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Abstract: - Scale-invariant forms of mass, energy, and linear momentum conservation equations in chemically 
reactive fields are described.  The modified equation of motion is then solved for the classical problems of axi-
symmetric stagnation-point laminar boundary layer flow as well as laminar counterflow finite jets.  The results 
are shown to be in agreement with the classical solutions of Homann and Frössling as well as the observations. 
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1 Introduction 
The universality of turbulent phenomena from 
stochastic quantum fields to classical hydrodynamic 
fields resulted in recent introduction of a scale-
invariant model of statistical mechanics and its 
application to the field of thermodynamics [4].  The 
implications of the model to the study of transport 
phenomena and invariant forms of conservation 
equations have also been addressed [5, 6].  In the 
present study, the modified equation of motion is 
solved for the classical problems of laminar flow 
within boundary layer of axi-symmetric stagnation-
point and outside of the free-viscous-layer at the 
stagnation plane of an axi-symmetric finite-jet 
counterflow.  The resulting analytical solutions are 
found to be in excellent qualitative agreement with 
the exact numerical calculations based on the 
classical equation of motion as well as observations. 
 

2 Scale-Invariant Form of the 
Conservation Equations for Reactive 
Fields 
Following the classical methods [1-3], the invariant 
definitions of the density ρβ

β

, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given 
as [4]  
 

ρ n m m f duβ β β β β= = ∫      ,       uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

          
  ,         wβ = vβ+1 (2) 

 
Also, the invariant definitions of the peculiar and 
the diffusion velocities are given as [4] 

 
β β β′ = −V u v     ,      1β β β β′= − =V v w V +  (3) 

 
    Next, following the classical methods [1-3], the 
scale-invariant forms of mass, thermal energy, and 
linear momentum conservation equations at scale β 
are given as [5, 6] 
 

( )β
β β β

ρ
ρ

t
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+ = Ω
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ε
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∂
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∂
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involving the volumetric density of thermal energy 

ρ hβ β βε =  and linear momentum .  Also, ρβ β=p βv

βΩ  is the chemical reaction rate and hβ is the 
absolute enthalpy. 
    The local velocity  in (4)-(6) is expressed in 

terms of the convective  and diffusive the 
βv

β β= 〈 〉w v

βV  velocities [5] 
 

gβ β β= +v w V    ,    g D ln( )β β= − ρV ∇ β  (7a) 
 

tgβ β β= +v w V    ,    tg ln( )β β= −α εV ∇ β  (7b) 
 

hgβ β β= +v w V   ,    hg ln( )β β= −νV ∇ βp  (7c) 
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where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 
the thermo-diffusive, the linear hydro-diffusive 
velocities.  The hierarchy of statistical fields from 
molecular-dynamics to eddy-dynamics is 
schematically shown in Fig.1. 
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Fig.1 Hierarchy of statistical fields for 
equilibrium eddy-, cluster-, and molecular-
dynamic scales and the associated laminar flow 
fields. 
 
 For unity Schmidt and Prandtl numbers, one 
may express 
 

tg g tβ β= +V V Vβ β

β βv

       ,    t ln(h )β β= −αV ∇  (8a) 
 

hg g hβ β= +V V V     ,    h ln( )β β= −νV ∇  (8b) 
 
that involve the thermal Vβt, and linear hydrodynamic 
Vβh diffusion velocities [5].  Since for an ideal gas hβ 
= cpβTβ, when cpβ is constant and T = Tβ, Eq.(8a) 
reduces to the Fourier law of heat conduction  
 

tρ h κ Τβ β β β β= = −q V ∇  (9) 
 

where βκ  and p/( c )β β β βα = κ ρ  are the thermal 
conductivity and diffusivity.  Similarly, (8b) may be 
identified as the shear stress associated with 
diffusional flux of linear momentum and expressed 
by the generalized Newton law of viscosity [5] 
 

ij j ij h j iρ µ /β β β β β β= = − ∂τ v V v x∂  (10) 
 
 Substitutions from (7a)-(7c) into (4)-(6), 
neglecting cross-diffusion terms and assuming 
constant transport coefficients with , 
result in [5, 6]  

Sc Pr 1β β= =

2D
t
β

β β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇  (11) 

 

2h D
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β β β β β
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+ w .∇      (12) 
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β β β β β
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   +  2 0
t
β

β β β β β

∂⎡ ⎤
ρ − ν ∇ =⎢ ⎥∂⎣ ⎦

v
+ w v v.∇   (13) 

 
 In the first and second parts of Eqs.(12)-(13), 
the gravitational versus the inertial contributions to 
the change in energy and momentum density are 
apparent.  Substitutions from (11) into (12)-(13) 
result in the invariant forms of conservation 
equations [6] 
 

2D
t
β

β β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇  (14) 

 

2
p

T
T T h /( c

t
β )β β β β β β β β

∂
− α ∇ = − Ω ρ

∂
+ w .∇

 
(15) 

 

2 /
t
β

β β β β β β β

∂
− ν ∇ = − Ω ρ

∂
v

+ w v v v .∇  (16) 

 
 An important feature of the modified equation 
of motion (16) is that it involves a convective 
velocity βw that is different from the local fluid 

velocity βv . Because the convective velocity βw is 
not locally defined it cannot occur in differential 
form within the conservation equations [5].  This is 
because one cannot differentiate a function that is 
not locally, i.e. differentially, defined.  To 
determine βw , one needs to go to the next higher 

scale (β+1) where βw =  becomes a local 
velocity.  However, at this new scale one encounters 
yet another convective velocity which is not 
known, requiring consideration of the higher scale 
(β+2).  This unending chain constitutes the closure 
problem of the statistical theory of turbulence 
discussed earlier [5]. 

1β+v

1β+w
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3 Connection Between the Modified 
Form of the Equation of Motion and 
the Navier-Stokes Equation  
The original form of the Navier-Stokes equation with 
constant coefficients is given as [1, 2] 
 

2 1P (
t

∂
ρ ρ = − + µ∇ + µ

∂
v + v v v v.∇ ∇ ∇ ∇. )

3

ii

 (17) 
 

Since thermodynamic pressure Pt is an isotropic 
scalar, P in (17) is not Pt.  Rather, the pressure P is 
generally identified as the mechanical pressure that 
is defined in terms of the total stress tensor 

 as [7] ij t ij ijT P− δ + τ=
 

m ii tP (1/ 3)T P (1/ 3)= − = − τ  (18) 
 

The normal viscous stress is given by (10) as 
 and since 

 because of isotropic nature of Pt, the 
gradient of (18) becomes 

ii i ii(1/ 3) (1/ 3) (1/ 3)τ = ρ = − µv V v∇.

tP 0≈∇

 

m
1 1P P ( ) (
3 3

= = µ = µv∇ ∇ ∇ ∇. ∇ ∇. )v  (19) 
 

 Substituting from (19) into (17), the Navier-
Stokes equation assumes the form 
 

2 0
t

∂
− ν∇ =

∂
v + v v v.∇  (20) 

 

that is almost identical to (16) with  except 

that in (16) the convective velocity w  is different 

from the local velocity .  However, because (20) 

includes a diffusion term and  and  are related 

by , it is clear that (20) should in fact 
be written as (16). 

0βΩ =

β

βv

βw βv

β β= +v w Vβ

 
4 Solution of the Modified Equation of 
Motion within Laminar Boundary 
Layer Adjacent to an Axi-Symmetric 
Stagnation-Point 
As two examples of exact solutions of the modified 
equation of motion (16), the classical problems of 
two-dimensional and axi-symmetric jets [2] for 
laminar [8] and turbulent [9] flow were recently 
introduced.  In this section, the solution of the 
modified equation of motion (16) for the classical 
problem of laminar flow within the boundary layer 
adjacent to an axi-symmetric stagnation-point is 

considered.  The convective velocity field 
rc zc(w , w )′ ′  outside of the boundary layer, 

schematically shown in Fig.2, is known and given by 
[2] 
 

rc c cw r′ ′= Γ  zc c cw 2 z′ ′= − Γ  (21) 
 
where Γc is the velocity gradient and the subscript (c) 
refers to the laminar cluster-dynamic (LCD) scale β = 
c [5].  The convective velocity field (21) itself and 
hence Γc will be determined in the following section 
from the solution of the modified equation of motion 
(16) for axi-symmetric laminar finite-jet stagnation-
point flow and counterflow configurations at the next 
larger scale of laminar eddy–dynamics (LED) β = e 
[5].  In this section the local radial and axial 
velocities within the thin boundary layer adjacent to 
the wall at the scale β = c will be examined. 
 For laminar eddy-dynamics, the dissipative 
length scale is the cluster size 7

c ml 10−≈ λ = m i.e. 
the free path of molecular clusters.  Also, a typical 
element size is λ = .  Finally, a 
typical LCD system length is L  mm that is of 
the order of the boundary layer thickness.  The 
relevant kinematic viscosity at this scale is estimated 
as [5] 

2
c mL 10 mm−≈

1≈c

 

c c c m ml u / 3 v / 3ν = = λ  

 7 21 (10 m 300 m / s) 0.1 cm / s
3

−≈ × =  (22) 

 
where vm is the mean thermal speed of molecules.  
The notation rc zc(v ,  v )′ ′  is chosen for the local radial 
and axial velocities along the corresponding 
coordinates c c(r ,  z )′ ′ . 
 
 

 
 

     z 0′ =    cς = ∞                                  z Le = ∞ς / 2′ =  
 
 

Fig.2  Laminar finite-jet axi-symmetric 
stagnation-point flow (u = vrc, v = vzc). 
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 Under the conventional boundary layer 
assumptions  c/ r / z′∂ ∂ ∂ ∂ c′

2
c′

, and 

 and with introduction of the 
dimensionless velocities 

2 2 2
c/ r / z′∂ ∂ ∂ ∂

 

zc zc c c( ( ′ ′ ′ ν Γrc zc rc zcv v w v v w, , ) = , , )/  (23) 
 
and coordinates 
 

c cr /′ξ = δc c  ,     ,  c cz /′ς = δ c c /δ = ν Γc  (24) 
 
the steady forms of (14) and (16) in the absence of 
chemical reactions Ω = 0 reduce to 
 

zc rc rc

c c c

v v v 0∂ ∂
+ + =

∂ς ∂ξ ξ
 (25) 

 
2

rc rc
zc 2

c c

v vw ∂ ∂
=

∂ς ∂ς
 (26) 

 
2

zc zc
zc 2

c c

v vw ∂ ∂
=

∂ς ∂ς
 (27) 

 
that are subject to the boundary conditions 
 

c 0ς =   (28) rc zcv v= = 0
 

cς → ∞  rc rc cv w= = ξ  
 

  (29) c zc czcdv / d dw / d 2ς = ς = −
 
 Because usually c c/ν Γ 1 , the boundary 

layer coordinates (ξc , ζc) in (24) are stretched 
coordinates.  According to (29), the quantities (vrc, 
dvzc/dζc) within the boundary layer are matched with 
the outer convective velocity fields (wrc, dwzc/dζc ) 
from (21) in the limit cς → ∞  

)

(Fig.2).  The presence 
of boundary layer results in the displacement of the 
outer flow field (21) towards the nozzle to be further 
discussed in the next section. 
 Following the classical methods [2, 9, 10], an 
approximate similarity solution of the form 
 

rc c cv f (= ξ ς  (30) 
 
is considered for the radial velocity and the 
corresponding axial velocity is directly determined 

from the continuity equation (25).  Therefore, the 
exact solutions of (25)-(26), that do not satisfy (27) 
and hence represent an approximate solution of the 
problem, expressed in terms of the stream function 
 

 

 

c2
c c 0

erf (y)dy
ς

Ψ = −ξ ∫  (31) 

 
are 
 

c
rc c c

c c

1v erf ( )∂Ψ
= − = ξ

ξ ∂ς
ς  (32) 

 
 

 

cc
zc 0

c c

1v 2 er
ς

f (y)dy∂Ψ
= = −

ξ ∂ξ ∫  (33) 

 
 The streamlines calculated from (31) and shown 
in Fig.3 are in accordance with observations and 
appear similar to those presented in Fig.5.9 of 
Schlichting [2] for stagnation in plane flow. 
 
 
ξ c                                

0 1 2 3 4 5
-4

-2

0

2

4

 
       cς  
 
Fig.3 Calculated streamlines from (31) for 
stagnation-point boundary layer flow. 
 
The predicted velocity profiles calculated from (32) 
and (33) with (1/π1/2) due to the strain rate from (79) 
is shown in Fig.4.  The predicted radial velocity (32) 
is in excellent quantitative agreement with the 
classical numerical results of Homann [10] and 
Frössling [11] presented in Fig.5.10 of Schlichting 
[2].  On the other hand, while the agreement between 
the predicted axial velocity (33) and the classical 
numerical result [2, 10, 11] is good near the wall, the 
two solutions deviate far away from the wall.  
However, the far field behavior of the modified 
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solution (33) must be determined by matching to the 
outer solutions at LED scale to be described in the 
following section.  The exact comparisons between 
the predictions and the experimental observations as 
well as the exact numerical calculations require 
future considerations. 
 The dimensionless axial coordinate (24) may 
also be expressed as 
 

zc c

c c
c c c c c

w Lz
L

z / / z Re
′′

ν
′ς = ν Γ = = c  (34) 

 

showing explicitly the coordinate stretching  
by cRe .  It is emphasized however that neither Lc 

nor  are a-priori known parameters of the 
problem and hence cannot be used to non-
dimensionalize quantities.  The predicted boundary 
layer thickness defined as the position where 

 is obtained from (32) as 

zcw′

rc rcrcv v / w 0.9995′ ′= ≈
 

c 2.4∞ς ≈      ,     c cz 2.4 /∞′ = ν Γc   (35) 
 

in exact agreement with the classical numerical 
calculations [2, 9, 10]. 
 
 

0.5 1 1.5 2 2.5
ζc

0.2

0.4

0.6

0.8

1

−vz c

vr c

 
 
Fig.4 Calculated axial and radial velocity profiles 
within the boundary layer from (32)-(33). 
 
 The choice of 2.4 in (35) is to facilitate 
comparisons with the classical studies [2].  However, 
according to the predicted velocity profile of the 
present theory in (32), the edge of the boundary layer 
is already reached to an accuracy of 0.995 at  
 

c 2.0∗ς ≈      (36) 
 

and this modified value will be more relevant to the 
scaling process to be discussed in the next section.  
Also, one notes that the boundary layer thickness c

∗ς  
in (36) is four times the length to the position ζco = 

1/2 where the asymptotic profile of the axial velocity 
vze crosses the abscissa in Fig.4. 
 The dimensional hydrodynamic boundary layer 
thickness from (36) and (24) is 
 

c
c c

c

2.0L
z

Re
∗′= =  (37) 

 

For a typical laboratory-scale experiment [13] with 
, cL 2 mm≈ zcw 2 cm / s′ ≈ , and  for 

air, one obtains the strain rate  s

2
c 0.1 cm / sν ≈

zcc cw / L 10′Γ = ≈ −1 
and zcc c cRe (w L 4) /′= =ν , such that (37) leads to 

 that is indeed of the order of  for 
laminar cluster-dynamic scale.  Therefore, as 
suggested earlier, typical lengths for the description 
of the entire structure of the boundary layer at LCD 
scale are about  m. 

c 2.0 mm≈ cL

7 5
c c c(l 10  , 10  , L 10 )− −λ= = = 3−

 
5 Solution of the Modified Equation of 
Motion Outside of the Boundary 
Layer of Axi-symmetric Stagnation-
Point Flow or the Free Viscous Layer 
of Counterflow Finite Jets 
According to the scale-invariant form of the equation 
of motion (16) the convective velocity (w'rc , w'zc) at 
laminar cluster-dynamic (LCD) scale β = c is the 
local velocity (v're , v'ze) at the next higher scale of 
laminar eddy-dynamics (LED) β = e.  Therefore, in 
this section the velocities (w'rc , w'zc) given in (21) are 
determined from the solution of (16) at scale β = e, 
outside of the boundary layer of a finite-jet 
stagnation-point flow shown in Fig.2.  In addition, 
the solution of equation of motion outside of free-
viscous-layer within an axi-symmetric finite-jet 
counterflow schematically shown in Fig.5 will be 
described. 
 
 

z'

NOZZLE

Z  =  1/2 

NOZZLE

Z  =  − 1/2 Z  =  0  

u 

v 

r'wze  = 1 

wze  = −1 

− w'zo w'zo 

ζ = − ∞ 

ζ = ∞

 
 

 
Fig.5 Calculated velocity profiles for axi-
symmetric finite-jet counterflow (u = vre, v = vze) 
from (74)-(75). 
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The relevant (“atomic”, element, system) lengths [5] 
at laminar eddy-dynamic (LED) scale are (le = 10−5, 
λe = 10−3, Le = 10−1 m) and the actual lengths relevant 
to typical laboratory-scale experiments will be about 
(0.1, 1, 100) mm.  Also, the relevant kinematic 
viscosity for the scale β = e is estimated as [5] 
 

e e e c cl u / 3 v / 3ν = = λ  

 51 (10 m 3 m / s) 0.1 cm / s
3

−≈ × = 2

2
e′

e e

 (38)  

 
indicating that motions dissipate into the “atomic” 
scale of LED that is the same as the “elemental” scale 
of  LCD [5].  The general form of the solutions for 
axial and radial velocity fields outside of the 
stagnation-point boundary layer shown in Fig.2 are 
expected to be similar to those outside of the free-
viscous-layer of finite-jet counterflow shown in 
Fig.5.  The free viscous layer in Fig.5 is a thin 
dissipative layer at LCD scale that is embedded 
within the outer "boundary layer" at LED scale. 
 The conventional boundary layer assumptions 

,  are made and 
the dimensionless quantities 

e e/ r / z′ ′∂ ∂ ∂ ∂ 2 2 2
e/ r / z′∂ ∂ ∂ ∂

 

ze ze zeo( ( ′ ′ ′ ′r z r zv v w v v w w, , ) = , , )/  
 

e er r / L′=      ,     (39) e ez z / L′=
 
are introduced where zeow′  is the given axial 
convective velocity at the nozzle and Le is twice the 
separation distance between the nozzle and the wall 
(Fig.2) or the separation distance between the 
opposing nozzles (Fig.5).  The steady forms of (14) 
and (16) at LED scale β = e [5] in the absence of 
chemical reactions Ω = 0 reduce to 
 

z r r

e e e

v v v 0
z r r

∂ ∂
+ + =

∂ ∂
 (40) 

 
2

r
ze 2

e e

v v1w
z Re z

∂ ∂
=

∂ ∂
r

e

 (41) 

 
2

z
ze 2

e e

v 1w
z Re z

∂ ∂
=

∂ ∂
z

e

v
 (42) 

 
where the Reynolds number  
 

zeo e
e

e

w L
Re

′
=

ν
     (43) 

is based on the kinematic viscosity νe  defined in 
(38). The equations (40)-(42) are subject to the 
boundary conditions  
 

ez 1/ 2=   vr = vz +1 = 0  

e cz →  r ze e zc cv / z v / z v / 0∂ ∂ = ∂ ∂ − ∂ ∂ς =   (44) 
 
for the finite-jet stagnation-point flow (Fig.2) and 
 
ze = 1/2  vr = vz +1 = 0  
 

ze = 0 r e zv / z v 0∂ ∂ = =  (45) 
 

ze = −1/2  vr = vz −1 =  0  
 
for the finite-jet counterflow (Fig.5). 
 In the "inviscid" limit  far away from 
the stagnation plane z

eRe → ∞
e = 0, (41)-(42) simplify to the 

convective terms only thus leading to the outer 
solutions 
 
1/2 > ze >> 0   vr = vz +1 = wze + 1= 0 (46) 
 
Therefore, far away from the stagnation plane the jet 
velocity is purely axial because the presence of the 
stagnation plane has not yet induced any jet 
divergence as shown in Fig.2. 
 Next, for the analysis of the "viscous" solution 
at the LED scale, parallel to (23)-(24), one introduces 
the stretched velocities and coordinates as 
 

re ze ze re ze ze e e( ( ′ ′ ′ ν Γv v w v v w, , ) = , , )/  (47) 
 

e ez / e′ς = δ    ,    e er / e′ξ = δ   ,   e e /δ = ν eΓ  (48) 
 
where 
 

zeo
e

e

w
L

′
Γ =  (49) 

 
The axial convective velocity wze that satisfies the 
boundary conditions (44) is given by 
 

ze e e ew 2 z( /′ ′= − Γ − δ 2)

1)

  (50) 
 
that includes the apparent displacement of the 
position of the stagnation plane due to the presence 
of the viscous boundary layer.  Substituting from 
(47) and (48) into (50) leads to 
 

ze ew (2= − ς −   (51) 
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Assumptions ,  
and substitutions from (47), (48) and (50) into (14)-
(16) with Ω = 0 result in  

e e/ r / z′ ′∂ ∂ ∂ ∂ 2 2 2
e e/ r / z′ ′∂ ∂ ∂ ∂ 2

 
ze re re

e e e

v v v 0∂ ∂
+ + =

∂ς ∂ξ ξ
 (52) 

 
2

re re
e2

e e

v v
(2 1) 0

∂ ∂
+ ς − =

∂ς ∂ς
 (53) 

 
2

ze ze
e2

e e

v v
(2 1) 0

∂ ∂
+ ς − =

∂ς ∂ς
 (54) 

 
 The stretched coordinates in (24) and (48) lead 
to the general expression 
 

z
β

β

′

δ
ς =   (55) 

 

such that the LCD and the LED coordinates 
1 c( ,  ) ( ,  )

β β+ eς ς = ς ς  could be made to become 
“numerically equivalent” by proper choice of the 
scales .  According to the analysis of the 
boundary layer in the previous section at LCD scale 

 the boundary 
layer thickness and the characteristic length are 
related as  such that 

.  One requires that the characteristic 
elemental length of LED match the system length L

c e( ,  )δ δ

c c e
7 5,(l  ) m10 10 ,  L 10− − −λ= = = 3  

 

c

] 4

co c c c/ 4 / 4 L / 4∗ς = ς = =

c cL / 4λ =
c 

of LCD λe = Lc leading to the LED length scales 
.  Therefore, the 

characteristic unit lengths of the two boundary layer 
thicknesses  will be related by 

e e
5 3 1

e , ,(l  ) m10 10  L 10− − −λ= = =

c e( ,  )δ δ
 

e 4δ = δ      (56) 
 

that by (24), (48), and (56) result in 
 

e c / 4ς = ς  ,   (57) e c / 4ξ = ξ
 

 Substituting from (57) into (52)-(54) and 
introducing the new axial and radial coordinates 
 

e cy (1/ 2)[ / 2 1= ς −        ,       (58) e cx /= ξ
 

result in the system 
 

ze re re

e e e

v v v 0
y x x

∂ ∂
+ + =

∂ ∂
 (59) 

 
2

re re
e2

e e

v v
2y 0

y y
∂ ∂

+ =
∂ ∂

 (60) 

 
2

ze ze
e2

e e

v v
2y 0

y y
∂ ∂

+ =
∂ ∂

 (61) 

 
that are subject to the boundary conditions 
 

ey → ∞    vre  = vze + 1 = 0 (62a) 
 

ey 0=    re e ze e zc cv / y v / y v / 0∂ ∂ = ∂ ∂ − ∂ ∂ς =  (62b) 
 
The system (59)-(61) that describes the outer LED 
flow field involves the same coordinate ζc of the 
inner LCD boundary layer discussed in the previous 
section. 
 Following the classical studies [2, 9, 10], but as 
opposed to the radial velocity (30) chosen for the 
solution within the boundary layer discussed in sec.4, 
one now considers the axial velocity to have an 
approximate similarity solution of the form 
 

ze ev g(y= − )

2

 (63) 
 
and the corresponding radial velocity 

 is determined from the continuity 
equation (59).  Hence, the exact solutions of (59) and 
(61), will not satisfy (60) and hence represent 
approximate solutions of the problem.  The solution 
of (61)-(62) is given as 

re e ev x g (y ) /′=

 
 

 

c

ze
2

c1/ 2

1
v

A
exp[ 0.25( / 2 1) ]d

ς
= − c− ς − ς∫  (64) 

 
where the constant A is defined as 
 

 

 

2
c c1/ 2

A exp[ 0.25( / 2 1) ]d 4.97746
∞

= − ς − ς =∫  (65) 

 
After substitution from (61) into the continuity 
equation (59) the radial velocity outside of the 
boundary layer is obtained as 
 

2
c c

re
exp[ 0.25( / 2 1) ]v

2A
=

ξ − ς −
 (66) 
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The corresponding solutions within the boundary 
layer that are matched to the outer solutions (64) and 
(66) are obtained from (32) and (33) as 
 

rc c cv ( / 2A) erf (= ξ ς )  (67) 
 
and 
 

 

 

c

zc c c0
v (1/ A) erf ( )d

ς
= − ς ς∫  (68) 

 
The predicted velocity profiles calculated from (64)-
(68) are shown in Fig.6 and are in accordance with 
the classical results [2].  The exact comparisons of 
the predicted velocity profiles in Fig.6 with the 
available experimental observations in the literature 
will require future considerations. 
 
 

2 4 6 8
ζc

0.2

0.4

0.6

0.8

1
−vz

vr

 
 
 

Fig.6 Laminar axi-symmetric stagnation-point 
flow inside and outside of the boundary layer. 
 
 
 Finally, the problem of two axi-symmetric 
counterflow finite jets forming a thin free viscous 
layer at the stagnation plane shown in Fig.5 is 
addressed.  The solution of system (52)-(54) with the 
boundary conditions (45) will become very simple if 
one assumes that the inner viscous layer has zero 
thickness, i.e. the LCD viscosity given in (22) 
vanishes νc = 0.  It is emphasized here that only the 
thickness of the inner free viscous layer at LCD scale 
is assumed to vanish, δc = 0, while the viscosity at 
LED scale and hence δeν e in (48) is considered to 
remain finite.  Under such an assumption, the 
thickness of free-viscous layer vanishes and the 
convective velocity (51) reduces to 
 

ze ew 2= − ς    (69) 
 
such that (52)-(54) become 
 

ze re re

e e e

v v v 0∂ ∂
+ + =

∂ς ∂ξ ξ
 (70) 

 
2

re re
e2

e e

v v
2 0

∂ ∂
+ ς =

∂ς ∂ς
 (71) 

 
2

ze ze
e2

e e

v v
2

∂ ∂
0+ ς =

∂ς
 (72) 

∂ς
 
The solutions of (70)-(72) and (45) expressed in 
terms of the stream function 
 
 

2
e

e eerf ( )
2
ξ

Ψ = − ς  (73) 

 
are 
 

ze ev erf ( )= − ς  (74) 
 

2e
re ev exp( )= −ς

ξ

π
 (75) 

 
 The calculated streamlines for the outer LED 
scale calculated from (73) are shown in Fig.7 and are 
to be compared with the streamlines within the 
viscous boundary layer at LCD scale shown in Fig.3. 
 
ξ e                                                                                                                 

0 1 2 3 4 5
-4

-2

0

2

4

 

eς   

 
Fig.7 Calculated streamlines from (73) for outer 
LED scale finite-jet stagnation-point flow. 
 

 
The axial and radial velocity profiles calculated from 
(74)-(75) are shown in Fig.5 and are in qualitative 
agreement with experimental observations [14, 15].  
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In particular, the predicted behavior of the axial 
velocity across the stagnation plane shown in Fig.5 is 
in accordance with the experimental observations of 
Yamaoka and Tsuji [14]. 
 The local velocity (v're, v'ze) at LED scale in 
(74)-(75) also represent the convective velocity (w'rc , 
w'zc) at the next lower scale of LCD.  In the 
neighborhood of the stagnation plane, , the 
solutions (74)-(75) lead to 

e 1ς

 

ze e
2

v = − ς
π

 , re e
1

v = ξ
π

 (76) 
 

that in view of (47) and (48) could be expressed as 
 

ze zc e c

2
v w z 2 z

π
′ ′ ′= = − Γ = − Γ ′  (77) 

 

e
re rc cv w r rΓ′ ′ ′= = = Γ

π
′  (78) 

 

if one introduces the following new definition 
 

e
c

Γ
Γ =

π
  (79) 

 

The results (77)-(78) are identical to the convective 
velocity field (21) of sec.3.  The application of the 
results to the important problem of combustion in 
stagnation flows [3, 12-16] requires future 
considerations. 
 
6 Concluding Remarks 
The modified form of the equation of motion was 
solved for the classical problems of laminar 
incompressible flow within boundary layer adjacent 
to an axi-symmetric stagnation-point and laminar 
flow outside of the free viscous layer at the 
stagnation plane between axi-symmetric counterflow 
finite jets.  For the former problem, the resulting 
analytical solution for radial velocity was found to be 
in excellent agreement with the exact numerical 
calculations of Homann and Frössling.  The 
predicted axial velocity showed close agreement with 
the classical numerical results near the wall, but the 
two solutions deviated far away from the wall.  For 
the latter problem, the predicted behavior of the axial 
velocity profile across the stagnation plane was found 
to be in agreement with the experimental 
observations of Yamaoka and Tsuji. 
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