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Abstract: - Common graphics cards have a programmable processor that we can use for some mathematical 
computations. I will explain how we can use the performance of the graphics processor in this brief report. I 
focused on the implementation of the inverse Radon transform by method of the filtered backprojection. The 
GPU implementation of the filtered backprojection can be 0.5–4 times faster than the optimized CPU version. It 
depends on used hardware. 
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1 Introduction 
Recently common graphics cards have included a 
high performance processor. This processor is called 
a graphics processing unit (GPU), and it can process 
a lot of graphics data at one time. The performance 
of the GPU can be better than the performance of a 
common CPU (central processor unit) in some cases 
– among others – the GPU of GeForce 6800GT 
contains 222 million transistors and the CPU of 
AMD 64 has about 105 million transistors. This is 
the reason why I try to use the graphics card for 
mathematical computation.  

I decided to extend the GPU implementation of 
the Filtered BackProjection (FBP) on the basis of 
previous research [5]. There was only implemented 
the second part of FBP. The second part of FBP is 
an integration of filtered sinogram. The extension 
consists in addition of the fast Fourier filtering.  

Of course, there are other possibilities of how to 
realize the inverse Radon transform. The first way is 
a direct method: Fourier Slice Theorem, Filtered 
Backprojection and Filtering after Backprojection. 
The second way is by reconstruction algorithms 
based on linear algebra: EM Algorithm, Iterative 
Reconstruction using ART and the reconstruction 
based on the Level Set Methods. 

I chose FBP for the GPU realization, because the 
FBP is used in most scanners today.  
 
 
 
 
 

2  GPU Programming 
The GPU has a different instruction set to ordinary 
CPU’s, that’s why GPU’s cannot carry out the same 
program as CPU’s. We need special GPU’s 
languages. 
 
  
2.1 Programming Languages for GPU 
The programming languages for the GPU are 
divided into two platforms: Microsoft Windows and 
Linux. Both the high-level shader language (HLSL) 
and a system for programming graphics hardware in 
a C-like language (Cg) are used in MS Windows. It 
is necessary to say that the HLSL and the Cg are 
semantically 99% compatible. The HLSL is 
connected with MS DirectX 3D and the Cg is 
connected with OpenGL, hence we can use the Cg 
in Linux. Of course, we could use the assembly 
language for the GPU, but it is too difficult. 

The GPU consists of two vector processors: 
Vertex Shader (VS) and Pixel Shader (PS). The PS 
is more suitable for our purposes because it is faster 
than the VS. The development of the graphics card 
is too fast, hence there are a few other versions of 
the PS. The PS of the version 2.0 provides the 
floating point data processing that is why it is 
helpful for mathematical computing. The previous 
versions of the PS only facilitated 8-bit data 
processing. Nowadays there is PS of version 3.0. It 
has new features (dynamic branches, in particular). 

I decided to use PS of version 2.0 because of 
compatibility and HLSL because of easier 
development of the GPU program. 
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2.2 Data and GPU  
Data in the GPU is stored in special structure. Each 
group of data is called a texture. The texture is 
similar to a matrix, but there are some differences. 
A point of the texture is called texel. The texel 
consists of four entries: red, green, blue and alpha 
channel. Each of these entries is represented by a 
floating point number, so one texel is represented by 
four floating point numbers. See Fig. 1 for the 
matrix-texture mapping.  

The GPU is a vector processor which can process 
the red, green, blue and alpha entries of the texel in 
parallel. The GPU uses well known technique 
Single Instruction, Multiple Data (SIMD). 

The PS is a processor to which the program and 
the data (textures) are incoming. The output of the 
PS is the texture (the render target texture in the 
D3D) or more textures, it depends on the features of 
the graphics card, which contain the computed 
values. The computed values are in the same format 
as the input textures. The PS program can only read 
a finite number of the texture points (approx. 12, it 
depends on the card). There is a further restriction 
for writing the texture point; the PS program obtains 
the output texture coordinates from the PS. So the 
PS program cannot write where it wants but the PS 
program has to write there where the PS wants. This 
is one of biggest restrictions. The PS can only do the 
static loops which the compiler unrolls. The PS 
program cannot read the output data during the pass.  

You can see very simple PS program in Fig. 2. 
The program only performs matrix operation 
C=u·A+v·B, where u, v are any constants and C, A, 
B are matrices. The PS program only carries out 
operation with single texel of the output matrix C 
that is determined by OutCoordinates. The 
multiplication u*tex2D(A,OutCoordinates.texture0) 
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Fig. 1: Mapping of Matrix Entries (upper)  
to Texture Points (down). 
The reason why the texture consists of the texels 
comes from computer graphics. The red, green, and 
blue channels determine a color of the pixel while 
the alpha channel determines the transparency of the 
pixel.  

is scalar–vector operation, because tex2D returns 
texel. The matrix multiply is not possible easily to 
implement, because we need another loop for the 
inner product, which is not allowed for PS version 
2.0 because of a reduced instruction set [4]. 

We need an additional program for both the data 
and the PS program loading into the graphics card. I 
call this program the graphics framework.  
 
 
3  Filtered Backprojection 
The FBP is a very famous inverse scheme. I 
introduce some useful notations for simplification. 
Let g(x, y) be a source signal, let g*(θ, t)  
= Rx,y→θ,t{g(x, y)} be the Radon transform R{} of the 
function g(x, y). Let H(τ)=Fx→τ{h(x)} be the  direct 
Fourier transform F{} of the function h(x) and the 
inverse Fourier transform IF{} be denoted by h(x)= 
IFτ→x{H(τ)}. 

The FBP can be expressed by the formulae 
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The terms (1) consist of two parts: the first is a 
filtering part and the second is an integration part 
[1]. We can derive a discrete implementation of the 
FBP [1].  
Fig. 2: Example of the Pixel Shader Program. This 

program performs C=u·A+v·B 



3.1 Algorithm of Discrete FBP 
The following algorithms of the FBP were written  
in a pseudo-code. 
 
//1D FFT filtering part of the FBP  
//It performs 1D fast Fourier  
//transform on each row of matrix g. 
fg = FFT(g)   
//Filtering and 1D Inverse FFT 
ifg = IFFT(fg ⋅ |υ|) 
   
//the integration part of the FBP  
//optimized for CPU 
for m = 0 to M-1 
 for n = 0 to M-1 
  sum = 0 
  for f = 0 to F-1 

   pos = floor(m ⋅ cos(f ⋅ ∆f) 
      +n ⋅ sin(f ⋅ ∆f)-ρmin)/∆ρ
   sum = sum + ifg(f, pos) 
  end 
  h(m,n) = sum ⋅ ∆f 

 end 
end 
 

The integration part of this algorithm is 
optimized for the CPU because it uses the memory 
cache efficiently. Unfortunately, this version is 
unsuitable for the GPU implementation because the 
PS carries out the loops m and n over implicitly and 
it cannot perform the loop over f that is why I had 
to shift the loop f to the loops m, n then I got the 
new GPU optimized version of the integration part 
of the FBP.  
  
//1D FFT filtering part of the FBP  
//It performs 1D fast Fourier  
//transform on each row of matrix g. 
fg = FFT(g)   
//Filtering and 1D Inverse FFT 
ifg = IFFT(fg ⋅ |υ|) 
   
//the integration part of the FBP  
//optimized for CPU 
h(m,n)=0 //clear all output matrix 
for f = 0 to F-1 
 for m = 0 to M-1 
  for n = 0 to M-1 
   pos = floor(m ⋅ cos(f ⋅ ∆f) 
      +n ⋅ sin(f ⋅ ∆f)-ρmin)/∆ρ

   h(m,n) = h(m,n) + ifg(f, pos) ⋅ ∆f

  end 
 end 
end 
 

The previous algorithm is written in a pseudo-
code. The variables fg, ifg, g and h are matrices 
(the textures in the D3D). The constants M, F, ρmin, 
∆f, ∆ρ depend on the discrete Radon transform of 
the source signal g(m,n).  
 
 
3.2 GPU Implementation 
The FBP can be divided into two parts. The first 
part is the data filtering by the Fourier filtering. The 
Fourier filtering consists of the 1D FFT, then the 
spectrum filtering and at last the 1D IFFT. The 
second part of the FBP is the integration part, so we 
have to write two PS programs.  
 
 

 

Fig. 3: Scheme of the first part of  
the Filtered BackProjection 
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3.2.1 GPU Implementation of Fourier Filtering 
The Fast Fourier Transform is divided into two 
parts. The first part is data scramble and the second 
part is application of the butterfly operations. 

The data scramble has special form so-called bit-
reverse. The binary number 11102 is 1410 in decadic 
number system and its bit-reverse is 01112= 710. The 
data scramble means we have to exchange the 
locations of data in bit-reverse sense. 

Once the data has been scrambled we perform 
series of butterfly operations. The butterfly 
operation carries out both complex multiply and 
complex addition of source data. The inability of the 
PS to write to random positions in memory causes, 
we have to perform many additional operations than 
standard implementation of the FFT.  

Once the FFT has been done we apply the filter 
on the spectrum and then we perform the inverse 
Fourier transform. See Fig. 3 for whole Fourier 
filtering process that is applied on each row of 
matrix g in parallel. 

The computation of the bit-reverse cannot be 
done in the PS program, because the PS does not 
have suitable instructions for bit operations. Since, 
we have to create a temporary vector of bit-reverse 
vaules. See Table 1. 
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blue channel contains υ/ρmax-1 and the alpha 
channel is filled by zero. 

At last we add rows for IFFT at the end of the 
FFT Map. We do not forget to change locations in 
the first row of the IFFT (the data scramble). The 
count of rows in the FFT Map is given by 
FFT+filtering+IFFT, i.e. log2(ρmax)+1+log2(ρmax). 

Unfortunately, the PS program cannot perform 
dynamics loops hence we have to carry out “texture 
pingpong”. The texture pingpong is a special 
technique for smart use of data from prior render 
steps. In case of the FFT we create two textures. The 
first texture A is used as the render target and the 
second texture B is filled with matrix g. We set the 
PS constant FFTPass to 0 and then we perform the 
first FFT pass. Once the FFT pass has been done we 
exchange texture B with A, we set FFTPass to the 
next line in the FFT map. We are ready to perform 
the next FFT pass. See Table 2 for the FFT Map, the 
first part of the Fig. 4, GPU Fourier filtering 
algorithm and Pixel Shader Programs. 

 
GPU Fourier filtering algorithm 

1. create texture A, B 
2. fill texture B with matrix g 
3. set FFTPass 
4. run the PS program for fast Fourier filtering 
5. switch A with B 

 

6. go to 3 until FFTPass<count of FFTMap rows  
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Position 010=002 110=012 210=102 210=102

Bit reverse 010=002 210=102 110=012 210=102

Table 1: Vector of bit-reverse 
The butterfly operations are implemented in the 
llowing way. I created the special temporary FFT 
ap [6]. The FFT map is texture, that has ρmax=υmax 
lumns and 2⋅log2(ρmax)+1 rows. ρmax is a count of 
lumns of the matrix g. The red and green channel 
ntains the location of the first and second operand 

f butterfly operation. The blue and alpha channel 
ntains real and imaginary part of weight W, so we 

ave necessary data for the performing ρmax 
utterfly operations on each row. The FFT performs 
g2(ρmax) passes, hence we need log2(ρmax) rows in 
e FFT Map. We do not forget to perform the data 
ramble, so we modify all position entries in the 
rst row of the FFT Map. 

The next step is filtering, for which we need 
other row in the FFTMap, the so-called filter row. 

ecause I want to use same the PS program for 
ltering, I add the filter row at the end of the FFT 
art. Then I can perform the last step of the IFFT 
djusting) during the filtering.  

The filter row has the following structure: both 
d and green channel contain same position and the 

The implementation of the BackProjection part 
can be done in the same way. We have to use the 
pingpong technique again for sum over the loop f. 
See Fig 4. 
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 g b a r g b a r g b a r g b a
 2 1 0 0 2 -1 0 1 3 1 0 1 3 -1 0 
 2 1 0 1 3 0 1 0 2 -1 0 1 3 0 -1
 0 -1 0 1 1 U 0 2 2  V 0 3 3 U 0 
 2 1 0 0 2 -1 0 1 3 1 0 1 3 -1 0 
 2 1 0 1 3 0 -1 0 2 -1 0 1 3 0 1 

Table 2: FFT Map  
Rows 1, 2 are used for FFT, row 3 is used  

for filtering and rows 4, 5 are used for IFFT.  
U=υ1/4 -1, V=υ2/4 -1 

The data in all columns r and g are  
multiplied by 4 for better reading. 
 
.2 Pixel Shader Program 
ture tSinogram; 
ture tPingpong; 
ture tFFTMap; 



sampler Sinogram = sampler_state { 
    Texture   = <tSinogram>; }; 
sampler FFTMap = sampler_state { 
    Texture   = <tFFTMap>; }; 
sampler Pingpong = sampler_state { 
    Texture   = < tPingpong>; }; 
 
struct Vs_Input { 
   float3 vertexPos  : POSITION; 
   float2 texture0   : TEXCOORD0; }; 
struct Vs_Output { 
   float4 vertexPos  : POSITION; 
   float2 texture0   : TEXCOORD0; }; 
 
//constants for Back Projection 
float4 theta; 
//x_delta, x_min, x_max,0 
float4 x; 
//y_delta, y_min, y_max,0 
float4 y; 
//rho_delta, rho_minimum, rho_count, 0 
float4 rho; 
 
// The BackProjection pixel shader... 
float4 PS_BP(Vs_Output In) : COLOR { 
 float2 position; 
 float4 color; 
 float  tmp; 
 
 tmp= dot(float3( 
          //(x*x_delta+1*x_min)+ 
          dot(float2(In.texture0.y*x.b,1),x.rg), 
          //(y*y_delta+1*y_min)+ 
          dot(float2(In.texture0.x*y.b,1),y.rg), 
          -1),float3(theta.gb,rho.g)); 
 tmp=floor(tmp/rho.r)/rho.b; 
 position=float2(tmp,theta.r); 
 color=tex2D(Pingpong,In.texture0) 
      +theta.a*tex2D(Sinogram,position);      
 return color; 
} 
 
//constant to tell which pass is being used  
float FFTPass;  
// FF filterring pixel shader 
float4 PS_FFT( Vs_Output In ) : COLOR {  
 float2 sampleCoord;  
 float4 butterflyVal;  
 float2 a;  
 float2 b;  
 float2 w;  
 float temp;  
  
 sampleCoord.x = In.texture0.x;  
 sampleCoord.y = FFTPass;  
 butterflyVal= tex2D( FFTMap, sampleCoord);  
 w = butterflyVal.ba;  
  
 //sample location A  
 sampleCoord.x = butterflyVal.r;  
 sampleCoord.y = In.texture0.y;  
 a = tex2D( Pingpong, sampleCoord).ra;  
  
 //sample location B  
 sampleCoord.x = butterflyVal.g;  
 sampleCoord.y = In.texture0.y;  
 b = tex2D( Pingpong, sampleCoord).ra;  
  
 //multiply w*b (complex numbers)  
 temp = w.x*b.x - w.y*b.y;  
 b.y = w.y*b.x + w.x*b.y; 
 b.x = temp;  
  
 //perform a + w*b  
 a = a + b; 
 return a.xyxy; 
} 
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Fig. 4: Scheme of GPU implementation 
of the Filtered BackProjection 
.2.4 Pixel Shader Program 
he framework program for the Fourier filtering and 
ackProjection is the following. 

/Fourier Filtering 
FTMap=CreateFFTMap(ρmax); 
ingpongA=CreateTexture(); 
ingpongB=CreateTexture(); 
oadPixelShader(“PS_FFT”); 
etRenderTaget(PingpongA); 
etTexture(“tPingpong”,PingpongB); 
etTexture(“tFFTMap”,FFTMap); 
or i=0 to log2(ρmax)-1 
SetConstant(“FFTPass”,i/log2(ρmax)); 
Render(); 
SwapRenderTagetAndPingpong(); 
nd 
elease(FFTMap); 

/BackProjection 
inogram=CreateTexture(); 
oadPixelShader(“PS_BP”); 
opyRenderTargetInto(Sinogram); 
learTexture(PingpongB); 
etTexture(“tPingpong”,PingpongB); 
etTexture(“tSinogram”,Sinogram); 
etRenderTaget(PingpongA); 
or f=0 to F-1 
SetConstants(); 
Render(); 
SwapRenderTagetAndPingpong(); 
nd 

 Computational Experiment 
he AMD 64 at 3.2 GHz and nVidia GeForce 
800GT were used for tests. The instruction set of 
MD 64 contains the SSE2 instructions for the 
IMD optimalization. The SSE2 optimalization was 
witched on during the tests. 



I compared both the Fourier filtering and 
integration part of the FBP algorithm in the CPU 
version with the GPU version, and I measured the 
computation times of these programs for a variety of 
sizes of the matrix g.  

The column GPU contains the time of the GPU 
implementation. The column CPU contains the time 
of the CPU implementation.  

The first part of Table 3 contains the computation 
time of the CPU and GPU implementations. The 
second part of the Table 3 contains the speedups of 
the individual implementations.  
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  CPU GPU 
ture FFT BP Total FFT BP Total
8 3 28 31 6 36 100
6 6 209 215 6 111 152
2 120 1984 2106 14 708 808

24 710 24369 25078 27 5994 6256
 CPU/GPU 

Texture FFT BP Total 
128 0,49 0,78 0,31 
256 0,97 1,88 1,42 
512 8,52 2,80 2,61 

1024 26,67 4,07 4,01 
Table 3: Computation time  

of GPU and CPU Filtered BackProjection 
onclusion 
can see in the Table 3 that the GPU computing 
t always efficient, especially if we have a low 
of the matrix g. But the GPU implementation of 
ast Fourier filtering is very successful. On the 
r hand we need to process large data to be able 
pect a certain speedup.  

he reasons why to use the graphics card for 
ematical computations are the high 
rmance level of the graphics card, as well as 
rice of the graphics card. 
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