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Abstract: - In this paper, a computational scheme of Evolutionary Computing (Genetic Algorithms) 
accompanied by the Nelder-Mead method is proposed for solving Boundary Value Problems of ODEs 
(Ordinary Differential Equations) via the Collocation Method method.  
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1 Introduction 

 
Finite Elements’ Methods are popular to 

engineers and scientists that are interest in the 
soultion of differential equations. The so called 
“Collocation Method” is a well known method that 
can be applied in Boundary Value Problems 
(Ordinary Differential Equations)  leading the 
problem to the solution of a linear system of 
equations (when the ODE is linear) or to a system of 
non-linear equations (when the ODE is linear). 
Especially in these non-linear cases, the system of 
of non-linear equations is difficult to be solved and 
for this reason an equivalent non-linear optimization 
problem can be formulated. This non-linear 
optimization problem can be solved by several 
numerical schemes.  

Many numerical optimization schemes have 
several disadvantages like inadequate accuracy, 
convergence to local (and not to local) minimum, 
low speed of convergence etc… 

In [5], we have proposed a hybrid method that 
includes  

a) Genetic Algorithm for finding rather the 
neiborhood   of the global  minimum than the global 
minimu itself and  

b) Nelder-Mead algorithm to find the exact point 
of the global minimum itself. 

So, with this Hybrid method of Genetic 
Algorithm + Nelder-Mead we combine the 
advantages of both methods, that are a) the 

convergence to the global minimum (genetic 
algorithm) plus b) the high accuracy of the Nelder-
Mead method. 

If we use only a Genetic Algorithm then we have 
the problem of low accuracy. If we use only Nelder-
Mead, then we have the problem of the possible 
convergence to a local (not to the global) minimum. 
These disadvantages are removed in the case of our 
Hybrid method that combines Genetic Algorithm 
with Nelder-Mead method. See [5]. 

We recall the following definitions from the 
Genetic Algorithms literature: 
Fitness function is the objective function we want to 
minimize.  Population size specifies how many 
individuals there are in each generation. We can use 
various Fitness Scaling Options (rank, proportional, 
top, shift linear, etc…[16]), as well as various 
Selection Options (like Stochastic uniform, 
Remainder, Uniform, Roulette, Tournament)[16].  
Fitness Scaling Options: We can use scaling 
functions. A Scaling function specifies the function 
that performs the scaling. A scaling function 
converts raw fitness scores returned by the fitness 
function to values in a range that is suitable for the 
selection function. We have the following options: 
Rank Scaling Option: scales the raw scores based on 
the rank of each individual, rather than its score. 
The rank of an individual is its position in the sorted 
scores. The rank of the fittest individual is 1, the 
next fittest is 2 and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores. 



Proportional  Scaling Option: The Proportional 
Scaling makes the expectation proportional to the 
raw fitness score. This strategy has weaknesses 
when raw scores are not in a "good" range. Top 
Scaling Option: The Top Scaling scales the 
individuals with the highest fitness values equally. 
Shift linear Scaling Option: The shift linear scaling 
option scales the raw scores so that the expectation 
of the fittest individual is equal to a constant, which 
you can specify as Maximum survival rate, 
multiplied by the average score.  
 
We can have also option in our Reproduction in 
order to determine how the genetic algorithm 
creates children at each new generation. For 
example, Elite Counter specifies the number of 
individuals that are guaranteed to survive to the next 
generation.  
Crossover combines two individuals, or parents, to 
form a new individual, or child, for the next 
generation.  
 
Crossover fraction specifies the fraction of the next 
generation, other than elite individuals, that are 
produced by crossover.   
 
Scattered Crossover:  Scattered Crossover creates a 
random binary vector. It then selects the genes 
where the vector is a 1 from the first parent, and the 
genes where the vector is a 0 from the second 
parent, and combines the genes to form the child.  
 
Mutation: Mutation makes small random changes in 
the individuals in the population, which provide 
genetic diversity and enable the GA to search a 
broader space.  
Gaussian Mutation: We call that the Mutation is 
Gaussian if the Mutation adds a random number to 
each vector entry of an individual. This random 
number is taken from a Gaussian distribution 
centered on zero. The variance of this distribution 
can be controlled with two parameters. The Scale 
parameter determines the variance at the first 
generation. The Shrink parameter controls how 
variance shrinks as generations go by. If the Shrink 
parameter is 0, the variance is constant. If the Shrink 
parameter is 1, the variance shrinks to 0 linearly as 
the last generation is reached. 

Migration is the movement of individuals between 
subpopulations (the best individuals from one 
subpopulation replace the worst individuals in 
another subpopulation). We can control how 
migration occurs by the following three parameters.  

Direction of Migration: Migration can take place 
in one direction or two. In the so-called “Forward 
migration” the nth subpopulation migrates into the 
(n+1)'th subpopulation. while in the so-called “Both 
directions Migration”, the nth subpopulation 
migrates into both the (n-1)th and the (n+1)th 
subpopulation.  
Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the first, 
and the first may migrate into the last. To prevent 
wrapping, specify a subpopulation of size zero.  

Fraction of Migration is the number of the  
individuals that we move between the 
subpopulations. So, Fraction of Migration is the 
fraction of the smaller of the two subpopulations 
that moves. If individuals migrate from a 
subpopulation of 50 individuals into a population of 
100 individuals and Fraction is 0.1, 5 individuals 
(0.1 * 50) migrate. Individuals that migrate from 
one subpopulation to another are copied. They are 
not removed from the source subpopulation. 
Interval of Migration counts how many 
generations pass between migrations. 
 

The Nelder-Mead simplex algorithm appeared in 
1965 and is now one of the most widely used 
methods for nonlinear unconstrained optimization 
[13]÷[16].  The Nelder-Mead method attempts to 
minimize a scalar-valued nonlinear function of n 
real variables using only function values, without 
any derivative information (explicit or implicit). The 
Nelder-Mead method thus falls in the general class 
of direct search methods. The method is described 
as follows: 

Let f(x) be the function for minimization.  
x is a vector in n real variables. We select n+1 initial 
points for x and we follow the steps: 

Step 1. Order. Order the n+1 vertices to satisfy 
f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking 
rules given below. 

Step 2. Reflect. Compute the reflection point xr 
from  
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points (all vertices except for xn+1). Evaluate fr=f(xr). 
If f1 ≤ fr < fn , accept the reflected point xr and 

terminate the iteration. 
Step 3. Expand. If fr < f1 , calculate the 

expansion point xe, 
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and evaluate fe=f(xe). If fe < fr, accept xe and 
terminate the iteration; otherwise (if fe ≥ fr), accept 
xr and terminate the iteration. 
Step 4. Contract. If fr ≥ fn, perform a contraction 
between x  and the better of xn+1 and xr. 
a. Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better 
than xn+1), perform an outside contraction: calculate 
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and evaluate fc = f(xc). If fc ≤ fr, accept xc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
b. Inside. If fr ≥ fn+1, perform an inside contraction: 
calculate 
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and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and 
terminate the iteration; otherwise, go to step 5 
(perform a shrink). 
Step 5. Perform a shrink step. Evaluate f at the n 
points vi = x1 + σ (xi – x1), i = 2, … , n+1. The 
(unordered) vertices of the simplex at the next 
iteration consist of x1, v2, … , vn+1. 
 
In this paper, we try to solve Boundary Value 
Problems of ODEs (Ordinary Differential 
Equations) via the Collocation Method method 
The proposed method is outlined in Section 2 with 
specific examples. 
 
 
2   Problem formulation and Solution 
Problem I:  
Suppose the following linear Boundary Value 
Problem ([18]) 
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U(0) = U(L) = 0 
 
with: 
T = 600 
L = 120 
K = 0.5 
f = 2 
Solution using Finite Elements (Collocation 
Method), Genetic Algorithm and Nelder-Mead. 

 
As a trial solution, we choose for examples splines 
or other popular finite elements, [17]. Here, we shall 
use for simplicity the trial function: 
 
 U =α0 + α1x + α2x2 + α4x4.  
 
The trial solution that satisfies the boundary 
conditions (α0 = 0, α1 = -α2L - α4L3) becomes :  
 
 
UR = α2(x2 - xL) + α4(x4 – xL3)           (2) 
 
Substituting (2) into (1) gives the residual 
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We demand “collocation” at 7 points, x = 0, 20, 40, 
60, 80, 100, 120. 
 

00 ==xR                                      (3.1) 

020 =
=xR                                     (3.2) 

040 =
=xR                                     (3.3) 

0
60
=

=x
R                                     (3.4) 

080 ==xR                                     (3.5) 

0100 ==xR                                    (3.6) 

0
120

=
=x

R                                    (3.7) 
 
Equations (3.1), …, (3.7) is a system of non-linear 
equations in 2 unknowns: α2 and α4. It can be solved 
approximately if one demands: 
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This minimization can be achieved by GA in 
conjunction with Nelder-Mead. 
The results are : 
 
α2 = - 0.7105                                         (5.1) 
α4 = - 4·10-9                                           (5.2) 
 
In the following table, we present the parameters of 
the GA (Genetic Algorithm) that we used: 
 
 
 
 
 



Parameters of GA 
Population type: Double Vector 
Population size: 30 
Creation function: Uniform 
Fitness scaling: Rank 
Selection function: roulette 
Reproduction: 6 – Crossover fraction 0.8 
Mutation: Gaussian – Scale 1.0, Shrink 1.0 
Crossover: Scattered 
Migration: Both – fraction 0.2, interval: 20 
Stopping criteria: 100 generation 
 
Problem I:  
Suppose now the following non-linear Boundary 
Value Problem. 
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U(0) = U(L) = 0 
 
T = 600 
L = 120 
K = 0.5 
f = 2 
 
Solution using Finite Elements (Collocation 
Method), Genetic Algorithm and Nelder-Mead 
 
We use again the trial solution U =α0 + α1x + α2x2 + 
α4x4. We could choose also other popular finite 
elements like Splines. See [17]. 
The trial solution that satistfies the boundary 
conditions (α0 = 0, α1 = -α2L - α4L3) becomes :  
 
 
UR = α2(x2 - xL) + α4(x4 – xL3)           (7) 
 
Substituting (7) into (6) we obtain also the residual 
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We demand again “collocation” at 7 points, x = 0, 
20, 40, 60, 80, 100, 120. 
 

00 =
=xR                                      (8.1) 

0
20
=

=x
R                                     (8.2) 

040 =
=xR                                     (8.3) 

060 =
=xR                                     (8.4) 

0
80
=

=x
R                                     (8.5) 

0
100

=
=x

R                                    (8.6) 

0120 ==xR                                    (8.7) 
 
Equations (8.1), …, (8.7) is a system of non-linear 
equations in 2 unknowns: α2 and α4. It can be solved 
approximately if one demands: 
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This minimization can be achieved by GA in 
conjunction with Needler – Meede. 
The results are : 
 
α2 =  0.5519·10-5                                       (10.1) 
α4 = 0                                                        (10.2) 
 
In the following table, we present the parameters of 
the GA (Genetic Algorithm) that we have used: 
 
Parameters of GA 
Population type: Double Vector 
Population size: 30 
Creation function: Uniform 
Fitness scaling: Rank 
Selection function: roulette 
Reproduction: 6 – Crossover fraction 0.8 
Mutation: Gaussian – Scale 1.0, Shrink 1.0 
Crossover: Scattered 
Migration: Both – fraction 0.2, interval: 20 
Stopping criteria: 100 generation 
 
 
 
3 Conclusion 
 
Boundary Value Problems of ODEs are solved 
using Finite Elements (Collocation Method). The 
problem is reduced to an appropriate minimization 
problem which can be solved by an hybrid method 
that includes Genetic Algorithms and Nelder-Mead 
minimization technique. The method can be 
extended to Boundary Value Problems of Partial 
Differential Equations, but this will be examined in 
a future work. 
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