricity 
price 

x7 West USA off-peak electricity price 
x8 South USA off-peak electricity price 
x9 NYMEX natural gas opening price 
x10 NYMEX natural gas high price 
x11 NYMEX natural gas low price 
x12 NYMEX natural closing price 
y South USA on-peak electricity price 

 
 
3.1 Optimization Runs 
3.1.1 Neural Networks with a Constant Number 
of Nodes and a Fixed lag structure (Case 1) 
This is the simplest case, where the number of nodes 
in the single hidden layer is kept fixed to M=3, and 
the number of lags is also kept fixed to L=4.  Only the 



   
   
   
   
  

variable pattern, encoded to vary from 1 to 212 - 1 = 
4095, as described in section 2.2.3, is controlled by 
PSO. 
 
3.1.2 Neural Networks with a Variable Number of 
Nodes and a Fixed Lag Structure (Case 2) 
In this case, the number of nodes is also a parameter 
optimized by PSO, but it is an ordinary parameter (not 
encoded as is the input variable pattern) and is 
allowed to vary between {0, 3}, inclusive. 
 
3.1.3 Optimization Including the Lag Structure 
(Cases 3 and 4) 
The simplest way of allowing optimization of the lags 
is to use one global parameter for all variables in the 
input variable pattern.  In this case, the value returned 
by PSO is used to set the number of lag steps between 
{1, Lmax}, inclusive.  The value of Lmax is determined 
by examining the spectral density plots and 
autocorrelation plots from classical auto regressive/ 
moving average (ARMA) time series analysis [25].  
For this case study the value Lmax = 4 was used.  This 
is a somewhat rigid lag structure in that every input 
variable has to use the same number of lag steps and 
the same offset from the y variable.   
 
Table 4.  Decoding of the Lag Structure 
Corresponding to the Optimizer Manipulated 
Parameter for a 2-Lag Step Input Variable  

Manipulated 
parameter 

Lag 
structure 

Meaning 

0 {0 ,0, 0} 
variable not used at 
all 

1 {0 ,0, 1} 
variable only, no 
lags 

2 {0 ,1, 0} t-1 lag step only 

3 {0 ,1, 1} 
variable and t-1 lag 
step 

4 {1 ,0, 0} t-2 lag step only 

5 {1 ,0, 1} 
variable and t-2 lag 
step 

6 {1 ,1, 0} 
t-1 and t-2 lag 
steps 

7 {1 ,1, 1} 
variable and both 
lag steps 

 
     Another approach to incorporate a more flexible 
lag structure into the optimization framework would 
be to “tie” the lags to the input variable pattern.  
Otherwise, if the input variable pattern and lag 
structure are decoupled, the optimizer may generate 
lag structures for non-existent input variable patterns 
or visa-versa.  To accommodate this, an extension of 
encoding/decoding scheme can be used where each 
input variable and its corresponding lag structure is 

represented by a single number.  For example, if an 
input variable has a maximum of two lag steps the 
manipulated parameter would range from 0 to 7, and 
each value would correspond to the pattern shown in 
Table 4.  The disadvantage of this approach is that for 
our case study, we would have 13 parameters to 
optimize instead of 3; 12 coded variables for each 
input and its corresponding lag structure, plus 1 for 
the number of nodes, as opposed to 1 coded variable 
for all 12 inputs, plus 1 for the number of nodes, plus 
1 for the global number of lag steps. 
 
 
3.2 Evaluation of Optimization Performance 
The main observations are that by using discrete PSO: 
a) we often found at least one model with the best or 
at least a near-best fitness value, and b) we did so with 
a substantially reduced number of neural network 
evaluations that would have been required otherwise.  
     To illustrate, we first performed one exhaustive 
evaluation of all networks that can be constructed 
from all possible combinations of the 12 input 
variables (singlets, pairs, triplets, etc), with 0 to 3 
nodes (Case 3, for a total of 16380 networks); and 
another, where the number of lag steps was also 
varied between 1 to 4 (Case 4, for a total of 65520 
networks).  It is noted that when the number of nodes 
is 0, this reduces to a linear system.  The plot of the 
fitness values for Case 3 is shown in Fig. 2.  The 
corresponding plot for Case 4 is shown in Fig 3. The 
plot of the top 200 models with the fitness values 
sorted according to best fitness (lowest RMSE) for 
case 3 is shown in Fig. 4.  
 

 
Fig. 2.  Fitness values for Case 3.  
 
     For each of these cases, 100 PSO runs were 
executed.  Each run for Case 3 was set up with the 
following PSO parameters: 20 particles, 20 iterations, 
with exploitation rate of 1.0, and exploration rate of 
0.5.  The same parameters were used for Case 4, 
except that the number of iterations was set to 40. The 
results for Case 3 are shown in Table 5.   
 



   
   
   
   
  

 
Fig. 3.  Fitness values for Case 4. 

 

 
Fig. 4.  Fitness values for the top 200 models of Case 
3, sorted from best to worst (left to right). 
 
Table 5.  Performance of Discrete PSO for Case 3. 

Ranking 
of 

Fitness 
value (%) 

Number 
of 

Solutions 
with this 
rank or 

less 

Percent 
of PSO 

runs 
0.1 16 24 
0.2 33 37 
0.3 49 54 
0.4 66 71 
0.5 82 76 
0.6 98 85 
0.7 115 90 
0.8 131 93 
0.9 147 94 
1.0 164 98 

 
     The first entry in the table shows that 24% of the 
PSO runs found at least one of the top 0.1% best 
fitness values (16 out of 16380 possible values).  The 
last entry shows that 98% of the PSO runs found at 
least one of the top 1% best fitness values.  Usually, 
several “hits” were found in each category.  While, 
sometimes a hit would be found after the first 
iteration, other times it was found at the last iteration.  
The overall mean iteration count for finding at least 
one model with a fitness value among the top 1% of 

the best models was 10.  This corresponds to an 
average of 200 neural net evaluations, out of a total 
16380 possible (or 1.2%). 
     The corresponding results for Case 4 are shown in 
Table 6.  In this case, the overall mean iteration count 
for finding a model with a fitness in the top 1% of the 
top models, was 0.7%, 440 neural net evaluations out 
of a total possible 65520. 
 
Table 6.  Performance of Discrete PSO for Case 4. 

Ranking 
of 

Fitness 
value (%) 

Number 
of 

Solutions 
with this 
rank or 

less 

Percent 
of PSO 

runs 
0.1 66 29 
0.2 131 59 
0.3 197 75 
0.4 262 88 
0.5 328 92 
0.6 393 98 
0.7 459 100 
0.8 524 100 
0.9 590 100 
1.0 655 100 

 
 
4 Conclusions 
We have developed a discrete version of Particle 
Swarm Optimization and used it to select structural 
design elements to automatically construct feed-
forward multivariate neural networks.  We applied the 
methodology to develop nonlinear time series models 
for predicting day-ahead electricity prices.  We found 
that PSO works well for this application and is able to 
consistently find useful, near-optimum models, 
requiring a relatively small number of neural network 
evaluations. 
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