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About the Numerical Solution of a Stationary Transport Equation
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Abstract: - An algorithm for determining the solution of a boundary value problem for an integral-differential
equation is presented. Using the method of decomposition for a transport equation in the stationary case and a plan-
parallel geometry we obtain an approximate solution with an algorithm based on the variational form of the integral

identity method. Several examples are included.

Key-Words: integral-differential equation, variational methods, integral identity method.

1 Introduction

In the neutrons transport literature, many authors paid
attention to the numerical solutions obtained by the
methods of Ritz and Galerkin, the method of least
squares, [1],[5],[6].[8].[11], the method of finite
elements and Nystrém method [12].

In this paper we present an algorithm inspired
by the variational form of the integral identity method,
[5], applied to a diffusion equation. In the general
case, this method is hard to use, but for any symmetry
of the source function, it leads to an algorithm more
flexible and computationally more efficient than the
methods remind before. The numerical examples
prove that the errors, which correspond to the
approximate solutions, are minimum.

2 Problem formulation
In the stationary case, we consider a transport equation
of the form

u O0p(X, p)

1
o + o, 1) = [o(x u)du' + f(x, 1) (1)

-1

V(x, 1) € Dy x D, = [0, H]x [-1,1],
D, = D, U D% =[-1,0]U[04].

The boundary conditions are

e, u) =0 if x>0

oH, ) =0 if u<0 @)

Here ¢ is the density of neutrons, which migrate in a
direction defined by the angle « against Ox axis and
we denote u# = cosa. Let us consider the radioactive
source fas an even function with respectto .

Using the notations:

p" =X, w)if >0, ¢~ = (X, w)if £ <0 (3)

and substituting = - 1, we get

0 1 1
[o(x, u)du' = [ @(x—u")du" = [ p=du".
-1 0 0

Then the conditions (2) become

"0, u)=0,¢0"(H,u)=0 (4)
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and the equation (1) can be written in the form

op* 1
p——+p* =[(p* +o7)du' + f*
OoX 0
)
o~ 1 L
~u L = [(pt + o) + T
oX 0

Adding and subtracting the equations (5) and
introducing the notations:

1 1
u==lp" o) v=2lo" o)
: 2 (©)
:—f+ f_’r:—f+—f_ :0
o= Lt ) r-t(r-1)
we obtain the following system
1
,ng—v-i-u :ZIudy+g (a)
X
o ° (7)
u—+v=0 (b)
oX
The boundary conditions become
u+v=0 for x=0,
(8)

u-v=0 for x=H.

Now, we find v from the second equation of (7) and
using the first equation, we rewrite the problem (7)-(8)
in the following form

d2u 1
—p?——+u=2udu+g (9)
0

ox2
u_ M
ﬂax

fus M
x=0 ﬂax X

In order to get a solution of the problem (9)-(10), we

consider two points systems on the x axis:

- aprincipal system: {x, } = A7, ke{0,1,.....N },
with Xo = 0, Xy = H and h = X1 — X

- asecondary system, {X,,1,}=Af,
k €{012,..,N -1}, which verifies the
inequalities: X, _q,, < Xx < Xg41/2, Where

_ =0 (o

Xks1/2 = (X + X41) /2
and

O:XO <X1/2 <""<XN—1/2 <XN =H.

Besides this, let A, ={;},1{0L.., Libe a

partition of the interval D; = [0,1] and
T=H+1— 4,
le{0l...,L-1}.

Further on, we consider H =1. For every value g €A,,
the problem (9)-(10) becomes:

d2u(x,
__/12 (X, 1)

12 +U(X ) = f1.(x 19) (11)

where

1
fl(xv ,Ll|) = S(X) + g(X, lul)’ S(X) = ZIU(X! /,l)d/J
0

and
[U(Xaﬂl)_/ll WJXZ():O
g 12)
(U(X,ﬂ|)+/¢| %]X:fo

Here we assume u L, ([0, 1]), the Hilbert space with
the scalar product defined by formula

(u,v) = }W(x)v(x)dx (13)
0

Now (11)-(12) is a boundary problem for a one-
dimensional diffusion equation (11). Integrating (11)
with respect to x on the intervals: (X .12, Xk +12), We
obtain
Xk+1/2
— 12 +dkoay2 + Ju—-f)dx=0 (14)
Xk-1/2
where

du(x,
Jhsrz = IXex1r2)e I(X 1) = pf %

We find J _1» integrating (11) on the interval (X .12,
X). We get

du(x,
,UZ ( ,UI)

X
Ix =Jy1/2+ - fdx (15)

Xk-1/2

Then, dividing (15) by x° and integrating on (X 1, X«)
we have



Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp419-426)

X dx X dx X
U —U g =k | —+ [ = -
Xg-1 | Xg-1

f1)dg

(16)

| Xk-1/2

Finally, we get

/U|2 1k X
J|<—1/2=T Ug —Ukq —— [ dx [(u-f)dé
M %1 X
17)

In a similar manner, we obtain Jy . 1, replacing k by
k+1. Consequently, the equality (14) becomes:

Xk+1/2
u, —u u, —u
2[ k k+1 + k klj + J’(u _ fl)dX _

h h Xk-1/2 1
Xk+1 X
=_F [ dx j(u—fl)o|x+F jdx j(u—fl)dx
Xk Xk+1/2 Xk-1 Xk-1/2

8)

Now we shall denote
w(X) =u(x ) = f1(x 1)
(19)
Pe(X) = (x=x)/h.

Appling the method of integration by parts we obtain
1 Ykl 1
“h [ d Jda [w(&)d¢ =
Xk Xk Xk+1/2

Xt i kal { | da}/x(x)dx _

Xk Xk

= ——(X = Xk) Il//(f)dcf

Xk+1/2

Xk +1 Xk +1
=—%[h [y@ds - | (x—ka(x)dx}

Xk+1/2 Xk
Xk +1 Xk +1
[w(©)dE+ [ o (v (x)dx
Xk+1/2 Xk

(20)
Analogously, if we denote

X — X

. (21)

P (X) =

the equation (18) is now of the form

Ug —Uu Ug — Ug- ot 5
ﬂlz( k - k+l | Yk - K 1) 4 .f(]__ 2k )y (x)dx +
X1

b [ p(9w(9dx = 0 (22)

Xk

It should be observed that the integral from the left-
hand side of (18) was decomposed in the intervals:

(X120 X)) Y (X Xipas2)-

Let us introduce the functions:

1-pk _ X=X 1
= . X e [Xk_1, Xk ]
\/ﬁ h\/ﬁ k-11 Ak
Qk(X): 1_pk _ Xk+1 — X XE[X X ]
\/F h\/ﬁ ) k» Ak+1
0, X & [Xe_1, Xeq]
(23)
where
Q%) = =
k \ Ak \/F

Then, using the scalar product, the equations (18) can
be rewritten in the form

ylz(u(xkxm) —hU(Xk+1, 4) . u(Xy, 141) —h

+ U AhQ) = (f1.NQy) ke L., N -1} (24)

U(Xk—11ﬂ|)j+

On the other hand, we observe that

2 du(x, 1) dQy 2Xk dU(XM) 1
(ﬂ' dx j j i

B ZXTl dU(X,,Ul) ) 1 dX _
"y odx hvh

= i ( k 7Uk-1 _ Ukl _uk}k ef12,..,N -1

(25)

hvh hvh

and (24) can be written in the following form:

du dQ
2 k
(ﬂ' dx’ dx

26 )1 000) = (1. Q) ke B2 -1
(26)
Hence, the identity (18) is replaced by the relations

(26). This allows us to consider the integral identity
method as a variational method and the equations (26)
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may be used for determining the approximate solutions
using a sequence of coordinate functions. It should be
noted that the equations (26) coincide with the
relations obtained by Galerkin method, where Q(x)
are the coordinate functions. Then, the solution of the
system (24) can be defined in the following way

T04) = 38, (4)Q () @n

where: ay (1) = 2B i -

We shall now determine the coefficients £ from the
condition that (27) be a solution of the system (24).
Also, the boundary conditions must be satisfied.

Since the functions u are linear with respect to x, we
get from (24) for k segment (X« _ 1, Xk+1) and x, = kh:

U —Ugpq | Ug —Ugg
/1|( =+ =

hvh hvh
2

= '::_Z(ZJk — U —Uki1)= (28)

4
2 (B g~ 2B + Bor)

X

@Q)=| (Zzﬂ #'Q, (x)ij(x)dH

Xk-1

+ f (ZZﬂ uiQ, (x)JQk (X)dx -

2
xk—x X — Xy_q X — X1
+ dx +
hvh  h'h k[ hvh J

=2uf || B

Xk-1 |

Xt X=X Xgyg — X X — X )
2 + + _
+2,UI J IBk+l . +ﬁk dX—

x| hwh  hvh hvh

3

=S (s + 4B+ Bin) (29)

5(x) = ZIU(Xﬂ)dﬂ 23" [26,°Q, (0 =

i=lo

BiQ;(¥)

Mz

4
3

i
and

(S(x), Qu(x)) =

00|-l>

X N
| (Zﬂ Q,-JQk(x)dH
g \J=1

4 X+ [ N 2
t3 | (Z JQk ()dx = g(ﬂk—l + 4B + Py

Xk

(30)
Thus, we arrive at the following system:
4
7]
__hzl (B1 = 2Bk + Braa) +

3/1|2 -
9

(31)
2
(Bk_1 + 4B + Brs1) = 7k
kefl.,N-1

J’_

where
Xk +1

=(0.Qc) = [ 9(x)Q (x)dx..

Xk -1

Now we denote:

4
2ut 3u? -2
+
h2 9
4,u|4 4(3,u|2 -2)
+
h2 9
A k+1 = A1k K € s

ag_1k =~

Ak = kefl.,N-1 (32

N -2}
The formula (31) can be written as a matrix equation

A-B=T (33)
where

e matrix A is of the form

[ag; ap, 0 - 0 0 0

agq zp az3 -

o
]
o

" 8N-2,N-3 @N-2,N-2 AN-2,N-1
0 0 0 - 0 AN-1,N-2 @N-1,N-1 |

e B is a column matrix:

[, B> -+ Bual

e T is a column matrix:

17— rnaal

Here one property of approximation (27) should be
noted. The functions Qi _ 1 and Qy . 1 are orthogonal,
since at such places where one of these is nonzero, the
other is equal to zero. Thus, the basis introduced is
“almost orthogonal”. This is the reason behind the
appearance of band in the matrix A.
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Solving the system of equations (33) we can
find the values of coefficients 4, i.e. we can construct
by (27) the solution u of (11)-(12).

Let us now consider

Xk =Yo<Y1<...<¥Ym = X1

for every interval (X, Xc+1), k=10, 1,..., N = 1. Using
the Qux), we can find the values of Uy j,
ke{1,2,....N-1}, j €{1,2,...,m}. In order to get v, we
use Uy jand the numerical derivative for equation
(7b):

U, jo1 = Uk j-1
ohimy M
ke{12..,N} je{2,..,m-1}

(34)

U1 — Uk, m-1
2(h/ m)

Vko = — yl,ke{Z N -1}

—~ 2 -~
Uyl - 4 UN,m —UN,m-1
—— VNm =~

h/m ’ h/m

Vio =~

where

uf[ﬂkl \/— + B \/Xﬁ“j

ke{l2..,N-1}, je{0l..,m} (35)
According to the continuity of function u we get

Ug_1m =Ugo. ke {l2..,N}. (36)

Finally, the values of ¢ obtained by this algorithm will
be

~+

o . =u,. +v, . for g >0
~k_,j k,j K,j | (37)
O =Ue; — Vi for g, <0

ke{12..,N} je{0L..,m}.

3 Numerical examples
Let us consider the stationary transport equation

1
w2 () = [, ) + 100, ) (38)
]

V(x, 1) € D; x Dy, D; =[0,1], D, =[-11]

with the boundary conditions

u(,)=0, 4>0; u@u) =0, u<0. (39)

Now, we choose an even function f with respect u of
the form

f(x, 1) = —272u* cos(22x) + p? sin?(zx)  (40)

Hence, r = (f*-f")/2 = 0 and we obtain g = f.

We Dbreak up the closed interval D; into N = 8
segments of length h = 1/8 and for D; = [0,1] we have
L = 4. Some computational results will illustrate the
application of above algorithm.

Let us now consider that ¢4 =1/2. Using (39) we get

Xk+1

7k = [ 9()Q (x)dx =

Xk-1
2

a cos(2k7zh)25'” ) L B2 ke ft. N -1

T
where

1 (2-3u2 4_2 3u® ~2
_ & T oH 2 T , B = y

A h\/ﬁ( 6 H ! 6hvh
kefl2,..7}. @

sm2 7h

S

In this case, the matrices of equation (33) are of the
form

[ 154 -814 0 0 0 0
-8.14 154 -814 0 0 0
0 -814 154 -814 0 0
0 -814 154 -814 0
0 0 -814 154 -814 O
0 0 0 -814 154 -8.14
0 0 0 0 -814 154 |

o O o o

0
0
0
Lo
I'=[-0.21 - 0.074 0.17 0.27 0.17 —0.073 — 021]

Solving (33), we obtain B, the matrix of coefficients 5

B = [0.052 0.123 0.2 0.22 0.2 0.123 0.052]" .

In the following, each interval, [x, X1] is divided into
subintervals [y;, yj+1], where

Xk = Yo < Vi <VY2 <VY3<VYa=Xu1 kel2..7},
Yin—Y;=h/4,je{0123}, m=4and
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Ugo = Uy_14, K € {2,....8}. Table 1 shows the values

uxj, Which were calculated with the help of the formula
(35):

Table 1 Table 2 shown the values of v, calculated with the help
i of the relations (34).

Kk 0 1 2 3 4 Approximate values of the solution of equation (11),
0 0 0 0 0 0 where g is definite by (38), were compared with these
1 0 0.018 | 0.036 | 0.055 | 0.073 obtained by exact solution:

2 0.073 | 0.098 | 0.124 | 0.149 | 0.175
3 [ 0175 | 02 | 0223|0247 | 0.271 ue(x, 1) = p? sin?(zx). (42)
4 0.271 | 0.281 | 0.291 0.3 0.311
5 | 0311 | 03 | 0291 | 0.281 | 0.272 Finally, the solution ¢; of the boundary problem
6 | 0272 | 0247 | 0223 | 02 | 0175 (38) - (40) for 14 = 1/2 was computed from (37).
7 0.175 | 0.149 | 0.124 | 0.099 | 0.073 Hence
8 0.073 | 0.055 | 0.037 | 0.018 0. O =T+
Table 2 kel2..7}, j e {01234}

j Table 3 shows the values of  U(Xy, £4),V(X¢, £4)

k 0 1 2 3 4 o+ (X 1), ke{1,2,..,8} for different values of ...

0 0 0 0 0 0 The numerical solution u of the boundary problem
1 0 029 | -029 | -0.29 | -0.35 (11)-(12) has been compared with the exact solution
2 | 035 ] -041 | 041 | -041 | 04 ue and an estimation of the correspond
3 -0.4 -0.39 -0.39 -0.39 -0.27 approximations:
4 -0.27 | -0.16 | -0.16 | -0.16 0
5 0 016 | 016 | 0.6 | 027 £=U-ue
6 0.27 0.39 0.39 0.39 0.4
7 04 | 041 | 041 |041 0.35 have been given.
8 0.35 0.29 0.29 | 0.29 0.
u = 1/4 Table 3
k 1 2 3 4 5 6 7 8
u -0.0026 | 0.007 0.058 0.09 0.058 0.007 -0.0024 0
v -0.007 -0.06 -0.083 0 0.083 0.06 0.007 0
Q -0.01 -0.054 | -0.024 0.09 0.14 0.068 0.005 0
ue 0.009 0.031 0.053 0.062 0.053 0.031 0.009 0
& -0.012 | -0.024 0.005 0.027 0.005 -0.024 -0.012 0
u=1/2 Table4
k 1 2 3 4 5 6 7 8
u 0.073 0.175 0.271 0.311 0.272 0.175 0.073 0
v -0.35 -04 -0.27 0. 0.27 0.4 0.35 0
o -0.276 -0.222 | -0.001 0.31 0.543 0.57 0.423 0
ue 0.037 0.125 0.213 0.25 0.214 0.125 0.037 0
& 0.036 0.05 0.058 0.061 0.058 0.05 0.036 0
u = 3/4 Table 5
k 1 2 3 4 5 6 7 8
u 0.117 0.317 0.515 0.6 0.516 0.317 0.118 0
v 0.95 -1.19 -0.845 | -0.002 0.843 1.195 0.95 0
1) -0.83 -0.878 -0.33 0.6 1.36 1512 1.07 0




Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp419-426)

ue 0.082 0.28 0.48 0.56 0.48 0.28 0.083 0
& 0.035 0.035 0.036 0.036 0.035 0.035 0.035 0
u =1 Table 6
k 1 2 3 4 5 6 7 8
u 0.205 0.56 0.91 1.06 0.912 0.56 0.206 0
v -2.23 -2.82 -2 -0.004 2 2.82 2.24 0
Q -2.026 -2.265 1.088 1.054 2.906 3.38 2.44 0
ue 0.146 0.5 0.853 1 0.854 05 0.147 0
& 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0
4 Conclusions h2 X |d2u
Analyzing the results of numerical examples, we |U(X) U(X)| I dfz dg, vx e [Xk -1 Xk]
find that the difference -1
hence
- N d2u
|ue— | <0.06 = 2h/uh max Ju(x)-U)|<h max |<lh=
[xk -1, %] Dx-1.x]] A&
Let it be considered an interpolation polynomial of
solution u(x, z4): d?u
(X, 44) —h2 &Y <Mh2| 1y :
d§2 Loo [Xk -1, %k]
Loo[Xk -1, %]

N-1
U(x, ) = kZ U(Xy, )Qy (X)v/h (43)
-1

hence
U(Xe20) = U(Xo ), ke{0,1,...,N}. (44)

Further on, we noted for a fixed value z4:

U(x) = U(x,z4) and u(x) = u(x,z).

To obtain an estimate of the error occurring as a
result of replacing the function u(x) by U(x), we
have computed for every x e[xc .1, XJ, the
difference:

a0 -U (0 = | U -U ) -

X1

- [ Y- J v d—“(t")dt"—

X1

1% Fldu u

<= |dt" — ) —-——@") |dt' =

ol XJLM dt”}
Xi X t g2

=%jdt"fdt

o
Xeg o Xt

(45)

This leads to the inequality

2
If —3 ;J € Loy, When H =1, we also get
X

d2u

Ju _U”C[O,l] < Mh?|=— a2

L,[0.1]

S

Thus, we have obtained that the approximation of u
is of the order h?,
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