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Abstract: - In this study we propose an automatic method for solving convolutive mixtures separation. The independent 
components are extracted by frequency domain analysis, where the convolutive model can be solved by instantaneous 
mixing model approach. The signals are reconstructed back in the observation space resolving the ICA model ambiguities. 
Simulations are carried out to test the validity of the proposed method in convolutive mixtures of electrocardiographic (ECG) 
and electromyographic (EMG) signals. The algorithm is also tested on real ECG and EMG acquisitions derived from 
wearable systems. 
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Introduction 
 
Traditional methods employed to recover the signals of 
interest in presence of artifacts  includes linear and non 
linear filtering techniques [1], wavelets transformation [2] 
and adaptive filtering [3]. 
Other approaches take advantage from multichannel data 
acquisition. Blind source separation (BSS) tecnhiques are 
used to recover a set of source signals when only their 
mixtures are available and neither the sources nor the 
mixing process are known. Independent component analysis 
(ICA) [4] is a method to solve the BSS problem that starts 
from the hypothesis of statistical independence among the 
original sources originated by different physiological 
phenomena. This statement entails that components 
belonging to different physiological phenomena can be 
extracted from the signals detected by the sensors, even 
though they overlap in time and frequency.  
The basic ICA model assumes an instantaneous mixing 
process and its applications in removing artifacts from 
biomedical signals have been presented in several 
publications [5,6,7,] 
In order to take into account the effects of the different 
paths from the source signals to the sensors and spatio-
temporal dynamics (as hypothesised for 
electroencephalographic data [8]), we propose a method 
based on blind separation of convolutive mixtures. The 
observed data are seen as linear mixtures of filtered source 
signals where neither the source signals nor the convolution 
and mixing processes are known. 
We decided to solve this problem in the frequency domain 
as this allows us to use fast algorithms developed for the 

instantaneous mixing problem. This decomposition provides 
components that can be classified either as ‘signal of 
interest’ or as ‘signal of no interest’. Choosing a frequency 
domain approach it was also possible to estimate the 
original sources only in the spectral bands where they 
overlap. To perform the artifact removal process, the 
components of interest are reconstructed back in the original 
observation space in the channel where they are significant. 
An approach based on the autocorrelation function of the 
estimated sources spectrogram is proposed to correctly 
locate the components in the relevant acquired channels. 
A convolutive mixtures of an ECG signal and an EMG is 
simulated. The decomposition process is carried out to test 
the effectiveness of the model in practical situations. The 
algorithm was applied also to remove reciprocal artifacts in 
signals acquired by wearable systems. 
 
1 Problem formulation 
 
1.1 Istantaneous ICA model 
 
The problem of blind source separation consists in 
recovering a set of sources sj(t) from their mixtures xi(t) 
when both the sources and the mixing process are unknown. 
Independent component analysis is a method for solving 
blind source separation that starts from the hypothesis of 
statistical independence among the sources. If we consider 
that mixing process does not involve any delayed version of 
the sources we can introduce the so called instantaneous 
ICA model, mathematically expressed by (1): 
 

)()()()( 11 tsatsatsatx ninjijii ++++= KK    (1) 
 

Proceedings of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August 17-19, 2005 (pp74-79)



with i=1,2,…m, j=1,2,…,n and t=1,2,…,T as we operate 
with discrete time signals. 
We can drop the time index t and assume that each mixture 
xj as well as each source sk is a random variable instead of a 
proper time signal. Within this framework the information 
about their time structure is lost and the model only takes 
into account the statistical properties of the distributions of 
the variables. Thus, if we denote  and 

, we can express (1) in matrix notation: 
[ T

mxx ,...,x 1= ]
][ T
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Asx =    (2) 
 
where A is the mixing matrix.  
The goal of ICA is to use the general hypothesis of 
statistical independence, to estimate a matrix W, called the 
unmixing matrix, such that y=Wx is an estimate of the 
original sources s. Assuming that the number of observed 
mixtures is the same as the number of underlying sources 
(m=n), the mixing matrix can be inverted and we can write 
W≅A-1.  
In order to estimate the original sources several methods 
have been proposed, like the infomax principle [9], 
minimization of mutual information [10] or the maximum 
likelihood estimation [11]. 
Hyvarinen [12] proposed a fixed point algorithm for 
computing W based on maximization of the nongaussianity 
of extracted components. The idea takes origin from the 
central limit theorem, which states that the distribution of a 
sum of independent random variables, under certain 
assumption, tends toward a Gaussian distribution. Thus, 
searching for the directions wi that maximize the 
nongaussianity of y=wi

Tx, means searching the directions 
that maximize the statistical independence among such 
components. Negentropy can be employed, as a measure of 
non Gaussianity. 
As pre-processing step, before performing ICA both a 
removal of the mean value and a whitening operation using 
PCA is performed. This operation simplifies the estimation 
of the unmixing matrix W that becomes orthogonal with 
only n(n-1)/2 degrees of freedom instead of n2.  
The one unit fixed-point algorithm derived by Hyvarinen 
for withened data, is: 
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where f(⋅) is a nonlinear function used in order to take into 
account higher order cumulants that approximate the neg-
entropy of the data and can be chosen among f(y)=tanh(y), 
f(y)=yexp(-y2/2) or f(y)=y3. 
 
1.2 Convolutive mixtures 
 
The techniques described in the previous paragraph assume 
that the mixing process is instantaneous, that is each source 

reaches the sensors at the same time. In some applications 
this assumption may be too strong since the paths of the 
signals to each sensor may be different and the finite 
propagation speed in the medium may generate different 
time delays. Moreover, some kind of convolution of the 
original sources may take place, or to spatio-temporal 
propagations, as has been hypothesized for 
electroencephalographic activity [8]. 
Given the above, we decided to modify the basic ICA 
model and introduce a convolution process between the 
original sources sj(t) and the elements aij of the mixing 
matrix A, which become the coefficients of unknown FIR 
filters aij(k). 
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The problem can be solved in the time domain by using 
natural gradient methods [13] or as ordinary ICA [14]. It is 
worth to observe that such methods are computational 
heavy in order to reach the convergence criteria, so that the 
frequency domain approach appears more appealing. 
Fourier transform techniques are useful in dealing with 
convolutive mixtures, because convolutions become 
products between Fourier transform in the frequency 
domain. 
To search independent components we need a number of 
observations of the mixtures for each bin. So we decided to 
apply a Short Time Fourier Transform (STFT) to split the 
signal in short-time sliding windows and get the Fourier 
spectrum in each window, in order to obtain a time-varying 
spectral description. Consequentely the whole separation 
problem is devided into N linear complex source separation 
problem, one for every frequency bin [15]. The one-
dimensional sequence xi(t), which is a function of a single 
variable t, is converted into a two-dimensional function 
Xi(f,t). 
After this transformation the convolutive mixtures model 
can be represented by the following expression: 
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where Aij(f) are the discrete Fourier transforms coefficients 
(DFT) of the FIR filters aij(k) present in the mixing matrix 
A. 
Thus, starting from the statement that the observations are 
instantaneous mixtures of the original sources in each 
frequency bin, we can use the original instantaneous 
unmixing algorithms, introduced in the previous paragraph, 
to achieve separation of convolved mixtures. But as we are 
operating with complex valued data we need to reformulate 
these algorithms and perform two important modification. 
First we must convert matrix transpositions to Hermetian 
transpositions (conjugate transpose). Then the nonlinear 
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functions f(·) must be defined again in the complex domain. 
We chose to employ f(y)=tanh(Re{y})+tanh(Im{y})i [15]. 
The centering and prewhitening operations are not altered 
working with complex numbers. 
The computational load of the algorithm exploits the 
conjugate symmetry property of the DTF of a real signal. In 
fact, for an N discrete transform point FFT, only N/2+1 or 
(N+1)/2, when N is even or odd respectively. 
So we can apply the modified algorithm independently to 
each frequency bin obtained from the STFT of the data. The 
corresponding unmixing matrices can be used to obtain the 
estimated independent components in different frequencies.  
However, in complex ICA, some extra complications occur. 
In instantaneous ICA it is well known that it is impossible 
to determine the order in which the independent 
components are extracted. In fact, as both the independent 
components and the mixing matrix are unknown, a 
permutation matrix P and its inverse can be substituted in 
the model x=AP-1Ps. The elements of Ps are the original 
independent components in another order and the matrix 
AP-1 is just a new unmixing matrix. This permutation 
ambiguity becomes a serious problem. We need to align the 
independent components along the frequency bins so that 
separated components in the time domain contain frequency 
components from the same source signal. 
Several approaches have been proposed in order to solve 
this permutation invariance. One method consists in 
smoothing separation matrices by averaging them with the 
adjacent frequencies one [15]. Another solution was 
proposed by direction of arrival (DOA) estimation methods, 
in which source directions are estimated and independent 
components can be aligned consequently [16]. In this paper 
we make use of an approach based on inter-frequency 
correlations [17]. We suppose that two spectral envelopes 
belonging to the same source have a higher correlation 
coefficient than the one they would show if they belong to 
different sources. If we denote the spectral envelope of the 
component i at frequency f as ),()( tfYtv i

f
i = , we can 

look for neighbouring frequencies that exhibit the highest 
correlation coefficient. We computed correlation 
coefficients only for adjacent bins aligning the independent 
components as they are extracted. 
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where f

iv
σ  is the standard deviation of ),()( tfYtv i

f
i = .  

Since the measurements are based on separated signals, this 
method is precise as long as independent components are 
well separated by ICA. 
Another drawback is that the independent component, in 
each frequency bin, can be estimated up to a scalar and a 
phase factor In fact, the model expressed in (5) does not 
change by multiplying any of the sources Sj(f,t), by a scalar 

factor, ℜ∈α j , 0≠α j , which can be cancelled by 

dividing the relevant column  of A(f) by : 
. This operation does not change the 

statistical distribution of Xi(f,t). 

ja iα
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Similarly, there is an unknown phase iϑ  for each , 

because , with 
jS

))(( 1
jjjjjj SaSa −ϑϑ= 1=ϑ j  and ∈ϑ j C. 

The phase and scalar factor ambiguities are removed when 
returning the separate independent components  into 
the original space. This is achieved in the frequency domain 
as follows: 

),( tfYi
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where XiYj(f,t) is the j-th estimated independent component    
observed    at     the i-th  detector and  
[Wf

-1],ij is the ij-th element of the inverse of the unmixing 
matrix for the specified frequency bin f. Thus XiYj 
represents the contribute of Yj in the channel Xi 
After performing all this linear transformations, we can 
group the XiYj(f,t) in the following way: 
 

( ) ),(,' tfYXtfX
j

jii ∑=      for j=1,…,m   (8) 

 
If we move j go from 1 to n, extending the sum in each 
channel to the contribute given by all the independent 
components, we obtain exactly the observed signals. But in 
the case some independent components returned in the 
observation space are not significant for the information 
provided by the channel j, they can be set to zero in (8). An 
example in this sense is given by artifacts removal in 
multichannel acquisition of biomedical signals. In this case 
in fact, we could decide, for each channel, that some 
components are of interest and must be summed in (8) while 
others can be considered artifacts and must not take part to 
the sum.  
After the selected independent components have been 
returned to the observation space in the frequency domain, 
an inverse short time Fourier transform (ISTFT) can be used 
to obtain the reconstructed signals in the temporal domain.  
 
2 Identifying different sources 
 
Once the independent components have been separated and 
the permutation problem solved with inter-frequency 
correlation (6), we need an automatic method to identify the 
biophysical origin of each time-frequency separated dataset. 
After this operation is performed, it is possible to select, in 
each channel, the components of interest that must be 
returned in the observations frequency space by (7) and (8). 
Time domain signals are obtained through an ISTFT. 
In this work we present two methods to locate the correct 
sources in the relevant channels and set to zero the artefacts, 
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starting from their time-frequency representation. 
The first approach allows recognizing an almost periodic 
signal taking advantage of periodicity of its spectrogram in 
every frequency bin.  
A more general approach to identify each detected source in 
the acquired channels based on principal component 
analysis is under evaluation. This method requires a training 
step, using a dataset consisting of spectrograms belonging 
to m different classes of noise free biosignals, i.e. EMG, 
ECG, breathing patterns. Each spectrogram can be seen as a 
vector in Rn, where n is the number of frequency bins. The 
purpose is to find a transformation from Rn to Rm, with 
m<n, such that the identification of each class is simplified. 
Once this transformation is found, it can be applied to a new 
set of spectrograms, derived from the algorithm [18]. 
As far as the first method, we note that the periodicity 
observed in one original signal, is still present in the 
autocorrelation function of the spectrogram, at a fixed 
frequency bin. 
Fig. 1(a)  shows  the spectrogram of a noise free ECG signal 
taken from the MIT-BIH database [19]. In fig. 1(b) the 
mean value of the autocorrelation function, computed over 
all the frequency bins, is shown. The ECG signal can be 
considered, with good approximation, a periodic signal, at 
least for a short observation window of the time signal. 
 

 
 

Fig. 1. (a) Spectrogram and (b) relevant autocorrelation 
function of a 4 seconds ECG obtain with a 120 ms 

Hamming window with 90% overlap 
 
This pattern for the autocorrelation function can be used to 
discriminate ECG component from other non periodic 
components: in fact, in the spectrogram of a signal that has 
not important periodic components, the time over which a 
certain pattern is correlated is very short and settles rapidly 
to zero. Fixing a proper threshold, the area of the 
autocorrelation function of an ECG component, exceeding a 
prefixed threshold, will be larger than the other component 
ones, and this source can be identified. 
This method can be useful if we are acquiring an ECG and 
an EMG signal, corrupting each other, and we desire to 
separate the original sources from the observed mixture and 
reconstruct them in the relevant channel. Moreover, in a 
multichannel acquisition of several ECG leads, we could be 
interested in separating and dropping all kinds of 
components not belonging to the ECG signals, like motion 
artefacts or muscle activity contaminations, which are 
supposed not to have a periodic evolution. 
We suggest to compute the autocorrelation function after 

the estimated sources have been returned in the observation 
space by (7), to overcome  the scale indeterminacy of the 
components in each frequency bin. The comparison among 
the areas estimated from the autocorrelation function can be 
carried out in one channel (preferably the ECG lead): once 
the components have been identified, their order is 
preserved in other channels as explained by (7). The 
knowledge of what we expect to observe in each detected 
signal makes possible to automatically select the interesting 
components in (8) and set to zero the other ones. 
 
3. Experimental validation of the model 
 
We carried out some simulation studies to test the validity 
of our method and the assumptions made.  
The sources vector s(t) consisted of two real and noise-free 
signals: one ECG, s1(t), and one EMG, s2(t), taken from the 
MIT-BIH database which is standard for testing ECG 
algorithms [5]. The EMG recording is a surface registration 
of the activity of the chin muscles, and both the signals 
downloaded from the database were sampled at 250 Hz. The 
mixing filters were designed to work on the signals 
frequency bands, which are from 0.3 Hz to 50 Hz for the 
ECG and from 10-20 Hz and above for the EMG. Note that 
the generic FIR filter aij(k) represent the effects produced by 
each source sj(t) in the detected signals xi(t). The elements 
of A were also chosen to take into account possible time 
delays that may occur from the source origins to the 
electrode. Thus a11(t) was a 20 coefficient low pass filter 
with cut off frequency f1=50Hz followed by ten zeros, while 
a12(t) was a shifted but attenuated version of a11(t). In the 
same way a22(t) was a high pass filter with cut off frequency 
f2=10Hz and a12(t) was a shifted but augmented version of 
a22(t). Fig. 2 shows (a) the original sources s, (b) the FIR 
filters used and (c) the convolutive mixtures x. Note that a 
sampling rate equal to f=250Hz correspond to a sampling 
period T=4ms.  

b a 

 

 

a 

 

b
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Fig. 2. (a) original sources, (b) convolutive filters, (c) 
convolved mixtures. 

 
The convolved signals x were analyzed with our method. 
The STFT was computed with a 30 points (120 ms) 
Hamming window with a 90% overlap degree. After a 
centring and a whitening step, the sources were estimated 
by performing ICA only in those frequencies where the 
signals overlap (in this experiment between f1 and f2) and 
the frequency bins were aligned by (6).  
In order to discriminate the two components we estimated 
the average autocorrelation function of the spectrogram 
returned in the observed ECG channel using (7): the 
autocorrelation function must be averaged only in the 
frequency band where the ICA is carried out. Fig. 3 shows 
the autocorrelations and the area exceeding a threshold level 
equal to 0.3.  

 
 

Fig. 3 Averaged autocorrelation functions of the two 
spectrogram  
 
The black coloured area of the autocorrelation function in 
the first graph is equal to 7.67 while in the second is 2.3. 
Thus, the first spectrogram can be automatically associated 
to the ECG component and the second with the EMG. This 
result allows to identify the spectrogram of the component 
of interest for each channel and set to zero in (8) the other 
one. In the frequency bins, where we didn’t carry out ICA, 
no reconstruction is required and the observations are left 
unchanged. An inverse short time Fourier transform can be 
used to obtain the reconstructed signals in the temporal 
domain. The result of the entire procedure is shown in Fig. 
4 where we can observe the two signals without artefacts. In 
order to give an objective evaluation index we computed the 
correlation coefficient between the spectrogram of the 
source signals and the processed ones. The coefficient was 
computed fixing the frequency bin and this value was 
averaged between f1 and f2. The ECG source and the related 
processed spectrogram obtained a correlation equal to 0.83 

while the two EMG signals 0.75. 
 

c 

 
 

Fig. 4. Reconstructed components in acquired channels 
 
4. Results 
 
The algorithm was tested on real biomedical signals 
acquired by wearable systems. In these systems conductive 
and piezoresistive materials in form of fiber and yarn are 
used to realize clothes where knitted fabric sensors and 
electrodes are distributed and connected to an electronic 
portable unit. 
A bipolar lead DI and an abdominal surface EMG were 
acquired at a sampling rate of 250 Hz, and then organized in 
the observation matrix x. The convolutive model analysis 
was carried out in the same way described in the simulation 
section. A 30 points Hamming window was employed for 
the STFT and the spectrogram autocorrelation function was 
used for automatically discriminating the different 
components. The detected signals and the ones obtained as 
result of our analysis are shown in Fig. 5. 
 

 

 
Fig. 5 Acquired and processed signals. 

 
5. Discussion 
 
The separation of independent components from a mixture 
of observed variables was applied to the multichannel 
acquisition of bioelectrical signals. Statistical independence 
has been proven to be a valuable criterion to decompose 
signals that originate from different physiological sources. 
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In this work we tested the validity of a convolutive model 
which is an extension of the instantaneous linear mixing 
model. Our model should be able to take into account a 
more realistic generative process of the measured signals, 
such as differences in propagation paths from the real 
sources to different sensors and spatio-temporal dynamics. 
A frequency domain approach to convolutive mixtures 
separation problem, allows to carry out an ICA analysis 
only in the frequency bands were the sources overlap. 
The indeterminacy in the extraction order of the 
independent components was solved by aligning the 
components that showed a higher value of the correlation 
function computed between adjacent frequency bins. We 
proposed an approach based on the evaluation of the area 
subtended by the averaged autocorrelation function of the 
spectrograms to discriminate the components associated 
with a periodic signal from others non periodic; the first 
ones were assumed to exhibit a higher area subtended by the 
autocorrelation function exceeding a fixed level. Another 
method to identify different components, based on cluster 
analysis of sources spectrogram, is under study. 
Simulation experiments showed that our algorithm can 
separate a convolved mixture of an ECG signal and an 
EMG, and reconstruct them in the relevant channels, 
without artifacts components. The ECG component was 
reconstructed more accurately than the EMG (respectively 
correlation coefficient higher than 0.8 for the ECG and 
about 0.75 for the EMG). 
Our method demonstrated to be successful in artifact 
removal from biosignals acquired in real life condition by 
wearable systems. In fact the convolutive model succeeded 
in separating reciprocal contamination in ECG and EMG 
signals. 
As our method is completely blind (we know nothing about 
the sources and the mixing process) it may be extended to a 
wide collection of artifacts that may contaminate 
biomedical signals. 
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