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Abstract:- Scale-invariant forms of the mass, energy, and linear momentum conservation equations in reactive fields 
are described.  The modified form of the equation of motion is then solved for the classical Blasius problem of 
laminar flow over a flat plate.  The predicted velocity profile is found to be in excellent agreement with the more 
recent experimental data of Dhawan, and in close agreement with the earlier experimental data of Nikuradse as well 
as the numerical calculation of Blasius. 
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1 Introduction 
The universality of turbulent phenomena from 
stochastic quantum fields to classical hydrodynamic 
fields resulted in recent introduction of a scale-
invariant model of statistical mechanics and its 
application to the field of thermodynamics [4].  The 
implications of the model to the study of transport 
phenomena and invariant forms of conservation 
equations have also been addressed [5, 6].  In the 
present study, following Blasius [10], the modified 
form of the equation of motion is solved for the 
problem of laminar flow over a flat plate.  The 
predicted velocity profile is shown to be in close 
agreement with the early experimental data of 
Nikuradse [11] and in excellent agreement with the 
more recent experimental data of Dhawan [12]. 
 

2 Scale-Invariant Forms of the 
Conservation Equations for Reactive 
Fields 
Following the classical methods [1-3], the invariant 
definitions of the density ρβ

β

, and the velocity of atom 
uβ, element vβ, and system wβ at the scale β are given as 
[4]  
 
ρ n m m f duβ β β β β= = ∫      ,       uβ = vβ−1 (1) 
 

1m f d−
β β β β β β= ρ ∫v u u

          
  ,         wβ = vβ+1 (2) 

 

The scale-invariant model of statistical mechanics for 
equilibrium fields of . . . eddy-, cluster-, molecular-, 
atomic-dynamics . . . at the scale β = e, c, m, a, and the 
corresponding non-equilibrium laminar flow fields are 
schematically shown in Fig.1.  Each statistical field, 
described by a distribution function fβ(uβ) = fβ(rβ, uβ, tβ) 
drβduβ, defines a "system" that is composed of an 
ensemble of "elements", each element is composed of 
an ensemble of small particles viewed as point-mass 
"atoms".  The element (system) of the smaller scale (β) 
becomes the atom (element) of the larger scale (β+1). 
The three characteristic length scales associated with 
the free paths of atoms, and elements, and the size of 
the system at any scale β are (lβ = λβ−1, λβ, Lβ = λβ+1) 
where λβ = <l2

β>1/2 is the cluster length that is also equal 
to the mean-free-path of the atoms [5]. 
    The invariant definitions of the peculiar  and the 
diffusion velocities have been introduced as [4] 
 

β β β′ = −V u v     ,      1β β β β+′= − =V v w V  (3) 
 
It is noted that according to (3) the diffusion velocity 
at the scale β becomes the peculiar velocity at the next 
larger scale β+1.  For the equilibrium statistical fields 
shown on the left side of Fig.1, fβ(uβ) will be the 
Maxwell-Boltzmann distribution function.  The 
“atomic”, the local “element”, and the convective 
“system” velocities (uβ, vβ, wβ) defined in (1)-(2) at 
each scale within the hierarchy are also shown on the 
right side of Fig.1. 
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Fig.1 Hierarchy of statistical fields for equilibrium 
eddy-, cluster-, and molecular-dynamic scales and 
the associated laminar flow fields. 
 
    Next, following the classical methods [1-3], the 
scale-invariant forms of mass, thermal energy, and 
linear momentum conservation equations at scale β 
are given as [5, 6] 
 

( )β
β β β

ρ
ρ

t
∂

+
∂

v∇. = Ω  (4) 
 

( )β
β β

ε
ε 0

t
∂

+
∂

v∇. =  (5) 
 

( )β
β β 0

t
∂

+
∂

p
p v∇. =

β βv

 (6) 

 
that involve the volumetric density of thermal energy 

 and linear momentum .  Also, ρ hβ βε = ρβ β=p

βΩ  is the chemical reaction rate and h is the absolute 
enthalpy. 

β

    The local velocity  in (4)-(6) is expressed in 

terms of the convective  and the diffusive 

 velocities [5] 

βv

β β= 〈 〉w v

βV
 

gβ β= +v w Vβ β

β

βp

   ,     (7a) g D ln( )β β= − ρV ∇

tgβ β β= +v w V    ,     (7b) tg ln( )β β= −α εV ∇

hgβ β β= +v w V   ,     (7c) hg ln( )β β= −νV ∇
where (Vβg, Vβtg, Vβhg) are respectively the diffusive, 
the thermo-diffusive, the linear hydro-diffusive 

velocities.  For unity Schmidt and Prandtl numbers, 
one may express 
 

tg g tβ β β= +V V V        ,    t ln(h )β β β= −αV ∇  (8a) 
 

hg g hβ β β= +V V V     ,    h ln( )β β β= −νV ∇ v  (8b) 
 

that involve the thermal Vβt, and linear hydrodynamic 
Vβh diffusion velocities [5].  Since for an ideal gas hβ = 
cpβTβ, when cpβ is constant and T = Tβ, Eq.(8a) reduces 
to the Fourier law of heat conduction  
 

tρ h κ Τβ β β β β= = −q V ∇  (9) 
 

where βκ  and p/( c )β β β βα = κ ρ  are the thermal 
conductivity and diffusivity.  Similarly, (8b) may be 
identified as the shear stress associated with diffusional 
flux of linear momentum and expressed by the 
generalized Newton law of viscosity [5] 
 

ij j ij h j iρ µ /β β β β β β= = − ∂ ∂τ v V v x  (10) 
 

Substitutions from (7a)-(7c) into (4)-(6), neglecting 
cross-diffusion terms and assuming constant transport 
coefficients with Sc Pr 1β β= = , result in [5, 6]  

 

2D
t
β

β β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇  (11) 

 

2h D
t
β

β β β β β

∂ρ⎡ ⎤
ρ − ∇ ρ⎢ ⎥∂⎣ ⎦

+ w .∇
 

+ 2h
h h

t
β

β β β β β

∂⎡ ⎤
0ρ − α ∇ =⎢ ⎥∂⎣ ⎦

+ w .∇      (12) 

 

2D
t
β

β β β β β

∂ρ⎡ ⎤
ρ − ∇ ρ⎢ ⎥∂⎣ ⎦

v + w .∇
 

   +  2 0
t
β

β β β β β

∂⎡ ⎤
ρ − ν ∇ =⎢ ⎥∂⎣ ⎦

v
+ w v v.∇   (13) 

 
    In the first and second parts of Eqs.(12)-(13), the 
gravitational versus the inertial contributions to the 
change in energy and momentum density of the field 
are apparent.  Substitutions from (11) into (12)-(13) 
result in the invariant forms of conservation equations 
[6] 
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2D
t
β

β β β β

∂ρ
ρ − ∇ ρ = Ω

∂
+ w .∇ β  (14) 

 

2
p

T
T T h /( c

t
β

β β β β β β β β

∂
− α ∇ = − Ω ρ

∂
+ w .∇ )

 
(15) 

 

2 /
t
β

β β β β β β

∂
− ν ∇ = − Ω ρ

∂
v

+ w v v v .∇ β  (16) 

 
    An important feature of the modified equation of 
motion (16) is that it involves a convective velocity 

that is different from the local fluid velocityβw βv . 

Because the convective velocity is not locally-
defined it cannot occur in differential form within the 
conservation equations [5].  This is because one 
cannot differentiate a function that is not locally, i.e. 
differentially, defined.  To determine , one needs to 

go to the next higher scale (β+1) where 

βw

βw

βw = 1β+v  
becomes a local velocity.  However, at this new scale 
one encounters yet another convective velocity 

which is not known, requiring consideration of 

the higher scale (β+2). This unending chain 
constitutes the closure problem of the statistical 
theory of turbulence discussed earlier [5, 9]. 

1β+w

 
3 Connection Between the Modified 
Form of the Equation of Motion and the 
Navier-Stokes Equation  
The original form of the Navier-Stokes equation with 
constant coefficients is given as [1, 2] 
 

2 1P (
t

∂
ρ ρ = − + µ∇ + µ

∂
v + v v v v.∇ ∇ ∇ ∇. )

3

ii

 (17) 

 
Since thermodynamic pressure Pt is an isotropic scalar, 
P in (17) is not Pt.  Rather, the pressure P is generally 
identified as the mechanical pressure that is defined in 
terms of the total stress tensor  as [7] ij t ij ijT P− δ + τ=
 

m ii tP (1/ 3)T P (1/ 3)= − = − τ  (18) 
 

The normal viscous stress is given by (10) as 
 and since 

 because of isotropic nature of Pt, the gradient 
of (18) becomes 

ii i ii(1/ 3) (1/ 3) (1/ 3)τ = ρ = − µv V v∇.

tP 0≈∇

m
1 1P P ( ) (
3 3

= = µ = µv )v∇ ∇ ∇ ∇. ∇ ∇.  (19) 

 
Substituting from (19) into (17), the Navier-Stokes 
equation assumes the form 
 

2 0
t

∂
− ν∇ =

∂
v + v v v.∇  (20) 

 

that is almost identical to (16) with  except that 
in (16) the convective velocity is different from the 
local velocity 

0βΩ =

βv .  However, because (20) includes a 

diffusion term and the wβ and are related by βv

β β β= +v w V , it is clear that (20) should in fact be 
written as (16). 

4 Modified Theory of Laminar 
Boundary Layer Over a Flat Plate 
As two examples of exact solutions of the modified 
equation of motion (16), the classical problems of two-
dimensional and axi-symmetric jets [2] for laminar [8] 
and turbulent [9] flow were recently introduced.  In this 
section, the solution of the modified equation of 
motion (16) for the classical problem of laminar flow 
within the boundary layer adjacent to a flat plate is 
considered.  The convective velocity field x y(w , w )′ ′  
outside of the boundary layer, schematically shown in 
Fig.2, is known and given by [2] 
 

x ow w′ ′=   (21) yw′ = 0

0

 
Therefore, one looks for the local longitudinal velocity 
within the thin boundary layer adjacent to the wall at 
the scale β = c.  For laminar cluster-dynamics [4, 5], 
the dissipative length scale is the cluster size 

7
c ml 1 −≈ λ = m i.e. that is the mean free-path of 

molecules.  Also, a typical element size is 
5

c mL 10−λ = ≈ m.  Finally, a typical system length is 
3

cL 10−≈ m that is about the thickness of the boundary 
layer.  The relevant kinematic viscosity at LCD scale is 
estimated as [5] 
 

c c c m ml u / 3 v / 3ν = = λ  

     7 21 (10 m 300 m / s) 0.1 cm / s
3

−≈ × =  (22) 
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where vm is mean molecular thermal speed.  The 
notation  is chosen for the local axial and 
transverse velocities along the corresponding 
coordinates . 

x y(v , v )′ ′

(x , y )′ ′
 

 
             y′
                                                                         wx = 1 

wx  = 1 

 
 

                                                                                                             δ 
 
 
 
                           0                                   x1x′ 2x′ ′  
 
Fig.2 Laminar boundary layer over a flat plate. 
 
 

2′

o

 The conventional boundary layer assumption 
 is introduced along with the 

dimensionless velocities 

2 2 2/ x / y′∂ ∂ ∂ ∂

 

x y x( ( ′ ′ ′ ′ ′x y x y y ov v w w v v w w w, , , ) = , , , )/  (23) 
 

and coordinates 
 

e Hx x / l′=    ,       ,     (24) Hy y / l′= Hl / w′= ν
 
where lH is the characteristic hydrodynamic length 
scale.  The steady forms of (14) and (16) in the absence 
of chemical reactions Ω = 0 reduce to 
 

yx
vv 0

x y
∂∂

+ =
∂ ∂

 (25) 

 

2
x x

x y 2

v vw w
x y

∂ ∂ ∂
+ =

∂ ∂ ∂
xv

y

0
1

w′= ν 1

1

 (26) 

 
that are subject to the boundary conditions 
 

y 0=   (27) x yv v= =

y → ∞   (28) x xv w= =
 

Because usually l / , the boundary layer 
coordinates (x, y) in (24) are stretched coordinates.  
The presence of boundary layer results in the 
transverse displacement of the outer flow field away 
from the plate. 

H o

 According to (27)-(28), the local velocity vx 
within the boundary layer must vanish at the plate and 
match the outer convective velocity field xw =  at the 
edge of the boundary layer, i.e. in the limit 

(Fig.2).  Therefore, the convective velocity that 
is the mean of the local velocity w
y → ∞

x = <vx> within the 
boundary layer will have the constant value of wx = ½ 
at all axial locations.  Introducing the value wx = ½ and 
the similarity variable 
 

y
2 2x

ξ =  (29) 

 
into (26) and neglecting the transverse convection wy = 
0, one obtains 
 

2
x x

2

d v dv2
d d

0+ ξ =
ξ ξ

 (30) 

 
that is subject to the boundary conditions 
 

0ξ =  xv 0=  (31) 
ξ → ∞  xv 1=  (32) 
 
The solution of (30)-(32) is 
 

xv erf ( )= ξ  (33) 
 
 To facilitate the comparisons, the solution (33) is 
expressed as 
 

xv erf[ / 2 2]= η  y / xη =   (34) 
 

in terms of the same similarity variable η as in the 
classical theory [2, 10].  The boundary layer thickness 
is obtained from (33) as the position  where v1.8∗ξ x 
= 0.99 that by (29) leads to 
 

1/ 2
x5.1x 5.1 Reδ =    (35) 

 

that is in close agreement with the classical numerical 
result of Blasius [2, 10] 
 

x5.0 Reδ     (36) 
 

One can express the solution (34) in terms of the 
stream function 
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0
2 2x erf ( )d

ξ
Ψ = ξ ξ∫  (37) 

The transverse velocity that is the solution of (25) and 
(27) is obtained from (37) as 
 

 

 
y 0

2v erf ( ) erf (z
x

ξ⎡= ξ ξ −⎢⎣ ∫ )dz⎤
⎥⎦

 (38) 
 

Some of the streamlines calculated from (37) in terms 
of (x, y) coordinates using (29) are shown in Fig.3. 
 
 

y 
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Fig.3 Calculated streamlines from (37) for laminar 
flow over a flat plate. 
 
 The predicted velocity profile calculated from 
(34) is shown in Fig.4a along with the experimental 
data of Nikuradse [11]. 
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η
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0.8

1

vx

1
2

 
 
Fig.4a Comparisons between: (1) predicted axial 
velocity profile from (34), (2) the experimental data 
of Nikuradse [11] that also closely approximate the 
numerical calculation of Blasius [2, 10] 
 
  Because the experimental data of Nikuradse [11] very 
closely follow the numerical calculations of Blasius 
[10], according to the Fig.7.9 of Schlichting [2], the 

solid line labeled 2 in Fig.4a closely approximates the 
numerical solution of Blasius [10].  Therefore, Fig.4a 
also presents an indirect thus approximate comparison 
between the result of modified theory presented herein 
and the classical exact numerical solution of Blasius 
given in Fig.7.9 of Schlichting [2]. 
 Comparison between the predicted velocity 
profile (34) and the relatively more recent, 1952 as 
compared to 1942, data obtained by Dhawan [12] is 
shown in Fig.4b.  It is clear that the more recent 
experimental data of Dhawan [12] is in excellent 
agreement with the modified theory.  The earlier 
experimental data of Nikuradse [11] shown in Fig.4a 
are found to always locate on the lower boundary of 
the more recent data shown in Fig.4b.  Of course, in 
view of the inevitable experimental uncertainties as 
well as the uncertainties in the transport coefficients 
used in the theory, exact correspondence between the 
theory and the experiment should not be expected. 
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Fig.4b Comparison between the predicted axial 
velocity profile from (34) and the experimental data 
of Dhawan [12]. 
 
 The magnitude of the transverse velocity at the 
edge of the boundary layer is obtained from (38) as 
 

1/ 2 1/ 2
y x

2v ( ) x 0.798Re−∞ =
π

−

x

  (39) 

 
that is in close agreement with the classical result of 
Blasius given as [2, 7] 
 

1/ 2
yv ( ) 0.861Re−∞ =     (40) 

 

where the Reynolds number is x oRe x x w /′ ′= = ν . 
 Next, the predicted friction coefficients of the 
modified versus the classical theory are compared.  The 
friction coefficient is defined as 
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f 2
o

C
w / 2
−τ

=
′ρ

     (41) 

 

that involves the shear stress from (10) 
 

x

y 0

v
y ′=

′⎛ ⎞∂
τ = −µ⎜ ⎟′∂⎝ ⎠

    (42) 

 

By substitutions from (23)-(24) in (42) and the use of 
(34) one obtains from (41) 
 

1/ 2 1/ 2
f x

2C x 0.798Re−= =
π

−

x

   (43) 
 

that is identical to (39).  Indeed, the identity of (43) and 
(39) appears to be required by the energy balance 

 over the length  and the 
width t of the plate.  The result (43) is in reasonable 
agreement with the classical result [2] 

2
y ov ( ) t( w / 2) t′∞ ρ = τ

 

1/ 2
fC 0.664Re−=     (44) 

 

Experimental measurements of drag on a flat plate 
could be used to validate the predicted friction 
coefficient (43) of the modified theory. 
 
6 Concluding Remarks 
The modified form of the equation of motion was 
solved for the classical problem of Blasius concerning 
laminar incompressible flow in the boundary layer 
adjacent to a flat plate.  The predicted velocity profile 
was found to be in excellent agreement with the more 
recent experimental data of Dhawan [12], and in close 
agreement with the earlier experimental data of 
Nikuradse [11] as well as the numerical solution of 
Blasius [10]. 
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