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Abstract: - Spatio-temporal dynamics of complex flows in fluid mechanics is often analyzed and modeled by means of 
relatively simple nonlinear evolution equations, for instance, the complex Ginzburg-Landau equation. Such equations are 
much simpler than the original nonlinear Navier-Stokes equations but in many cases essential characteristics of the flow 
can be recovered from the model equation. Weakly nonlinear theory is used to derive an amplitude evolution equation for 
the most unstable mode for a flow between two parallel infinite planes. The base flow is subjected to rapid instantaneous 
deceleration so that the total fluid flux through the cross-section of the channel is equal to zero. The quasi-steady 
assumption is used in the derivation, that is, it is assumed that the rate of change of the base flow with respect to time is 
much smaller than the growth rate of perturbations. It is shown that the evolution equation is the complex Ginzburg-
Landau equation. 
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1   Introduction 
There are many examples in fluid mechanics where 
relatively simple amplitude evolution equations are used 
to describe spatio-temporal dynamics of complex flows. It 
is shown in [1] that the transition in a wake behind a 
cylinder, in an interval of the Reynolds numbers around 
the critical value, is described by the Landau equation. 
The Ginzburg-Landau (GL) equation is used in [2] to 
analyze the dynamics of the flow behind bluff rings. The 
coefficients of the GL equation are computed from the 
experimental data. Good quantitative agreement is found 
between experimental data and the results of numerical 
modeling. Different flow patterns created by the wakes of 
a row of 16 circular cylinders placed close to each other in 
an incoming flow are analyzed in [3]. Spatio-temporal 
characteristics of the flow are recorded and the data are 
used to evaluate the coefficients of the GL equation. The 
validity of the model is assessed by reproducing 
experimentally observed flow patterns from the model. 

     In these three cases the GL equation (or Landau 
equation) was assumed and used as a model equation. In 
the present paper we derive the GL equation from the 
Navier-Stokes equations for an important practical case of 
rapidly decelerated laminar flow in a plane channel. 
Rapidly changing unsteady flows are important in many 
applications. Typical examples include the design and 
analysis of water supply systems, flows in natural gas 
pipelines and blood flow in arteries. Pump shutdowns and 
rapid changes in valve settings are known to generate 
unsteady flows in hydraulic devices or water supply 
systems. The pressure in unsteady flow can cause 
cavitation, pitting and corrosion [4]. An atherosclerosis 
plaque development in regions where shear stress changes 
direction can be triggered by unsteady blood flow [5]. In 
all these examples the flow characteristics (velocity and 
pressure) change considerably during short time intervals 
as a result of rapid deceleration or acceleration of the flow. 
In order to avoid possible problems associated with short 
time transients one needs to have an efficient model for 
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calculating flow characteristics in a plane channel or a 
pipe.  
     Consider a fully developed Poiseuille flow in a plane 
channel between two infinite parallel plates hy −=~ and 

. Starting from time hy =~ 0~ =t the flow is suddenly 
blocked so that the total fluid flux through the cross-
section of the channel is equal to zero for 0~ >t . 
Assuming that the velocity vector has only one non-zero 
component, , which depends only on the 
transverse coordinate and time 
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following equation  
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where ρ and ν are the density and the kinematic viscosity 

of the fluid, respectively, P~ is the pressure and x~ is the 
longitudinal coordinate. The function U~ satisfies the 
following boundary and initial conditions: 
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where xdPd ~/~
0 is a constant pressure gradient in the 

x~ direction before deceleration. The total fluid flux 
through the cross-section of the channel is zero for all 

0~ >t : 
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h
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                                          (3) 

Problem (1) – (3) is solved by a Pohlhausen type 
technique in [6] and by the method of matched asymptotic 
expansions in [7]. The velocity profiles are found to 
contain inflection points and are therefore potentially 
unstable for small perturbations. The linear stability 
analysis used in [8] is based on a quasi-steady assumption 
which implies that the base flow velocity profiles are 
“frozen” so that the time variable for the base flow is 
considered as a parameter. The validity of the quasi-steady 
assumption is assessed in [9] where full linearized 
disturbance equations are solved numerically as an initial 
value problem. Numerical results in [9] show that the 
growth rates of perturbations for oscillatory pipe flows 
deviate considerably from the results of the quasi-steady 
approach. On the other hand, it is shown in [9] that the 
results from the quasi-steady theory are in good agreement 
with the initial value problem approach for the case of 
rapidly decelerated channel and pipe flows. Linear 
stability analysis in [8] shows that the flow U~ is unstable 
in a wide range of Reynolds numbers. Critical values of 
the Reynolds number, wavenumber and wave speed are 
calculated in [8]. 
     Linear stability analysis is used to describe the onset of 
instability in a fluid system. It provides a marginal 
stability curve and the critical values of the parameters at 
the threshold. However, the evolution of the most unstable 
mode cannot be predicted by a linear theory. There are 

several ways to analyze the evolution of an unstable 
perturbation analytically. One widely used approach 
includes the analysis of model amplitude evolution 
equations (for example, the complex Ginzburg-Landau 
equation, see [10] – [12]). These equations are not derived 
from the Navier-Stokes equations but are rather used as a 
phenomenological model for the flow of interest. In some 
cases the coefficients of the equations are determined from 
experimental data. Another option is to consider a 
Reynolds number which is slightly above the critical 
value. If one restricts attention to the neighborhood of the 
critical point ),,(Re ccc cα , where is the Reynolds 
number, 

Re
α is the wavenumber, c is the wave speed and 

the subscript indicates the critical values of the 
parameters, then the growth rates of a perturbation will be 
small in the vicinity of the critical point. This allows one 
to use the methods of weakly nonlinear theory and derive 
an amplitude evolution equation for the most unstable 
mode, assuming that the amplitude is a slowly varying 
function of the longitudinal coordinate and time. This 
approach is used, for example, in [13] for the case of a 
plane Poiseuille flow. The weakly nonlinear analysis of a 
problem related to the generation of waves by wind in 
performed in [14]. Recently an amplitude evolution 
equation for the most unstable mode was derived in [15] 
for the case of a rapidly decelerated flow in a pipe. Two 
examples of weakly nonlinear analysis for shallow flows 
can be found in [16] and [17]. In all the above mentioned 
cases the amplitude evolution equation is found to be the 
complex Ginzburg-Landau equation. 

c

     In the present paper a complex Ginzburg-Landau 
equation is derived under the quasi-steady assumption for 
the flow between two parallel infinite plates. The base 
flow in this case is unsteady and is given as the solution of 
(1) – (3). The linear stability calculations presented in [8] 
show that the flow (1) – (3) is linearly unstable for a 
certain range of the Reynolds numbers. Assuming that 

is slightly larger than the critical value and using 
the methods of weakly nonlinear theory we derive an 
amplitude evolution equation for the most unstable mode. 
It is shown that the evolution equation is the complex 
Ginzburg-Landau equation whose coefficients depend on 
the solution of the linearized stability problem. 

Re cRe

 
 

2   Basic properties of the Ginzburg-
Landau equation 
It is found that in many applied hydrodynamic problems 
the dynamics of the flow above the threshold can be 
described by a complex Ginzburg-Landau equation of the 
form 
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where ir iσσσ += , ir iδδδ += , ir iµµµ +=  are 
complex coefficients. It is known that, depending on the 
values of the coefficients, equation (4) possesses a rich 
variety of solutions, including some solutions which may 
even look like chaotic solutions. An excellent review of 
the properties of the Ginzburg-Landau equation (4) is 
given in [11]. The right-hand side of equation (4) contains 
terms which are related to linear amplification, diffusion 
and nonlinear saturation. The coefficients of (4) have the 
following physical meaning. The real part of σ , namely, 

rσ , represents the rate of amplification of an unstable 
perturbation. The angular frequency of the oscillation is 
given by iσ . The dependence of the instability growth 
rate and oscillation frequency on the wavelength is 
reflected by the coefficients rδ and iδ , respectively. If 

0<rµ , the nonlinearities tend to saturate the instability. 
From a physical point of view, this means that there exists 
another equilibrium state after the flow loses stability. 
Examples of such equilibrium states are the Rayleigh-
Benard convection between two parallel plates which are 
maintained at different constant temperatures and the 
Taylor-Couette flow between two rotating cylinders (see 
[18]). Such a situation is referred to as “supercritical 
instability” in the hydrodynamic stability literature. 
     On the other hand, if 0>rµ , then higher order terms 
on the right-hand side of (4) are also important and (4) is 
much less informative. Such a case is known as 
“subcritical instability”. One example of subcritical 
instability is given in [13] for the case of a plane 
Poiseuille flow. Note that rµ in equation (4) is usually 
referred to as the Landau constant in the literature. 
 

 
3   Derivation of the Ginzburg-Landau 
equation 
A two-dimensional incompressible viscous flow in a plane 
channel can be described by the following dimensionless 
equation 

,
Re
1)()()( 2ψψψψψψ ∆=∆−∆+∆ yxxyt   (5) 

where ,/Re max νhU= maxU is the maximum velocity of 
the undisturbed flow and ),( yxψ is the stream function 
defined by the relations ,yu ψ= xv ψ−= . Consider a 
perturbed solution to (5) in the form 

...2
2

10 +++= ψεεψψψ                                (6) 
where ε is a small parameter and Uy =0ψ is the 
dimensionless solution to (1) – (3). The solution  
can be found by the method of the Laplace transform and 
has the form 
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where nβ are the roots of the equation .tan nn ββ =  
     Substituting (6) into (5) and keeping only linear terms 
with respect to ε , we obtain the following equation which 
governs the linear stability of the flow: 

,01 =ψL                                                            (8) 
where  
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Using the method of normal modes and assuming the 
solution to (8) to be in the form 

..)](exp[)(),,( 11 ccctxiytyx +−= αϕψ         (10) 
where α is the wavenumber, is the wave speed of a 
perturbation, and the commonly used fluid dynamics 
short-hand notation means the “complex conjugate” 
of the first term on the right-hand side of the equation 
where it appears, we obtain the Orr-Sommerfeld equation 
in the form 

c
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                                                                            (11) 
The boundary conditions are  

,0)1(1 =±ϕ    .                                (12) 0)1(/
1 =±ϕ

The boundary value problem (11) – (12) is an eigenvalue 
problem which determines the critical values of the 
parameters , Re α and . Recall that the base flow 
velocity U is a function of and , but we adopted here  
the quasi-steady assumption. Thus, is considered as a 
parameter in 

c
y t

t
),( tyUU = . It is shown in [15] that the 

quasi-steady assumption is justified if the rate of change of 
the base flow velocity with respect to time is smaller than 
the growth rate of the perturbation. Numerical results 
presented in [15] indicate that the quasi-steady assumption 
is appropriate for the case of suddenly blocked pipe flows. 
In addition, numerical solution of full linearized 
disturbance equations (solved as an initial value problem) 
in [9] showed that the calculated growth rates are in good 
agreement with the quasi-steady theory. Therefore, the 
quasi-steady assumption is adopted in the present study.  
     The critical Reynolds numbers are calculated in [8] by 
means of a numerical solution of (11) – (12). The structure 
of the most unstable mode can also be obtained from the 
solution of (11) – (12) but the linear theory cannot be used 
to estimate the amplitude of the most unstable mode and 
to describe the evolution of the most unstable mode. The 
next natural step is to use the methods of weakly nonlinear 
theory (see, for example, [13]) in order to derive the 
amplitude evolution equation for the case where Re is 
slightly larger than the critical value . Following [13] 
we assume that 

cRe
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)1(ReRe 2ε+= c                                                (13) 
and introduce the slow time τ and the stretched 
longitudinal variable ξ such that 

t2ετ = ,  ),( tcx g−= εξ                                   (14) 

where is the group velocity. gc
The differential operators and t∂∂ / x∂∂ / are then 
replaced by 
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The function 1ψ in (6) is represented in the form 
..)](exp[)(),( 11 cctcxiyA cc +−= αϕτξψ       (16) 

where ),( τξA is a slowly varying amplitude and )(1 yϕ is 
an eigenfunction of the linear stability problem (11) – (12) 
at , cReRe = cαα = and ccc = . The evolution equation 
for A is obtained by taking higher terms of the 
perturbation expansion (6) into account. Substituting (13) 
– (16) into (6) and collecting the terms of order we 
obtain 
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Similarly, substituting (13) – (16) into (6) and collecting 
the terms of order we get 3ε
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The solution to (17) is sought in the form 
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where is the complex conjugate of *A A . Substituting 
(19) and (16) into (17) and collecting the terms 
proportional to  we obtain the 

following equation for the function : 
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with the boundary conditions 
,0)1()0(

2 =±ϕ                                (21) .0)1()0(
2 =±yϕ

Similarly, collecting the terms proportional to we get *AA
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with the boundary conditions  
,0)1()1(

2 =±ϕ                                 (23) .0)1()1(
2 =±yϕ

In a similar manner, we obtain the equation for the 
function : )2(
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with the boundary conditions 

,0)1()2(
2 =±ϕ                                  (25) .0)1()2(

2 =±yϕ
Comparing (11) – (12) and (24) – (25) we see that the 
solution to (24), (25), namely, the function , is 
resonantly forced since the homogeneous equation which 
corresponds to (24) is satisfied at 

)2(
2ϕ

cReRe = , cαα = and 

ccc = . Thus, (24) – (25) has a solution if and only if the 
right-hand side of (24) is orthogonal to all the 
eigenfunctions of the corresponding adjoint problem. The 
adjoint operator, , and the adjoint eigenfunction, , 
are defined as follows: 
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The adjoint eigenfunction is the solution of the equation 
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with the boundary conditions 
,0)1(1 =±aϕ                                         (28) .0)1(1 =±a

yϕ
Note that the critical values cc α,Re and are the same 
for problems (11) – (12) and (27) – (28).  

cc

     The group velocity, , is determined from the 
solvability condition for equation (23) and is given by 
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Finally, the amplitude evolution equation for A is 
obtained from the solvability condition for equation (18) 
and has the form of the complex Ginzburg-Landau 
equation (4) where 
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The coefficients 111 ,, δσγ and 1µ are given by 
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4   Numerical example 
The coefficients of the Ginzburg-Landau equation are 
evaluated numerically in this section. First, the linear 
stability problem (11) – (12) is solved by means of a 
pseudospectral collocation method based on Chebyshev 
polynomials. The solution to (11) – (12) is sought in the 
form 

),()1()( 22

0
yTyay k

N

k
k −= ∑

=

ϕ                                    (35) 

where is the Chebyshev polynomial of degree k . 
The form of (35) guarantees that the boundary conditions 
(12) are satisfied automatically. The collocation points 

are 

)(yTk

jy

,cos
N
jy j
π

=                                          (36) .,...,1,0 Nj =

High precision is necessary to calculate the coefficients of 
the Ginzburg-Landau equation. Therefore, the number of 

collocation points, , is fixed at N 100=N in the present 
study. Numerical results indicate that such value of is 
sufficient to calculate the coefficients to four decimal 
places. In order to illustrate the procedure, we have chosen 
the base velocity profile which corresponds to the 
dimensionless time  The corresponding 
critical values of the parameters of the problem are 

N

.0001.0=t

,024.2853Re =c  1527.1=cα and 35903.0=cc (note 
that is the real part of and the imaginary part of c is 

of order in this case). 
cc c

810 −

     Second, we calculate the eigenfunctions of the linear 
stability problem (11) – (12) and the eigenfunction of the 
corresponding adjoint problem (27) – (28). The 
eigenvalues of (27) – (28) are the same as the eigenvalues 
of (11) – (12), as it should be.  
     Third, the boundary value problems (20) – (21), (22) – 
(23) and (24) – (25) are solved by means of the Chebyshev 
collocation method and the functions and 

are used to calculate the coefficients of the 
Ginzburg-Landau equation (4). The group velocity 

calculated by (29) must be real. The calculations 

confirm this fact: the computed value of is 

)(),( )1(
2

)0(
2 yy ϕϕ

)()2(
2 yϕ

gc

gc
.000011.0229730.0 icg −−= The coefficients δσ , and 

µ of the Ginzburg-Landau equation (4) are 
,0594.00244.0 i+=σ  
,2835.01805.0 i+=δ  

.5093.2530005.33 i−=µ  
     Since the real part of µ (the Landau constant) is 
positive, a finite equilibrium state is not possible. This 
means that the disturbances are linearly unstable and grow 
unbounded; that is, the stability is subcritical. A similar 
result is obtained in [13] for a weakly nonlinear analysis 
of plane Poiseuille flow.  
 
 
 
5   Conclusion 
Weakly nonlinear theory is used in the present paper to 
derive an amplitude evolution equation for the most 
unstable mode for suddenly blocked laminar flow in a 
plane channel between two parallel infinite plates. The 
quasi-steady assumption is used for linear stability 
analysis, that is, the growth rate of perturbations is 
assumed to be considerably larger than the rate of change 
of the base flow with respect to time. Amplitude evolution 
equations are considered as an effective tool for the 
analysis of spatio-temporal characteristics of complex 
flows. It is shown in the paper that the evolution equation 
in this case is the complex Ginzburg-Landau equation. 
The coefficients of the equation are calculated in closed 
form. Results of numerical calculations indicate that 
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unstable disturbances (computed at ) grow 
without bounds and a finite amplitude state is not possible.  

0001.0=t
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