
Genetic Algorithms and Nelder-Mead Method for
the Solution of Boundary Value problems

with the Collocation Method

Nikos E. Mastorakis
Military Institutes of University Education (ASEI)

Hellenic Naval Academy, Terma Hatzikyriakou 18539,
Piraeus, GREECE

http://www.wseas.org/mastorakis

Abstract: - In this paper, a computational scheme of Evolutionary Computing (Genetic Algorithms)
accompanied by the Nelder-Mead method is proposed for solving Boundary Value Problems of ODEs
(Ordinary Differential Equations) via the Collocation Method method.

Key-Words: - Ordinary Differential Equations, Boundary Value Problems, Finite Elements, Collocation
Method, Genetic Algorithms, Evolutionary Computing, Nelder-Mead.

1 Introduction

Finite Elements’ Methods are popular to

engineers and scientists that are interest in the
soultion of differential equations. The so called
“Collocation Method” is a well known method that
can be applied in Boundary Value Problems
(Ordinary Differential Equations) leading the
problem to the solution of a linear system of
equations (when the ODE is linear) or to a system of
non-linear equations (when the ODE is linear).
Especially in these non-linear cases, the system of
of non-linear equations is difficult to be solved and
for this reason an equivalent non-linear optimization
problem can be formulated. This non-linear
optimization problem can be solved by several
numerical schemes.

Many numerical optimization schemes have
several disadvantages like inadequate accuracy,
convergence to local (and not to local) minimum,
low speed of convergence etc…

In [5], we have proposed a hybrid method that
includes

a) Genetic Algorithm for finding rather the
neiborhood of the global minimum than the global
minimu itself and

b) Nelder-Mead algorithm to find the exact point
of the global minimum itself.

So, with this Hybrid method of Genetic
Algorithm + Nelder-Mead we combine the
advantages of both methods, that are a) the

convergence to the global minimum (genetic
algorithm) plus b) the high accuracy of the Nelder-
Mead method.

If we use only a Genetic Algorithm then we have
the problem of low accuracy. If we use only Nelder-
Mead, then we have the problem of the possible
convergence to a local (not to the global) minimum.
These disadvantages are removed in the case of our
Hybrid method that combines Genetic Algorithm
with Nelder-Mead method. See [5].

We recall the following definitions from the
Genetic Algorithms literature:
Fitness function is the objective function we want to
minimize. Population size specifies how many
individuals there are in each generation. We can use
various Fitness Scaling Options (rank, proportional,
top, shift linear, etc…[16]), as well as various
Selection Options (like Stochastic uniform,
Remainder, Uniform, Roulette, Tournament)[16].
Fitness Scaling Options: We can use scaling
functions. A Scaling function specifies the function
that performs the scaling. A scaling function
converts raw fitness scores returned by the fitness
function to values in a range that is suitable for the
selection function. We have the following options:
Rank Scaling Option: scales the raw scores based on
the rank of each individual, rather than its score.
The rank of an individual is its position in the sorted
scores. The rank of the fittest individual is 1, the
next fittest is 2 and so on. Rank fitness scaling
removes the effect of the spread of the raw scores.

Proportional Scaling Option: The Proportional
Scaling makes the expectation proportional to the
raw fitness score. This strategy has weaknesses
when raw scores are not in a "good" range. Top
Scaling Option: The Top Scaling scales the
individuals with the highest fitness values equally.
Shift linear Scaling Option: The shift linear scaling
option scales the raw scores so that the expectation
of the fittest individual is equal to a constant, which
you can specify as Maximum survival rate,
multiplied by the average score.

We can have also option in our Reproduction in
order to determine how the genetic algorithm
creates children at each new generation. For
example, Elite Counter specifies the number of
individuals that are guaranteed to survive to the next
generation.
Crossover combines two individuals, or parents, to
form a new individual, or child, for the next
generation.

Crossover fraction specifies the fraction of the next
generation, other than elite individuals, that are
produced by crossover.

Scattered Crossover: Scattered Crossover creates a
random binary vector. It then selects the genes
where the vector is a 1 from the first parent, and the
genes where the vector is a 0 from the second
parent, and combines the genes to form the child.

Mutation: Mutation makes small random changes in
the individuals in the population, which provide
genetic diversity and enable the GA to search a
broader space.
Gaussian Mutation: We call that the Mutation is
Gaussian if the Mutation adds a random number to
each vector entry of an individual. This random
number is taken from a Gaussian distribution
centered on zero. The variance of this distribution
can be controlled with two parameters. The Scale
parameter determines the variance at the first
generation. The Shrink parameter controls how
variance shrinks as generations go by. If the Shrink
parameter is 0, the variance is constant. If the Shrink
parameter is 1, the variance shrinks to 0 linearly as
the last generation is reached.

Migration is the movement of individuals between
subpopulations (the best individuals from one
subpopulation replace the worst individuals in
another subpopulation). We can control how
migration occurs by the following three parameters.

Direction of Migration: Migration can take place
in one direction or two. In the so-called “Forward
migration” the nth subpopulation migrates into the
(n+1)'th subpopulation. while in the so-called “Both
directions Migration”, the nth subpopulation
migrates into both the (n-1)th and the (n+1)th
subpopulation.
Migration wraps at the ends of the subpopulations.
That is, the last subpopulation migrates into the first,
and the first may migrate into the last. To prevent
wrapping, specify a subpopulation of size zero.

Fraction of Migration is the number of the
individuals that we move between the
subpopulations. So, Fraction of Migration is the
fraction of the smaller of the two subpopulations
that moves. If individuals migrate from a
subpopulation of 50 individuals into a population of
100 individuals and Fraction is 0.1, 5 individuals
(0.1 * 50) migrate. Individuals that migrate from
one subpopulation to another are copied. They are
not removed from the source subpopulation.
Interval of Migration counts how many
generations pass between migrations.

The Nelder-Mead simplex algorithm appeared in
1965 and is now one of the most widely used
methods for nonlinear unconstrained optimization
[13]÷[16]. The Nelder-Mead method attempts to
minimize a scalar-valued nonlinear function of n
real variables using only function values, without
any derivative information (explicit or implicit). The
Nelder-Mead method thus falls in the general class
of direct search methods. The method is described
as follows:

Let f(x) be the function for minimization.
x is a vector in n real variables. We select n+1 initial
points for x and we follow the steps:

Step 1. Order. Order the n+1 vertices to satisfy
f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), using the tie-breaking
rules given below.

Step 2. Reflect. Compute the reflection point xr
from

11)1()(++ −+=−+= nnr xxxxxx ρρρ ,

where ∑
=

=
n

i
i nxx

1

/ is the centroid of the n best

points (all vertices except for xn+1). Evaluate fr=f(xr).
If f1 ≤ fr < fn , accept the reflected point xr and

terminate the iteration.
Step 3. Expand. If fr < f1 , calculate the

expansion point xe,

11)1()()(++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ

and evaluate fe=f(xe). If fe < fr, accept xe and
terminate the iteration; otherwise (if fe ≥ fr), accept
xr and terminate the iteration.
Step 4. Contract. If fr ≥ fn, perform a contraction
between x and the better of xn+1 and xr.
a. Outside. If fn ≤ fr < fn+1 (i.e. xr is strictly better
than xn+1), perform an outside contraction: calculate

11)1()()(++ −+=−+=−+= nnrc xxxxxxxxx ργργγργ

and evaluate fc = f(xc). If fc ≤ fr, accept xc and
terminate the iteration; otherwise, go to step 5
(perform a shrink).
b. Inside. If fr ≥ fn+1, perform an inside contraction:
calculate

 11)1()(++ +−=−−= nncc xxxxxx γγγ ,

and evaluate fcc = f(xcc). If fcc < fn+1, accept xcc and
terminate the iteration; otherwise, go to step 5
(perform a shrink).
Step 5. Perform a shrink step. Evaluate f at the n
points vi = x1 + σ (xi – x1), i = 2, … , n+1. The
(unordered) vertices of the simplex at the next
iteration consist of x1, v2, … , vn+1.

In this paper, we try to solve Boundary Value
Problems of ODEs (Ordinary Differential
Equations) via the Collocation Method method
The proposed method is outlined in Section 2 with
specific examples.

2 Problem formulation and Solution
Problem I:
Suppose the following linear Boundary Value
Problem ([18])

02

2

=+−
T
fU

T
k

dx
ud

 (1)

U(0) = U(L) = 0

with:
T = 600
L = 120
K = 0.5
f = 2
Solution using Finite Elements (Collocation
Method), Genetic Algorithm and Nelder-Mead.

As a trial solution, we choose for examples splines
or other popular finite elements, [17]. Here, we shall
use for simplicity the trial function:

 U =α0 + α1x + α2x2 + α4x4.

The trial solution that satisfies the boundary
conditions (α0 = 0, α1 = -α2L - α4L3) becomes :

UR = α2(x2 - xL) + α4(x4 – xL3) (2)

Substituting (2) into (1) gives the residual

[]
T
fxLxxLx

T
kxR +−+−⎟
⎠
⎞

⎜
⎝
⎛−+=)()(122 34

4
2

2
2

42 αααα

We demand “collocation” at 7 points, x = 0, 20, 40,
60, 80, 100, 120.

00 ==xR (3.1)

020 =
=xR (3.2)

040 =
=xR (3.3)

0
60
=

=x
R (3.4)

080 ==xR (3.5)

0100 ==xR (3.6)

0
120

=
=x

R (3.7)

Equations (3.1), …, (3.7) is a system of non-linear
equations in 2 unknowns: α2 and α4. It can be solved
approximately if one demands:

)

(min

120
2

100
2

80
2

60
2

40
2

20
2

0
2

, 42

===

====

+++

+++

xxx

xxxx

RRR

RRRR
αα (4)

This minimization can be achieved by GA in
conjunction with Nelder-Mead.
The results are :

α2 = - 0.7105 (5.1)
α4 = - 4·10-9 (5.2)

In the following table, we present the parameters of
the GA (Genetic Algorithm) that we used:

Parameters of GA
Population type: Double Vector
Population size: 30
Creation function: Uniform
Fitness scaling: Rank
Selection function: roulette
Reproduction: 6 – Crossover fraction 0.8
Mutation: Gaussian – Scale 1.0, Shrink 1.0
Crossover: Scattered
Migration: Both – fraction 0.2, interval: 20
Stopping criteria: 100 generation

Problem I:
Suppose now the following non-linear Boundary
Value Problem.

02
2

2

=+−
T
fU

T
k

dx
du (6)

U(0) = U(L) = 0

T = 600
L = 120
K = 0.5
f = 2

Solution using Finite Elements (Collocation
Method), Genetic Algorithm and Nelder-Mead

We use again the trial solution U =α0 + α1x + α2x2 +
α4x4. We could choose also other popular finite
elements like Splines. See [17].
The trial solution that satistfies the boundary
conditions (α0 = 0, α1 = -α2L - α4L3) becomes :

UR = α2(x2 - xL) + α4(x4 – xL3) (7)

Substituting (7) into (6) we obtain also the residual

[]
T
fxLxxLx

T
kxR +−+−⎟
⎠
⎞

⎜
⎝
⎛−+=

234
4

2
2

2
2

42)()(122 αααα

We demand again “collocation” at 7 points, x = 0,
20, 40, 60, 80, 100, 120.

00 =
=xR (8.1)

0
20
=

=x
R (8.2)

040 =
=xR (8.3)

060 =
=xR (8.4)

0
80
=

=x
R (8.5)

0
100

=
=x

R (8.6)

0120 ==xR (8.7)

Equations (8.1), …, (8.7) is a system of non-linear
equations in 2 unknowns: α2 and α4. It can be solved
approximately if one demands:

)

(min

120
2

100
2

80
2

60
2

40
2

20
2

0
2

, 42

===

====

+++

+++

xxx

xxxx

RRR

RRRR
αα (9)

This minimization can be achieved by GA in
conjunction with Needler – Meede.
The results are :

α2 = 0.5519·10-5 (10.1)
α4 = 0 (10.2)

In the following table, we present the parameters of
the GA (Genetic Algorithm) that we have used:

Parameters of GA
Population type: Double Vector
Population size: 30
Creation function: Uniform
Fitness scaling: Rank
Selection function: roulette
Reproduction: 6 – Crossover fraction 0.8
Mutation: Gaussian – Scale 1.0, Shrink 1.0
Crossover: Scattered
Migration: Both – fraction 0.2, interval: 20
Stopping criteria: 100 generation

3 Conclusion

Boundary Value Problems of ODEs are solved
using Finite Elements (Collocation Method). The
problem is reduced to an appropriate minimization
problem which can be solved by an hybrid method
that includes Genetic Algorithms and Nelder-Mead
minimization technique. The method can be
extended to Boundary Value Problems of Partial
Differential Equations, but this will be examined in
a future work.

References:

[1] Goldberg D.E. (1989), Genetic Algorithms in

Search, Optimization and Machine Learning,
Addison-Wesley, Second Edition, 1989

[2] Eberhart R., Simpson P. and Dobbins R. (1996),
Computational Intelligence PC Tools, AP
Professionals.

[3] Kosters W.A., Kok J.N. and Floreen P., Fourier
Analysis of Genetic Algorithms, Theoretical
Computer Science, Elsevier, 229, 199, pp. 143-
175.

[4] E. Balagusuramy, Numerical Methods, Tata
McGraw Hill, New Delhi, 1999

[5] Nikos E. Mastorakis, “On the Solution of Ill-
Conditioned Systems of Linear and Non-Linear
Equations via Genetic Algorithms (GAs) and
Nelder-Mead Simplex Searchs”, Proceedings of
the 6th WSEAS International Conference on
Evolutionary Computing, Lisbon, Portugal, June
16-18, 2005.

[6] Ioannis F. Gonos, Lefteris I. Virirakis, Nikos E.
Mastorakis, M.N.S. Swamy, "Evolutionary
Design of 2-Dimensional Recursive Filters via
the Computer Language GENETICA"
to appear in IEEE Transactions on Circuits and
Systems I: Fundamental Theory and
Applications. (2005)

[7] Gonos I.F., Mastorakis N.E., Swamy M.N.S.:
“A Genetic Algorithm Approach to the Problem
of Factorization of General Multidimensional
Polynomials”, IEEE Transactions on Circuits
and Systems I: Fundamental Theory and
Applications, Part I, Vol. 50, No. 1, pp. 16-22,
January 2003.

[8] Mastorakis N.E., Gonos I.F., Swamy M.N.S.:
“Design of 2-Dimensional Recursive Filters
using Genetic Algorithms”, IEEE Transactions
on Circuits and Systems I: Fundamental Theory
and Applications, Part I, Vol. 50, No. 5, pp.
634-639, May 2003.

[9] Mastorakis N.E., Gonos I.F., Swamy M.N.S.:
“Stability of Multidimensional Systems using
Genetic Algorithms”, IEEE Transactions on
Circuits and Systems, Part I, Vol. 50, No. 7, pp.
962-965, July 2003.

[10] Neil Gershenfeld (1999), The Nature of
Mathematical Modeling, Cambridge University
Press.

[11] Andrew Curtis and Roel Snieder:
“Reconditioning inverse problems using the
genetic algorithm and revised parameterization”,
Geophysics, Vol. 62, No. 4.pp. 1524–1532,
July-August 1997.

[12] Ralf Östermark, “Solving Irregular
Econometric and Mathematical Optimization
Problems with a Genetic Hybrid Algorithm”,
Computational Economics, Volume 13 , Issue
2, pp. 103 - 115 , April 1999.

[13] Lagarias, J.C., J. A. Reeds, M. H. Wright,
and P. E. Wright, "Convergence Properties of
the Nelder-Mead Simplex Method in Low
Dimensions," SIAM Journal of Optimization,
Vol. 9 Number 1, pp. 112-147, 1998.

[14] J. A. Nelder and R. Mead, “A simplex
method for function minimization”, Computer
Journal, 7 , 308-313, 1965

[15] F. H. Walters, L. R. Parker, S. L. Morgan,
and S. N. Deming, Sequential Simplex
Optimization, CRC Press, Boca Raton, FL,
1991

[16] Matlab, Version 7.0.0, by Math Works,
Natick, MA, 1994 http://www.mathworks.com

[17] Nikos E. Mastorakis, “Numerical Solution
of Non-Linear Ordinary Differential Equations
via Collocation Method (Finite Elements) and
Genetic Algorithms”, Proceedings of the 6th
WSEAS International Conference on
Evolutionary Computing, Lisbon, Portugal, June
16-18, 2005.

[18] Shaoums Outline Series: Finite Elements.

