
Computation of Filtered Back Projection on Graphics Cards

VÍTĚZSLAV VÍT VLČEK
Department of Mathematics
University of West Bohemia

Faculty of Applied Sciences, P.O.BOX 314, 306 14 PLZEN 6
CZECH REPUBLIC

 http://nynfa2-kma.fav.zcu.cz/~vsoft/iradon

Abstract: - Common graphics cards have a programmable processor that we can use for some mathematical
computations. I will explain how we can use the performance of the graphics processor in this brief report. I
focused on the implementation of the inverse Radon transform by method of the filtered backprojection. The
GPU implementation of the filtered backprojection can be 0.5–4 times faster than the optimized CPU version. It
depends on used hardware.

Key-Words: - Filtered backprojection, graphics processing unit, inverse Radon transform, parallel computation,
FFT, FFT filtering

1 Introduction
Recently common graphics cards have included a
high performance processor. This processor is called
a graphics processing unit (GPU), and it can process
a lot of graphics data at one time. The performance
of the GPU can be better than the performance of a
common CPU (central processor unit) in some cases
– among others – the GPU of GeForce 6800GT
contains 222 million transistors and the CPU of
AMD 64 has about 105 million transistors. This is
the reason why I try to use the graphics card for
mathematical computation.

I decided to extend the GPU implementation of
the Filtered BackProjection (FBP) on the basis of
previous research [5]. There was only implemented
the second part of FBP. The second part of FBP is
an integration of filtered sinogram. The extension
consists in addition of the fast Fourier filtering.

Of course, there are other possibilities of how to
realize the inverse Radon transform. The first way is
a direct method: Fourier Slice Theorem, Filtered
Backprojection and Filtering after Backprojection.
The second way is by reconstruction algorithms
based on linear algebra: EM Algorithm, Iterative
Reconstruction using ART and the reconstruction
based on the Level Set Methods.

I chose FBP for the GPU realization, because the
FBP is used in most scanners today.

2 GPU Programming
The GPU has a different instruction set to ordinary
CPU’s, that’s why GPU’s cannot carry out the same
program as CPU’s. We need special GPU’s
languages.

2.1 Programming Languages for GPU
The programming languages for the GPU are
divided into two platforms: Microsoft Windows and
Linux. Both the high-level shader language (HLSL)
and a system for programming graphics hardware in
a C-like language (Cg) are used in MS Windows. It
is necessary to say that the HLSL and the Cg are
semantically 99% compatible. The HLSL is
connected with MS DirectX 3D and the Cg is
connected with OpenGL, hence we can use the Cg
in Linux. Of course, we could use the assembly
language for the GPU, but it is too difficult.

The GPU consists of two vector processors:
Vertex Shader (VS) and Pixel Shader (PS). The PS
is more suitable for our purposes because it is faster
than the VS. The development of the graphics card
is too fast, hence there are a few other versions of
the PS. The PS of the version 2.0 provides the
floating point data processing that is why it is
helpful for mathematical computing. The previous
versions of the PS only facilitated 8-bit data
processing. Nowadays there is PS of version 3.0. It
has new features (dynamic branches, in particular).

I decided to use PS of version 2.0 because of
compatibility and HLSL because of easier
development of the GPU program.

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)

2.2 Data and GPU
Data in the GPU is stored in special structure. Each
group of data is called a texture. The texture is
similar to a matrix, but there are some differences.
A point of the texture is called texel. The texel
consists of four entries: red, green, blue and alpha
channel. Each of these entries is represented by a
floating point number, so one texel is represented by
four floating point numbers. See Fig. 1 for the
matrix-texture mapping.

The GPU is a vector processor which can process
the red, green, blue and alpha entries of the texel in
parallel. The GPU uses well known technique
Single Instruction, Multiple Data (SIMD).

The PS is a processor to which the program and
the data (textures) are incoming. The output of the
PS is the texture (the render target texture in the
D3D) or more textures, it depends on the features of
the graphics card, which contain the computed
values. The computed values are in the same format
as the input textures. The PS program can only read
a finite number of the texture points (approx. 12, it
depends on the card). There is a further restriction
for writing the texture point; the PS program obtains
the output texture coordinates from the PS. So the
PS program cannot write where it wants but the PS
program has to write there where the PS wants. This
is one of biggest restrictions. The PS can only do the
static loops which the compiler unrolls. The PS
program cannot read the output data during the pass.

You can see very simple PS program in Fig. 2.
The program only performs matrix operation
C=u·A+v·B, where u, v are any constants and C, A,
B are matrices. The PS program only carries out
operation with single texel of the output matrix C
that is determined by OutCoordinates. The
multiplication u*tex2D(A,OutCoordinates.texture0)

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)
Fig. 1: Mapping of Matrix Entries (upper)
to Texture Points (down).
The reason why the texture consists of the texels
comes from computer graphics. The red, green, and
blue channels determine a color of the pixel while
the alpha channel determines the transparency of the
pixel.

is scalar–vector operation, because tex2D returns
texel. The matrix multiply is not possible easily to
implement, because we need another loop for the
inner product, which is not allowed for PS version
2.0 because of a reduced instruction set [4].

We need an additional program for both the data
and the PS program loading into the graphics card. I
call this program the graphics framework.

3 Filtered Backprojection
The FBP is a very famous inverse scheme. I
introduce some useful notations for simplification.
Let g(x, y) be a source signal, let g*(θ, t)
= Rx,y→θ,t{g(x, y)} be the Radon transform R{} of the
function g(x, y). Let H(τ)=Fx→τ{h(x)} be the direct
Fourier transform F{} of the function h(x) and the
inverse Fourier transform IF{} be denoted by h(x)=
IFτ→x{H(τ)}.

The FBP can be expressed by the formulae

.)sincos,(),(

)}}},,({{|{|),(

0

#

,,
#

θθθθ

υρθ
π

θυρυ

dyxgyxg

yxgRFTIFg tyxt

∫ +=

= →→→ (1)

The terms (1) consist of two parts: the first is a
filtering part and the second is an integration part
[1]. We can derive a discrete implementation of the
FBP [1].
Fig. 2: Example of the Pixel Shader Program. This

program performs C=u·A+v·B

3.1 Algorithm of Discrete FBP
The following algorithms of the FBP were written
in a pseudo-code.

//1D FFT filtering part of the FBP
//It performs 1D fast Fourier
//transform on each row of matrix g.
fg = FFT(g)
//Filtering and 1D Inverse FFT
ifg = IFFT(fg ⋅ |υ|)

//the integration part of the FBP
//optimized for CPU
for m = 0 to M-1
 for n = 0 to M-1
 sum = 0
 for f = 0 to F-1

 pos = floor(m ⋅ cos(f ⋅ ∆f)
 +n ⋅ sin(f ⋅ ∆f)-ρmin)/∆ρ
 sum = sum + ifg(f, pos)
 end
 h(m,n) = sum ⋅ ∆f

 end
end

The integration part of this algorithm is
optimized for the CPU because it uses the memory
cache efficiently. Unfortunately, this version is
unsuitable for the GPU implementation because the
PS carries out the loops m and n over implicitly and
it cannot perform the loop over f that is why I had
to shift the loop f to the loops m, n then I got the
new GPU optimized version of the integration part
of the FBP.

//1D FFT filtering part of the FBP
//It performs 1D fast Fourier
//transform on each row of matrix g.
fg = FFT(g)
//Filtering and 1D Inverse FFT
ifg = IFFT(fg ⋅ |υ|)

//the integration part of the FBP
//optimized for CPU
h(m,n)=0 //clear all output matrix
for f = 0 to F-1
 for m = 0 to M-1
 for n = 0 to M-1
 pos = floor(m ⋅ cos(f ⋅ ∆f)
 +n ⋅ sin(f ⋅ ∆f)-ρmin)/∆ρ

 h(m,n) = h(m,n) + ifg(f, pos) ⋅ ∆f

 end
 end
end

The previous algorithm is written in a pseudo-
code. The variables fg, ifg, g and h are matrices
(the textures in the D3D). The constants M, F, ρmin,
∆f, ∆ρ depend on the discrete Radon transform of
the source signal g(m,n).

3.2 GPU Implementation
The FBP can be divided into two parts. The first
part is the data filtering by the Fourier filtering. The
Fourier filtering consists of the 1D FFT, then the
spectrum filtering and at last the 1D IFFT. The
second part of the FBP is the integration part, so we
have to write two PS programs.

Fig. 3: Scheme of the first part of
the Filtered BackProjection

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)

3.2.1 GPU Implementation of Fourier Filtering
The Fast Fourier Transform is divided into two
parts. The first part is data scramble and the second
part is application of the butterfly operations.

The data scramble has special form so-called bit-
reverse. The binary number 11102 is 1410 in decadic
number system and its bit-reverse is 01112= 710. The
data scramble means we have to exchange the
locations of data in bit-reverse sense.

Once the data has been scrambled we perform
series of butterfly operations. The butterfly
operation carries out both complex multiply and
complex addition of source data. The inability of the
PS to write to random positions in memory causes,
we have to perform many additional operations than
standard implementation of the FFT.

Once the FFT has been done we apply the filter
on the spectrum and then we perform the inverse
Fourier transform. See Fig. 3 for whole Fourier
filtering process that is applied on each row of
matrix g in parallel.

The computation of the bit-reverse cannot be
done in the PS program, because the PS does not
have suitable instructions for bit operations. Since,
we have to create a temporary vector of bit-reverse
vaules. See Table 1.

fo
m
co
co
co
o
co
h
b
lo
th
sc
fi

an
B
fi
p
(a

re

blue channel contains υ/ρmax-1 and the alpha
channel is filled by zero.

At last we add rows for IFFT at the end of the
FFT Map. We do not forget to change locations in
the first row of the IFFT (the data scramble). The
count of rows in the FFT Map is given by
FFT+filtering+IFFT, i.e. log2(ρmax)+1+log2(ρmax).

Unfortunately, the PS program cannot perform
dynamics loops hence we have to carry out “texture
pingpong”. The texture pingpong is a special
technique for smart use of data from prior render
steps. In case of the FFT we create two textures. The
first texture A is used as the render target and the
second texture B is filled with matrix g. We set the
PS constant FFTPass to 0 and then we perform the
first FFT pass. Once the FFT pass has been done we
exchange texture B with A, we set FFTPass to the
next line in the FFT map. We are ready to perform
the next FFT pass. See Table 2 for the FFT Map, the
first part of the Fig. 4, GPU Fourier filtering
algorithm and Pixel Shader Programs.

GPU Fourier filtering algorithm

1. create texture A, B
2. fill texture B with matrix g
3. set FFTPass
4. run the PS program for fast Fourier filtering
5. switch A with B

6. go to 3 until FFTPass<count of FFTMap rows

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)
Position 010=002 110=012 210=102 210=102

Bit reverse 010=002 210=102 110=012 210=102

Table 1: Vector of bit-reverse
The butterfly operations are implemented in the
llowing way. I created the special temporary FFT
ap [6]. The FFT map is texture, that has ρmax=υmax
lumns and 2⋅log2(ρmax)+1 rows. ρmax is a count of
lumns of the matrix g. The red and green channel
ntains the location of the first and second operand

f butterfly operation. The blue and alpha channel
ntains real and imaginary part of weight W, so we

ave necessary data for the performing ρmax
utterfly operations on each row. The FFT performs
g2(ρmax) passes, hence we need log2(ρmax) rows in
e FFT Map. We do not forget to perform the data
ramble, so we modify all position entries in the
rst row of the FFT Map.

The next step is filtering, for which we need
other row in the FFTMap, the so-called filter row.

ecause I want to use same the PS program for
ltering, I add the filter row at the end of the FFT
art. Then I can perform the last step of the IFFT
djusting) during the filtering.

The filter row has the following structure: both
d and green channel contain same position and the

The implementation of the BackProjection part
can be done in the same way. We have to use the
pingpong technique again for sum over the loop f.
See Fig 4.

r
0
0
0
0
0

3.2
tex
tex
tex
 g b a r g b a r g b a r g b a
 2 1 0 0 2 -1 0 1 3 1 0 1 3 -1 0
 2 1 0 1 3 0 1 0 2 -1 0 1 3 0 -1
 0 -1 0 1 1 U 0 2 2 V 0 3 3 U 0
 2 1 0 0 2 -1 0 1 3 1 0 1 3 -1 0
 2 1 0 1 3 0 -1 0 2 -1 0 1 3 0 1

Table 2: FFT Map
Rows 1, 2 are used for FFT, row 3 is used

for filtering and rows 4, 5 are used for IFFT.
U=υ1/4 -1, V=υ2/4 -1

The data in all columns r and g are
multiplied by 4 for better reading.

.2 Pixel Shader Program
ture tSinogram;
ture tPingpong;
ture tFFTMap;

sampler Sinogram = sampler_state {
 Texture = <tSinogram>; };
sampler FFTMap = sampler_state {
 Texture = <tFFTMap>; };
sampler Pingpong = sampler_state {
 Texture = < tPingpong>; };

struct Vs_Input {
 float3 vertexPos : POSITION;
 float2 texture0 : TEXCOORD0; };
struct Vs_Output {
 float4 vertexPos : POSITION;
 float2 texture0 : TEXCOORD0; };

//constants for Back Projection
float4 theta;
//x_delta, x_min, x_max,0
float4 x;
//y_delta, y_min, y_max,0
float4 y;
//rho_delta, rho_minimum, rho_count, 0
float4 rho;

// The BackProjection pixel shader...
float4 PS_BP(Vs_Output In) : COLOR {
 float2 position;
 float4 color;
 float tmp;

 tmp= dot(float3(
 //(x*x_delta+1*x_min)+
 dot(float2(In.texture0.y*x.b,1),x.rg),
 //(y*y_delta+1*y_min)+
 dot(float2(In.texture0.x*y.b,1),y.rg),
 -1),float3(theta.gb,rho.g));
 tmp=floor(tmp/rho.r)/rho.b;
 position=float2(tmp,theta.r);
 color=tex2D(Pingpong,In.texture0)
 +theta.a*tex2D(Sinogram,position);
 return color;
}

//constant to tell which pass is being used
float FFTPass;
// FF filterring pixel shader
float4 PS_FFT(Vs_Output In) : COLOR {
 float2 sampleCoord;
 float4 butterflyVal;
 float2 a;
 float2 b;
 float2 w;
 float temp;

 sampleCoord.x = In.texture0.x;
 sampleCoord.y = FFTPass;
 butterflyVal= tex2D(FFTMap, sampleCoord);
 w = butterflyVal.ba;

 //sample location A
 sampleCoord.x = butterflyVal.r;
 sampleCoord.y = In.texture0.y;
 a = tex2D(Pingpong, sampleCoord).ra;

 //sample location B
 sampleCoord.x = butterflyVal.g;
 sampleCoord.y = In.texture0.y;
 b = tex2D(Pingpong, sampleCoord).ra;

 //multiply w*b (complex numbers)
 temp = w.x*b.x - w.y*b.y;
 b.y = w.y*b.x + w.x*b.y;
 b.x = temp;

 //perform a + w*b
 a = a + b;
 return a.xyxy;
}

3

T
B

/
F
P
P
L
S
S
S
f

e
R

/
S
L
C
C
S
S
S
f

e

4
T
6
A
S
s

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)
Fig. 4: Scheme of GPU implementation
of the Filtered BackProjection
.2.4 Pixel Shader Program
he framework program for the Fourier filtering and
ackProjection is the following.

/Fourier Filtering
FTMap=CreateFFTMap(ρmax);
ingpongA=CreateTexture();
ingpongB=CreateTexture();
oadPixelShader(“PS_FFT”);
etRenderTaget(PingpongA);
etTexture(“tPingpong”,PingpongB);
etTexture(“tFFTMap”,FFTMap);
or i=0 to log2(ρmax)-1
SetConstant(“FFTPass”,i/log2(ρmax));
Render();
SwapRenderTagetAndPingpong();
nd
elease(FFTMap);

/BackProjection
inogram=CreateTexture();
oadPixelShader(“PS_BP”);
opyRenderTargetInto(Sinogram);
learTexture(PingpongB);
etTexture(“tPingpong”,PingpongB);
etTexture(“tSinogram”,Sinogram);
etRenderTaget(PingpongA);
or f=0 to F-1
SetConstants();
Render();
SwapRenderTagetAndPingpong();
nd

 Computational Experiment
he AMD 64 at 3.2 GHz and nVidia GeForce
800GT were used for tests. The instruction set of
MD 64 contains the SSE2 instructions for the
IMD optimalization. The SSE2 optimalization was
witched on during the tests.

I compared both the Fourier filtering and
integration part of the FBP algorithm in the CPU
version with the GPU version, and I measured the
computation times of these programs for a variety of
sizes of the matrix g.

The column GPU contains the time of the GPU
implementation. The column CPU contains the time
of the CPU implementation.

The first part of Table 3 contains the computation
time of the CPU and GPU implementations. The
second part of the Table 3 contains the speedups of
the individual implementations.

5 C
We
is no
size
the f
othe
to ex

T
math
perfo
the p

6 A
V. V
help
of th

Refe
[1]

Kongens Lyngby, Denmark, 1996. pp. 95–113.
http://pto.linux.dk/PhD

[2] Microsoft Developer Network, Microsoft, ch.
DirectX graphics. http://msdn.microsoft.com

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling,
B. P. Flannery, Numerical Recipes in C.
Cambridge: Cambridge University Press, 1992,
ch. 12

[4] V. V. Vlček, Efficient use of the graphics card
for mathematical computation, 3rd international
mathematic workshop, Brno, 2004. pp. 109-110

[5] V. V. Vlček, Computation of Inverse Radon
Transform on Graphics Cards, Proceedings of
the International Conference on Signal
Processing, Istanbul 2004, pp. 149-151

Tex
12
25
51

10

[6] Jason L. Mitchell, Marwan Y. Ansari, and Evan
Hart, Advanced Image Processing with DirectX
9 Pixel Shaders, ShaderX2: Shader
Programming Tips &Tricks with DirectX 9,
Wordware Publishing, Inc. 2004, pp. 457-463

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp34-39)
 CPU GPU
ture FFT BP Total FFT BP Total
8 3 28 31 6 36 100
6 6 209 215 6 111 152
2 120 1984 2106 14 708 808

24 710 24369 25078 27 5994 6256
 CPU/GPU

Texture FFT BP Total
128 0,49 0,78 0,31
256 0,97 1,88 1,42
512 8,52 2,80 2,61

1024 26,67 4,07 4,01
Table 3: Computation time

of GPU and CPU Filtered BackProjection
onclusion
can see in the Table 3 that the GPU computing
t always efficient, especially if we have a low
of the matrix g. But the GPU implementation of
ast Fourier filtering is very successful. On the
r hand we need to process large data to be able
pect a certain speedup.

he reasons why to use the graphics card for
ematical computations are the high
rmance level of the graphics card, as well as
rice of the graphics card.

cknowledgment
. Vlček would like to thanks I. Hanák for many

ful discussions concerning the GPU realization
is problem.

rences:
P. Toft, The Radon transform, theory and
implementation, Ph.D. dissertation, Dept. Math.
Modelling, Technical Univ. of Denmark,

