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Abstract: In this paper a new model for numerical simulation of two-phase flows in complex geometries is 
presented which is the first step in developing numerical simulation models for boiling heat transfer in complex 
geometries. The complexity of turbulence and two-phase flows exists in this problem and therefore, logical, 
convenient simplifications were made to solve the problem. A finite-volume based finite-element model is 
developed which resolved the difficulties for solving turbulent, single-phase flows in complex geometries. Also, a 
modified k-ε model is utilized for the solution of turbulent, two-phase bubbly flows. Since in many industrial 
applications, the flow is fully-developed, this problem is solved for this region. Considering the complexity of the 
problem, the results generated by numerical simulation are encouraging, and follow the data obtained in the 
corresponding experimental investigation of bubbly two-phase flows. Nevertheless, much effort is needed in 
modeling and numerical simulation methods to develop a sophisticated industrial tool. 
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1  Introduction 
Turbulent, two-phase flows exist in many industries, 
especially in process industries. There are many 
uncertainties in the mathematical modeling of these 
flows, Lahey [1], Carey [2], Drew and Wallis [3], and 
Whalley [4]. However, the mathematical models of 
dilute bubbly gas-liquid flows are reasonably well-
established, relative to models for other two-phase gas-
liquid flow patterns [1-4]. Though, they still suffer from 
difficulties, especially with regard to modeling of 
turbulence, interfacial terms, and in near-wall regions. 
Attention here is focused on fully-developed, turbulent, 
upward, dilute, bubbly, gas-liquid two-phase flows, in 
straight ducts of triangular cross-section. A two-time-
scale k- ε  model has been proposed by Lopez de 
Bertodano et al. [7-9], in which an additional differential 
transport equation is used for the bubble-induced 
turbulence kinetic energy, and the shear-induced k-ε  
equations do not contain or need any extra sources for 
modeling bubble interactions with flow turbulence. They 
combined the two-time scale k-  model [9] and an 
algebraic stress model developed by Naot and Rodi [10] 
for simulations of such flows. However, these 
simulations were carried out with the duct cross-section 

approximated as a circular sector, rather than a triangle, 
relatively coarse cylindrical-polar grids were used to 
disretize the duct cross-section, without any rigorous 
grid-independence checks. Also, a three-dimensional 
parabolic formulation to march the computations from 
the inlet plane of the duct to the fully-developed region 
is used. 

ε

In this work, the explicit algebraic stress model (EASM) 
of Gatski and Speziale [11] for single-phase turbulent 
flows is extended to make it applicable the fully-
developed two-phase flows of interest, by incorporating 
key ideas of the two-time scale k- ε  model of Lopez de 
Bertodano et al. [7-9]. The overall mathematical model, 
specialized to the fully-developed region [12], is solved 
using suitable adaptations of a two-dimensional control-
volume finite element method (CVFEM)  [13].   
Considering that the proposed CVFEM allowed 
simulations in true triangular duct cross-sections, with 
extensive grid-independence checks, and without any 
unnecessary intrinsic grid bias, as that in the simulations 
of Lopez de Bertodano et al. [8,9], the results presented 
in this paper allow an accurate assessment of the 
predictive capabilities of the aforementioned 
mathematical model.  
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2  Mathematical Model 
 
2.1 Governing Equations and Related 
Assumptions 
For the gas-liquid bubbly two-phase flows considered 
here, the governing continuity and momentum equations 
can be written in the following forms [12]: 
Gas-Phase Continuity Equation: 

0)V.( gg =αρ∇     (1) 
Liquid-Phase Continuity Equation: 

[ 0)1(. =−∇ llV ]ρα    (2) 
Gas-Phase Momentum Equation: 

ggg Mgp0 +αρ+∇α−=    (3) 
Liquid-Phase Momentum Equation: 
[ ] llll pVV ∇−−=−∇ )1()1(. αρα [ ]))(1(. t
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where subscripts l and g refer to the liquid and gas 
phases, respectively, and, for convenience,   is used to 
denote the gas-phase void fraction, and (1-α ) is the 
liquid-phase void fraction. Here, , p, p

α

ρ i are the phasic 
density, pressure, and pressure at the interface, 
respectively. V and  are the mass weighted velocity 
and viscous stress tensor, respectively. g, M, and 

τ

kkk
t VV ′′ρ−=τ  are the gravitational acceleration, the 

resultant interfacial force, and the turbulent, or 
Reynolds, stress tensor, respectively.  
Considering the relatively small values of the gas-phase 
density and viscosity, in comparison to the 
corresponding values for the liquid phase, the advection 
terms , the stress tensor terms  
and, also, the  terms have been neglected in 
the gas-phase momentum equation, following the 
suggestions of Lance and Lopez de Bertodano [6], and 
Ellul and Issa [14]. It is assumed that the properties of 
the liquid and gas phases remain constant in the fully-
developed region, and that the bubbles are essentially 
spherical with uniform diameter (5mm). Also, since 
attention is restricted to dilute two-phase flows, the 
bubbles do not coalesce or break up [12].  
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2.2 Interfacial Forces and Reynolds Stresses 
The interfacial force is customarily divided into several 
components. Here, following Lahey et al. [15] and 
Oliveira [16], it is assumed that the dominant interfacial 

forces for the dilute, gas-liquid, bubbly two-phase flows 
of interest are the drag and lift forces. Thus, 

L
l

D
ll Μ+Μ=Μ     (5) 

In this work, the drag force (per unit volume) is 
calculated using the following expression proposed by 
Ishii and Mishima [17]: 
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where Vr=Vg-Vl is the relative velocity, Rb is the bubble 
radius, and CD is the drag coefficient which is obtained 
using the following expression: 
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mµ  is the mixture viscosity, and Db is the bubble 
diameter (= 2Rb). The average lift force exerted by a 
rotational inviscid flow on a sphere, as derived by Drew 
and Lahey [18], is used for : L

lΜ

)V(VC 1rL
L
l ×∇×αρ=Μ    (9) 

where CL is the lift coefficient and ranges from about 
0.05 to 0.5, according to Lahey et al. [16].  The results 
presented in this paper correspond to CL =0.1. 
Following Lance and Bataille [19], it is assumed that (pil 
– pl) = 0. Furthermore, noting that gρ  << lρ  and 
neglecting surface tension, pg = pl. 
To consider the effects of turbulence on interfacial 
terms, an approach proposed by Lopez de Bertodano [9] 
which consists of modeling the effects of turbulence by 
a turbulent dispersion  force expressed as: 

α∇ρ=Μ SIlTD
TD
l kC    (10) 

where kSI is the shear-induced kinetic energy of 
turbulence in the liquid phase, and CTD = 0.1, is used 
( ).  TD

l
L
l

D
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Following Lopez de Bertodano et al. [7-9], the total 
turbulent kinetic energy of bubbly two-phase flow is:  

k = kSI + kBI    (11) 
where kSI and kBI are the shear-induced and the bubble-
induced  turbulence terms, respectively. The transport 
equation for kSI is: 
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where  = 1.0, Pkσ SI is the volumetric rate of production 
of shear-induced turbulent kinetic energy, and SIε  is its 
dissipation rate [12]. 
Following the recommendations of Arnold et al. [20] 
and Lopez de Bertodano et al. [7,9], 

2
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where CVM = 0.5, and  kBIa is the kBI asymptotic value. 
The  values are obtained as follows [12]: SIε
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where  1.44, 1.92, and   = 1.3. =ε1c =ε2c SIεσ
The principle of linear superposition is also used for the 
two-phase Reynolds stress and turbulent viscosity [12]. 
Thus, using Cartesian tensorial notation, 

BIjiSIjiji uuuuuu )()( ′′+′′=′′   (15) 

where the shear-induced (SI) components are obtained 
from the following equation: 

ijSIijSISIji kbkuu δ
3
22)( +=′′    (16) 

For the EASM of Gatski and Speziale [17], Afshar [12] 
has shown that the bij term can be written as follows: 
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where c1 = 0.0876 and c2 = 0.0935; and  
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symmetric and asymmetric parts of the strain-rate tensor, 
respectively. The bubble-induced components are 
obtained from this expression by Arnold et al. [20]:  
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In these equations, the turbulent eddy viscosity is 
obtained from the following expression: 

ννν +=     (19) 
where 
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SIkc
ε

ν µ

2

=               (20) 

µc  is obtained from ref. [17]. 

2.3 Boundary Conditions 
Due to the complexity of the physical phenomena in the 
near-wall region in turbulent, bubbly, two-phase gas-
liquid flows, it is not practical to numerically solve 
differential mathematical models of these flows all the 
way to the wall. Therefore, in this work, the near-wall 
region is bridged by appropriate wall-functions [12,25]. 
Values of 

SIjiuu )( ′′ , kBI, BIjiuu )( ′′ , and relative velocity 

components are calculated from algebraic expressions, 
and they do not require the specification of any 
additional boundary conditions [18]. After each sweep 
of the iterative solver, the calculated α  distribution was 
adjusted to obtain a desired average value. 
 
 
3  Numerical Method  
An extended control-volume finite element method 
(CVFEM) was developed for the solution of the 
mathematical models of the flows of interest [5,12]. This 
CVFEM is based on a primitive-variables, co-located, 
equal-order formulation: it works directly with the 
velocity components, pressure, void fraction, and 
turbulence kinetic energy and its dissipation rate; and 
these dependent variables are stored at the same nodes 
and interpolated over the same triangular elements in the 
finite-element mesh [5].  
  

 
          (a)                                              (b) 
Fig. 1: Fully-developed, gas-liquid, bubbly, turbulent, 
two-phase flows in a duct of triangular cross-section: (a) 
problem schematic and notation; (b) typical uniform 
finite-element discretization of the calculation domain.  
 
Numerous preliminary computations, including grid 
refinement checks, were performed for the selected test 
problem. It was concluded that a 5922 triangular 
element grid, Fig. 1, was adequate for the final 
computations. In single-phase flow simulations, α  = 0, 
this grid yielded numerical results that were within %3±  
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of the corresponding grid-independent values, obtained 
using an extension of Richardson's extrapolation 
procedure [12]. 
The iterative solution procedure was stopped when the 
sums of the absolute values of the normalized residues 
in the w (axial velocity) and p sets of discretized 
equations, as well as the relative change in the value of 
the duct-center, or centroidal, axial velocity, were all 
individually less than 10-5, and, in addition, the relative 
change in the calculated average void-fraction values in 
two successive iterations was less than, 10-4. 
 
 
4  Results  
 
4.1 Single-Phase Flow 
Axial velocity profiles along the duct cross-section 
center-line, z = 0 in Fig. 1, along with the experimental 
data of Lopez de Bertodano [9], are shown in Fig. 2; and 
the corresponding results along a line parallel to the z 
axis, at y = 0.03 m, are shown in Fig. 3. The results are 
in good agreement with the experimental data, except 
near the triangle vertex (y/H = 1), where the predicted 
results are lower than the experimental data.  
 

 
Fig. 2: Liquid-phase axial velocity (ul in m/s) profiles 
along the line z = 0 m, for <α> = 0. 
 
The near-wall regions were bridged by using wall-
functions, therefore, the last node in the internal 
computational domain for the JL = 1 m/s test case is 
physically closer to wall than the JL = 0.5 m/s test case. 
particularly in the vicinity of the vertex of the triangular 
duct cross-section. 
The results in Fig. 3, along the line parallel to z-axis at y 
= 0.03 cm, are in excellent agreement with the 
experimental results of Lopez de Bertodano (1992): 

 
Fig. 3: Liquid-phase axial velocity (ul in m/s) profiles 
along the line y = 0.03 m, for <α> = 0. 
 
Along this particular line, the predicted velocities are not 
directly affected by the wall-function approximations in 
the vicinity of the triangular cross-section vertex. 
 
 
4.2 Two-Phase Flow 
The results obtained in the single-phase flow simulations 
were used as starting values for the two-phase flow 
simulations, and the average void fraction was increased 
in three steps from zero (single-phase flow) to the 
desired value, obtained by numerical integration of local 
experimental void-fraction values [9,12]. 
The liquid-phase axial velocity and the void-fraction 
profiles along the center line of the duct (z = 0) are 
shown, respectively, in Figs. 4 and 5 for JL = 1.0 m/s, for 
three nominal average void-fraction values, along with 
the experimental data of Lopez de Bertodano [9]; and 
the corresponding results for JL = 0.50 m/s are shown in 
Figs. 6 and 7. The axial velocity profiles overpredict the 
experimental data near the bottom wall of the triangular 
cross-section, and underpredict them close to the vertex. 
One of the causes of the latter discrepancy, as was 
mentioned for the corresponding single-phase ( 0>=α< ) 
numerical predictions, is the relatively sharp acute 
vertex angle, and the associated large distance of the 
near-wall node from the vertex. Again, as was explained 
in the context of single-phase flow results, the 
underpredictions of the experimental data are larger  for 
the results obtained for lower liquid-phase superficial 
velocity (Fig. 6, JL = 0.5 m/s), since, for this case, the 
near-wall region is larger than that for JL = 1 m/s.  
As shown in Figs. 5 and 7, the experimental data 
indicates that void-fraction peaking occurs in the 
vicinity of the bottom wall, and, then, the void-fraction 
values decrease away from this wall, followed by a 
region of almost constant void fraction in the central  
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Fig. 4: Liquid-phase axial velocity (u1 in m/s) profiles 
along the line z = 0 m, for JL = 1.0 m/s. 
 
regions of the duct, and, finally, the void-fraction values 
increase again, close to the vertex of the triangular cross-
section. The numerically predicted void-fraction profiles 
follow the same general pattern as that of the 
experimental data: peaking of the void fraction values 
occurs in the region close to the bottom wall. However, 
they deviate from the experimental data, in the location, 
and also in the magnitude, of the peak (highest) void-
fraction value in this region. 

 
Fig. 5: Void fraction profiles along the line z = 0 m for 
JL = 1.0 m/s. 
 
In the near-wall regions, there are extra interfacial forces 
which affect, in particular, the bubble distributions in 
this area, as indicated in the published works of Marie et 
al. [22] and Antal et al. [23]. The inaccurate predictions 
of the void peaking in a location which is displaced in 
comparison to experimental data also affects the liquid-
phase axial velocity profiles in this region. The drag 
force, between the liquid and bubbles, increases with the 
increase in void-fraction values in this region, and, 
hence, increases the numerically predicted liquid-phase 
axial velocity, as shown in Figs. 4 and 6. The numerical 
void-fraction values in the region near the vertex 
underpredict the experimental results. Unfortunately, no  

 
Fig. 6: Liquid-phase axial velocity (u1 in m/s) profiles 
along the line z = 0 m, for JL = 0.5 m/s. 
 
 

 
Fig. 7: Void fraction profiles along the line z = 0 m for 
JL = 0.5 m/s. 
 
tabulations of experimental results for the liquid- or gas-
phase secondary velocities in the duct are provided by 
Lopez de Bertodano [9], which would have facilitated an 
analysis of this particular underprediction of the 
experimental data. Nevertheless, it seems reasonable to 
assume that the bridging of a relatively large near-wall 
region close to the vertex by wall-functions has 
contributed to this disagreement between numerical 
predictions and experimental results. 
 
 
6  Summary  
In this work, numerical predictions of fully-developed, 
turbulent, dilute, bubbly gas-liquid two-phase flows in a 
vertical duct with an isosceles triangular cross-section 
were presented. A two-fluid model was used. The 
turbulence terms were modeled using an extension of an 
algebraic stress model [5, 11], incorporating key ideas of 
a two-time scale ε−k  model [7-9]. Wall functions were 
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used to bridge the near-wall regions [24].  This 
mathematical model of the flows of interest was solved 
directly in the fully-developed region, for the first time, 
using an extended two-dimensional CVFEM [5,12].  
The results obtained agree qualitatively with the 
experimental data of Lopez de Bertodano et al. [7-9]. 
However, this investigation shows the need for much 
more research to develop better models for these flows 
in noncircular ducts. In particular, development of 
closure models for the turbulence terms and the 
interfacial forces, especially in the vicinity of the walls.  
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