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Departamento de Matemática Aplicada y Estad́ıstica.
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1 Introduction

We consider numerical approximations to
weak solutions of nonlinear hyperbolic con-
servation laws:

ut + f(u)x = 0, (1)

u(x, 0) = u0(x). (2)

the initial data u0(x) are supposed to be
piecewise smooth functions that either peri-
odic or of compact support.

Let be un
j = uh(xj , tn) denote a numerical

approximation to the exact solution u(xj , tn)
of (1)-(2) defined on a computational grid
xj = jh, tn = n∆t in conservation form:

un+1
j = un

j − λ(f̂n
j+ 1

2
− f̂n

j− 1
2
), (3)

where λ = ∆t
h and the numerical flux is a

function of 2k variables

f̂n
j+ 1

2
= f̂(un

j−k+1, . . . , u
n
j+k), (4)

which is consistent with (1), i.e.

f̂(u, . . . , u) = f(u). (5)

The importance of the following lemma
(see [5]) is because it implies that approx-
imating the numerical flux f̂j+ 1

2
to a high

order accuracy it is enough to reconstruct
g(xj+ 1

2
) (see equation (6)) up to the same or-

der.

Lemma 1 (Shu and Osher) If a function
g(x) satisfies

f(u(x)) =
1
h

∫ x+h
2

x−h
2

g(ξ)dξ (6)
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then

f(u(x))x =
g(x + h

2 )− g(x− h
2 )

h
.

First order methods give poor accuracy in
smooth regions of the flow. Shocks tend
to be heavily smeared and poorly resolved
on the grid. These effects are due to the
large amount of numerical dissipation in these
schemes.

Marquina [4] introduced a new local
third order accurate shock capturing method
(PHM), the main advantage of this method
lies on the property that it is localer than
ENO and TVD upwind schemes of the same
order, (and, thus, giving better resolution
of corners), because numerical fluxes depend
only on four variables.

In [1] and [2] we present some modifica-
tions of the PHM. They are based on differ-
ent reconstructions. From the numerical ex-
periments, the methods become efficient since
they are low cost and they are not very sen-
sitive to the Courant-Friedrichs-Lewy (CFL)
number.

To complete the schemes, Shu and Os-
her developed a special family of Runge-
Kutta time integration schemes that have a
TVD property [5], [6]. The TVD property
prevents the time stepping scheme from in-
troducing spurious spatial oscillations into
upwind-biased spatial discretization.

The aim of this paper is to analyze some
stability properties in order to obtain the con-
vergence of these type of schemes. The paper
is organized as follows: section 2 contains the
reconstruction step. In section 3 the complete
algorithm is presented. Finally, some stabil-
ity properties and a convergence analysis are
studied in 4.

2 Piecewise reconstructions

We define a computational grid xj = jh, j
integer, h > 0, where the cells are

Cj = {x : xj− 1
2
≤ x ≤ xj+ 1

2
}, (7)

where xj+ 1
2

= xj + 1
2h.

Our grid data are:

vj =
1
h

∫ x
j+1

2

x
j− 1

2

g(ξ)dξ, (8)

dj+ 1
2

=
vj+1 − vj

h
, (9)

(dj+ 1
2

= g
′
(xj+ 1

2
) + O(h2)).

We required the following conditions for ev-
ery j:

vj =
1
h

∫ x
j+1

2

x
j− 1

2

rj(ξ)dξ, (10)

di+ 1
2

= r
′
j(xi+ 1

2
), i = j − 1, j. (11)

Taylor series expansions show that condi-
tions (10) and (11) imply third order accuracy
of the reconstruction rj(x).

2.1 Local Total Variation Bounded
reconstructions

The reconstruction procedure is repeated at
every time step, thus the change in total
variation of the reconstruction must be con-
trolled. The local total variation of the re-
construction {rj} is defined by

LTVj = TV (rj),

where TV (rj) means the total variation of the
function rj(x) in the cell Cj . The size of LTVj

determines locally the increasing of the total
variation of the reconstruction. In [4], the
following definition is given:
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Definition 1 A method of reconstruction is
local total variation bounded (LTVB) if there
exists a constant M > 0, independing of h
(depending only on the function g(x) to be
reconstructed), such that

LTVj ≤ M · h, for all j.

The method of reconstruction with rj(x) is
not LTVB. For nonlinear fluxes, the method
becomes “unstable”. As PHM scheme, we
will assign a different value to the central
derivative.

Since our reconstruction is local, we restrict
our discussion to the cell C0 and the grid data
of the cell: v0, d− 1

2
, and d 1

2
.

The algorithm defines the modified recon-
struction r̃0(x) such that its derivative inter-
polates d0 at x0 and the lateral grid derivative
with smallest absolute value. Where, if C0 is
a nontransition (d− 1

2
· d 1

2
> 0) cell, then we

define d0 such that |d0 − r
′
(x0)| = O(h2) in

smooth regions and max(r̃0(x− 1
2
), r̃0(x 1

2
)) =

O(1). In transition cells we consider d0 = 0.

Theorem 1 The above method of recon-
struction of the function g(x) is a local
preprocessed reconstruction procedure that is
LTVB.

3 Piecewise Methods

The final algorithm is based on the first order
Roe scheme, with the entropy-fix correction
due to Shu and Osher [6], for local piecewise
reconstruction.

The numerical fluxes are reconstructed
from the upwind side, except that if the wind
changes direction at the cell, then a local Lax-
Friedrichs flux decomposition is performed.

ALGORITHM

For every j do
If f

′
(u) does not changes of sign between

un
j and un

j+1, then
Upwindness Phase

āj+ 1
2

=
vj+1 − vj

uj+1 − uj
(12)

(Roe-speed)
If āj+ 1

2
≥ 0 then

f̂j+ 1
2

= r̃j(xj+ 1
2
) (13)

else

f̂j+ 1
2

= r̃j+1(x(j+1)− 1
2
) (14)

else
Flux decomposition phase
Mj+ 1

2
= maxun

j <u<un
j+1
|f ′(u)|

v+
k = 1

2(vk + Mj+ 1
2
un

k) k = j − 1, j, j + 1

Computation of f+, as (13)
v−k = 1

2(vk −Mj+ 1
2
un

k) k = j, j + 1, j + 2

Computation of f−, as (14)
f̂j+ 1

2
= f+ + f−

end

4 Stability and Convergence
Analysis

Our method is consistent and in conserva-
tion form, then the Lax-Wendroff theorem
([3] Chapter 12) says that if a sequence of
the approximations converges then the limit
is a weak solution.
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Definition 2 The Total Variation of a dis-
crete solution is defined by

TV (u) =
∑

j

|un
j+1 − un

j |

To obtain the convergence, we use the fol-
lowing two theorems (Theorem 15.1 and The-
orem 15.2 in [3]).

Theorem 2 Consider a conservative method
with a Lipschitz continuous numerical flux
and suppose that for each initial data u0 there
exists some k0, R > 0 such that

TV (un) ≤ R ∀n, k with k < k0, nk ≤ T.

Then the method is TV-stable.

Theorem 3 A conservative scheme in con-
servation form, with Lipschitz continuous nu-
merical flux and TV-stable is convergent.

Thus, it is enough to guarantee that the nu-
merical flux is Lipschitz continuous and that
the TV (un) is uniformly bounded for all n, k
with k < k0, nk ≤ T .

We assume that the numerical flux associ-
ated to the considered reconstruction is Lip-
schitz continuous.

Finally, we have to find a positive constant
C such that TV (un) < C for all n, k with k <
k0, nk ≤ T . In practice, a Runge-Kutta TVD
for the time discretization is used. Thus, we
do not have stability problems with the time.
In order to simplify the notation we consider
the simplest Euler scheme. From

un+1
j = un

j − λ(f̂n
j+ 1

2
− f̂n

j− 1
2
),

un+1
j−1 = un

j−1 − λ(f̂n
j− 1

2
− f̂n

j− 3
2
).

we obtain

(un+1
j −un+1

j−1 ) = (un
j−un

j−1)−λ(f̂j+ 1
2
−2f̂j− 1

2
+f̂j− 3

2
).

(15)

Remark 1 We are interesting to analyze the
reconstruction step only. The others parts of
the algorithm is classical and common for this
type of schemes. Thus, in order to present
a more clear proof, we do not consider the
upwind phase.

We summarize the basic ingredients to ob-
tain the desired stability.

1) Let us choose a number h > 0, such
that there is at least two cells between two
jumps of g(x). Since g(x) is a piecewise
smooth function, there exist two constant
M1,M2 > 0 depending only on derivatives
of g in smooth regions, such that:

a) For all j, except for a finite number
of insolated j

′
s (for which dj+ 1

2
= O(h−1)),

|dj+ 1
2
| < M1. In particular, dc and dl are lees

than M1 always.
b)

h|dj+ 1
2
−r

′
(xj)| ≤ M2(|un

j+1−un
j |+|un

j−un
j−1|).

c)

h(r
′
(xj)− r

′
(xj−1)) = f

′
(βn

j )(un
j − un

j−1).

2) If let us consider vn
j = un

j−1, ∀j. Since f

is smooth, f(un
j )− f(vn

j ) = f
′
(θn

j )(un
j − vn

j ).
3) Let be the CFL condition 0 ≤ αn

j :=

λ(f
′
(θn

j ) +
f
′
(βn

j )

2 ) ≤ 1 for all j.

Using this properties and relation (15) we
arrive to

|un+1
j − un+1

j−1 | ≤ (1− αn
j )|un

j − un
j−1|
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+ αn
j−1|un

j−1 − un
j−2|

+ ∆tM2(|un
j+1 − un

j |
+2|un

j − un
j−1|

+|un
j−1 − un

j−2|)
1
12

,

and then

TV (un+1) ≤ (1 + αk)TV (un),

where 0 ≤ α ≤ 1
3M2 is independent of un.

By induction

TV (un+1) ≤ (1 + αk)n+1TV (u0).

Thus, for (n + 1)k ≤ T ,

TV (un+1) ≤ eαT TV (u0),

and hence the method is total variation sta-
ble.
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