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Abstract: The unsteady two-dimensional stagnation-point flow of a viscous fluid impinging on an infinite plate 
in the presence of a transverse magnetic field is studied. The plate is making harmonic oscillations in its own 
plane. A finite difference technique is employed and solutions for large frequencies of the oscillations are 
obtained for various values of the Hartman’s number. 
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1 Introduction 
 
The flow of an incompressible viscous fluid over a 
moving plate is important in many industrial 
applications. Examples include the extrusion of 
plastic sheets, fabrication of adhesive tapes and 
application of coating layers onto rigid substrates, 
among others. If a magnetic field is present, viscous 
flows due to a moving plate in an electro-magnetic 
field, i.e. magnetohydrodynamic (MHD) flows, are 
relevant to many practical applications in the 
metallurgy industry, such as the cooling of 
continuous strips and filaments drawn through a 
quiescent fluid and the purification of molten metals 
from non-metallic inclusions. 
 
The flow over a moving infinite plate is essentially 
a two-dimensional stagnation point flow which has 
received considerable attention for many years. This 
consists of a class of flows in the vicinity of a 
stagnation line that results from a two-dimensional 
flow impinging on a surface at right angles and 
flowing there after symmetrically about the 
stagnation point. Furthermore, time dependent or 
unsteady viscous flow near a stagnation point has 
also been widely investigated. Glauert [1] and Rott 
[2] studied the stagnation point flow of a Newtonian 

fluid when the plate performs harmonic oscillations 
in its own plane. Seshadri et al. [3] investigated the 
unsteady stagnation point flow on a heated vertical 
plate. The unsteady motion is caused by the 
impulsive change in the free stream velocity and by 
a sudden increase in the surface temperature. 
Kumari and Nath [4] examined the unsteady flow 
over an infinite disk rotating with a time dependent 
angular velocity in the presence of a magnetic field 
applied normally to the disk surface. The fluid is 
electrically conducting with constant properties. 
The Navier-Stokes equation and the energy 
equation governing the unsteady flow are reduced to 
a system of ordinary differential equations by using 
similarity transformations. 
 
In this paper, we consider the unsteady two 
dimensional flow of a viscous fluid impinging on an 
infinite plate in the presence of a magnetic field. 
The plate is assumed to make harmonic oscillations 
in its own plane. The magnetic field is assumed to 
be transverse or perpendicular everywhere in the 
flow field. Solutions for large frequencies of the 
oscillations are obtained using a finite difference 
technique. 
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2 Flow equations 
 

 
 

The two-dimensional flow of a viscous 
incompressible in the presence of a magnetic field is 
governed by: 
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where ( , ), ( , )u u x y v v x y= =  are the velocity 

components, ( , )p p x y=  is the pressure, 
µν
ρ

=  

is the kinematic viscosity, σ  is the electrical 
conductivity and 0B  is the magnetic field. It is 

assumed that 0 1Bσ � , so that it is possible to 
neglect the effect of the induced magnetic field.  

 
The continuity equation (1) implies the existence of 
a streamfunction ( , , )x y tψ ψ= such that  
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Substitution of (4) in (2) and (3) and elimination of 
pressure from the resulting equations using  

xy yxp p=  yields 

 

( ) ( )
( )

2

4

2

2

2

0

,

,

0

x y

y

t

B

ψ ψ
ν ψ

ψ

ψ

σ
ρ

∂ ∇
∇

∂

∂
+ =

∂

∂ ∇
−

∂
−

  

      (5) 

Having obtained a solution of equation (5), the 
velocity components are given by (4) and the 
pressure can be found by integrating equations (2) 
and (3). 
 
 
3 Solutions 
 
 
We consider the two-dimensional flow of an 
incompressible fluid against an infinite plate 
normal to the flow. We assume that the plate is 
making harmonic oscillations on its own plane 

with velocity in the x -direction equal to i ta e ω  
where a  and ω  are constants. 
 
The boundary conditions are then given by  
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Following Glauert [1], we assume that  
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The boundary conditions take the form 
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Using (8) in (5), we obtain 
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We non-dimensionalize system (10) and the 
boundary conditions (9) using  
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and upon integration of the resulting 
equations once with respect to η , we get 
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where M  is the Hartman’s number. 
 
When 0M = , the solution to system (16) 
corresponds to the well-known Hiemenz 
flow. System (16) is solved numerically using 
the shooting method with a finite difference 
technique for different values of M . We 
found that for 0M = , (0) 1.23259F ′′ =  
which is in good agreement with the Hiemenz 
solution. Numerical values of (0)F ′′  for 
different values of M  are given in Table 1.  
 
Letting ( ) ( )Gφ η η′= , then system (17) 
becomes 
 

 
0

(0) 1, ( ) 0

i
F F M

c
ωφ φ φ φ φ

φ φ

′′ ′ ′+ − − − =

= ∞ =
 

      (18) 

For large values of the parameter 
c

ω
, we let  
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Letting c iα ω= , then 
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and system (18) takes the form 
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The expansion for ( )F Y  near the wall 0Y =  
is 
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which is valid for small Hartmann numbers. 
In this expansion, (0)A F ′′= . 
Since for large values of cω  the parameter 
α  is small, we let 
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The boundary conditions are 

  0 (0) 1, (0) 0 if 1,
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Substituting (22) in (18) and equating the 
coefficients of different powers of α  to zero, 
we find that the boundary value problem for 

0 ( )Yφ  is  
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with solution 0 ( ) exp( )Y Yφ = − . 
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The second equation gives that 1φ is zero. The 
next three equations for 2 3( ), ( ),Y Yφ φ  
and 4 ( )Yφ  are 
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Solving these equations and using the 
boundary conditions, we obtain 
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If 0M = , results obtained by Glauert [1] are 
recovered. 
 
4 Conclusion 
 
Results for this flow are obtained for various 
values of the Hartman’s number M . At the higher 
frequencies, the perturbation is a shear layer, 
exactly as on a plate oscillating in a fluid at rest. 
Figure 1 shows the variation of ( )F η′ for various 

M . An effect of the Hartman’s number is to 
increase the velocity near the wall as it increases. 
Also, from Table 1, (0)F ′′  increases with the 
magnetic parameter M . The reason for this 
behaviour is that the magnetic field B  induces a 
force along the surface which supports the 
motion. As a result, the velocity along the surface 
is increased everywhere and hence that the shear 
stress on the wall increases with increasing 
Hartman’s number. 
 
 

M  (0)F ′′  
          0 1.23259 
         0.25 1.32898 
         0.5 1.41886 
         1.0 1.58333 
         1.5 1.73210 
         2.0 1.86885 
         2.25 1.93351 
         3.0 2.11532 

 
    Table 1. Numerical values of (0)F ′′  
       for different values of M . 
 

 
Fig. 1. Variation of ( )F η′  for various M . 
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