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Abstract: - In present paper the theory of the micropolar fluid based on a COSSERAT continuum model has 
been applied for analysis of turbulent flow through smooth pipes. The obtained results for the velocity field 
have been compared with known results from experiments done by Nikuradse in 1932. Nikuradse's experiment 
showed that the velocity profile in turbulent regime flattens in comparison with Navier-Stokes based solutions 
(i.e. Hagen-Poiseuille theory). After material identification, the results of solution have been shown for 
Reynolds numbers between 4×103 and 3.2×106 and the results demonstrate the wide range of validity of the 
solution. 
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1   Introduction 
The concept of COSSERAT continua was 
introduced in a paper submitted by two French 
brothers Cosserat [1] (also see Forest (2001)). In this 
continuum, we consider the effect of couples on a 
material element in addition to and independent of 
the effect of forces. 
The theory of micro-fluids, introduced by Eringen 
[2,3], deals with fluids which exhibit certain 
microscopic effects arising from the local structure 
and micromotions of fluid element. A subclass of 
these is the micropolar fluid which has the 
microrotational effects and microrotational inertia. 
This theory is based on the concept of a 
COSSERAT continuum. 
This class of fluids can support the couple stress, the 
body couples and the non-symmetric stress tensor 
and possess a rotation field, which is independent of 
the velocity field. The rotation field is no longer 
equal to the one half of the curl of velocity vector 
field. Because of the assumption of infinitesimal 
rotations, we can treat the rotation field as a vector 
field. 
The theory, thus, has two independent kinematic 
variables; the velocity vector  and the spin or 
microrotation vector 

V
ν . 

The linear constitutive equation for non-symmetric 
stress tensor (i.e. Cauchy's stress tensor), contains an 
additional viscosity coefficient . The value of  
shows the influence of the microrotation field on the 
stress tensor. 

vk vk

The linear constitutive equation for couple stress 
also contains three additional viscosity coefficients 

vα , vβ  and . vγ
There are several approaches to the problem of 
turbulent flows. Some of them are models which 
constructed from experiments such as Boussinesq's 
model or  model. But there are some analytical 
approaches by means of non-classical continuum 
models [4,5], for example the COSSERAT continua 
approach [3,6]. Another way to describe turbulence 
is the non-local models based on classical 
continuum models [7]. 

k - ε

In present work we solve the problem of turbulent 
pipe flow by use of COSSERAT continuum 
mechanics. Then we compare our results with 
experiments done by Nikuradse. 
The results of the experiment and also the results of 
our analysis are for the mean values of velocities 
defined by 

0

0

t t

t

1( ) ( , t) dt.
t

+∆

=
∆ ∫V x V x  (1) 

It has been proposed by Eringen [3], Trostel [6] and 
other investigators to solve the problem of turbulent 
pipe flow by use of the theory of micropolar fluids. 
Here a material identification has been performed 
and the results have been compared with the results 
of Nikuradse [8,9]. 
 
 
2   Motion of a COSSERAT Fluid 
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2.1 Kinematics of COSSERAT Continua 
At any material point of the continuum, we consider 
both a velocity and a rotation velocity vector 
denoted by  and V ν , respectively. The so-called 
COSSERAT microrotation  relates the current 
state of a triad of orthonormal directions attached to 
each material point to its initial state, i.e. 

ijR

ij ij ijk kR = δ −Γ ν ,  (2) 

where  and  are the Kronecker delta tensor 
and permutation tensor, respectively. 

ijδ ijkΓ

The associated COSSERAT deformation ijε  and 

torsion-curvature tensor  are written as  ijκ

ij j,i ijk kVε = −Γ ν ,  (3) 

ij j,i ,κ = ν  (4) 
where the comma denotes the partial differentiation. 
 
2.2 Balance Laws in COSSERAT Media 
It is assumed that the transfer of interaction between 
two particles of the continuum through a surface 
element  occurs by means of both a traction 
vector  and a moment vector . Surface 
forces and couples are represented by the generally 
non-symmetric force-stress and couple-stress tensors 

 and , respectively. 

in ds

it ds im ds

ijt ijm
The axioms of balance of linear momentum and 
moment of momentum (i.e. angular momentum) 
require that the following equations hold 

i
ij, j i

DVt f
Dt

+ = ρ ,  (5) 

i
ji, j ijk ik i

Dm t l j
Dt
ν

+ Γ + = ,  (6) 

where  and  are the mass density, 
microinertia, body force per unit mass and body 
couple per unit mass respectively. 

i, j, fρ il

 
2.3 Constitutive Equations 
Here we choose linear constitutive equations which 
describe our material behavior. It can be considered 
as the generalization of Newtonian fluids in the 
classical Navier-Stokes theory. 

( ) ( )
( )

kl v r,r kl v k,l l,k

v l,k klr r

t V V

k V ,

= −π+ λ δ +µ +

+ −Γ ν

V
 (7) 

kl v r,r kl v k,l v l,km ,= α ν δ +β ν + γ ν  (8) 
where  is the thermodynamic pressure. π
As you see, the microrotation field has influence on 
the stress tensor, but the vice versa is not true. 

2.4 Field Equations 
At this stage we must mix the above equations to 
obtain governing field equations. The field equations 
for micropolar fluids in the vectorial form are given 
by 
Conservation of mass (i.e. continuity equation) 

( ) 0,
t

∂ρ
+∇ ⋅ ρ =

∂
V  (9) 

Balance of momentum 
( ) ( )v v v v v

v

2 k k

Dk ,
Dt

λ + µ + ∇∇⋅ − µ + ∇×∇×

⎛ ⎞+ ∇× −∇π+ρ − =⎜ ⎟
⎝ ⎠

V V

Vν f 0
 (10) 

Balance of moment of momentum 
( )v v v v

v v
Dk 2k j
Dt

,

α +β + γ ∇∇⋅ − γ ∇×∇×

⎛ ⎞+ ∇× − +ρ − =⎜ ⎟
⎝ ⎠

ν ν

νV ν l 0
 (11) 

where D
Dt  denotes the material time derivative. 

 
 
3   Definition of Problem 
The flow through a pipe is determined by pressure 
gradient which is assumed to be constant in most of 
the problems with practical importance. The radius 
of pipe is . The  axis overlaps the centerline 
of pipe. Because of symmetry, the upper half of the 
flow field is only considered. In this case the 
velocity components and the microrotation 
velocities become  

R Oz

r zV V 0, V u(r)θ ,= = =  (12) 

r z 0, (r).θν = ν = ν = ν  (13) 
The mass conservation law is identically satisfied 
with constρ = . The equations of motion (i.e. Eq. 
(10) and Eq. (11)) are reduced to the following form 
by neglecting the body forces and body couples,  

( ) ( )v v v
d du d dpk r k r r
dr dr dr dz
⎛ ⎞µ + + ν =⎜ ⎟
⎝ ⎠

,  (14) 

v v
d d duk 2k
dr dr r dr

ν ν⎛ ⎞γ + − − ν⎜ ⎟
⎝ ⎠

v 0.=  (15) 

These two coupled ordinary differential equations 
must be subjected to the following boundary 
conditions 

du dAt r 0 : 0, 0,
dr dy

ν
= = =  (16) 

duAt r R : u 0, n .
dr

= = ν = −  (17) 
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4   Determination of Velocity Profile 
The solutions of the Eq. (14) and Eq. (15), for the 
velocity and microrotation fields are 

2 v 0 0

0 v v 1 0

N k I ( ) I ( )u( ) 1
U (k )I ( ) I (

⎡ξ ξσσ
= −σ + −⎢ξ +µ ξ ξ⎣

1
)

⎤
⎥
⎦

 (18) 

1

0 1

NI ( )R ,
U I (

ξσν
= σ −

ξ)

)

 (19) 

( )
(

v v v

v v v

k 2 k
k

µ +
ξ =

γ µ +
 (20) 

r
R

σ =  (21) 

(2 11
0 v v2U R (2 k ) p−= − µ + ∂ ∂ )z  (22) 

v v

v v

n(2 k )N 1
(1 n) k

µ +
= −

− µ
 (23) 

where  and  are modified Bessel functions of 
the first kind of order zero and one , respectively. 

0I 1I

The process of validation of our results requires 
knowledge about material constants. Since the new 
material constants of COSSERAT theory is not 
known yet, we choose another way. We consider the 
flow field and the Nikuradse's results instead of 
boundary value problem. Thus we determine the 
coefficients from given data of experiment by means 
of an optimization process to minimize the fitting 
error. For this purpose and since the results of 
experiments have been reported for dimensionless 
velocities and radii, we apply following 
reconfiguration of the above solution. 

v 0

0 v v 1 0

k I ( )U 1 11 N 1 ,
U k I ( ) I ( )

⎡ ⎤ξ
= + −⎢+µ ξ ξ ξ⎣ ⎦

⎥  (24) 

where  is the velocity at centerline. U u( 0)= σ =

2 v 0 0

v v 1 0

v 0

v v 1 0

k I ( ) I ( )11 N
k I ( ) I ( )u( )

U k I ( )1 11 N 1
k I ( ) I ( )

⎡ ⎤ξ ξσ
−σ + −⎢ ⎥+µ ξ ξ ξσ ⎣=

⎡ ⎤ξ
+ ⎢ ⎥+µ ξ ξ ξ⎣ ⎦

1
⎦

−

 (25) 
Since the denominator of Eq. (25) is constant, we 
show the denominator by a single unknown constant 
and also mix the constants in the numerator to 
simplify the optimization process. Now, the 
coefficients of following velocity distribution must 
be determined from results of Nikuradse's 
experiments for smooth pipes. 

( )02
1 2

0

Iu C 1 C 1
U I (

⎧ ⎫⎡ ⎤ξσ⎪= −σ + −⎨ ⎢ ξ⎪ ⎪⎣ ⎦⎩ ⎭)
⎪
⎬⎥  (26) 

At this stage, we determine the coefficients by 
minimization of fitting error for , 

 and  by use of an 
algorithm for nonlinear optimization like 
Levenberg-Marquardt and Evolution Strategies. 

3Re 4×10=
5Re 1.1×10= 6Re 3.2×10=

The results of COSSERAT and Navier-Stokes based 
solutions and Nikuradse's experiments have been 
shown in Figs. (1), (2) and (3) and the results can be 
compared. 
 
 
5   Conclusion 
In this paper we demonstrated that a complex 
phenomenon like turbulence could be modeled by 
use of a COSSERAT continuum model. A boundary 
condition was used for microrotation at walls to 
model the effect of surface quality on turbulence. It 
can be verified from this paper that continuum 
mechanical theories of higher orders such as 
COSSERAT model provide a way for analysis of 
turbulent flows in a very wide range of Reynolds 
numbers. The analysis of turbulent pipe flow by 
means of micropolar fluid mechanics has been 
proposed by Eringen [3], but no precise work has 
been done on this problem. The accuracy of our 
solution could be improved by considering slip 
boundary condition proved by Trostel [10] at pipe 
walls. 
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Fig. 1 Velocity Profile for  3104Re ×=

Solid line : COSSERAT Dashed line : Navier-Stokes Points : Experiment 
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Fig. 2 Velocity Profile for  5101.1Re ×=

Solid line : COSSERAT Dashed line : Navier-Stokes Points : Experiment 
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Fig. 3 Velocity Profile for  6102.3Re ×=

Solid line : COSSERAT Dashed line : Navier-Stokes Points : Experiment 
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