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Abstract: The classical problem of Taylor-Couette flow between rotating concentric cylinders under laminar 
flow conditions is studied using computational fluid dynamics (CFD) techniques.  The flow between 
concentric cylinders with the inner cylinder rotating and the outer cylinder stationary for a Newtonian fluid has 
been calculated for a range of Reynolds numbers, radius ratios, length to diameter ratios using the CFD code 
CFX. The predicted tangential velocity profiles have been found to agree well with analytical profiles in the 
Couette flow regime and the transition from Couette flow to Taylor vortex flow has also been correctly 
predicted.  Results for the power number show that it varies inversely with Reynolds number in the Couette 
flow regime and as Re-n where n ~ 0.7 in the Taylor vortex flow.  These results agree well with the 
experimental data of Sinevic et al [1].  A new correlation is proposed to calculate the power number for the 
Couette flow and the Taylor vortex flow regimes.     
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1   Introduction 
Taylor–Couette flow is a classical problem in fluid 
mechanics, and has been the subject of extensive 
theoretical and experimental investigations since the 
early work of Taylor [2] in 1923. The flow situation 
consists of a pair of concentric cylinders with a 
fluid-filled gap in between; as the inner cylinder is 
rotated, a shearing flow (the Couette flow) is 
established between the cylinders, and this becomes 
unstable to axisymmetric rolls (Taylor vortices) at a 
critical value of the rotation rate as measured by a 
dimensionless Reynolds number [3, 4]. Further 
increase in the rotational speed of the inner cylinder 
sees the establishment of several stable vortex 
patterns over the wide transitional region between 
laminar Couette flow and turbulent vortex flow [3, 
5]. The presence of Taylor vortices increases mixing 
within the annular region, and therefore has 
advantages in filtration and polymerization. Taylor 
vortices exhibit the unique mixing behavior of 
excellent radial mixing combined with minimal 
longitudinal mixing.  Significant enhancement of the 
mass transfer coefficient over the Couette flow 
regime is possible under such cases as has been 
demonstrated experimentally [6] and theoretically 
[7, 8].   Many of the earlier studies have been done 
either for high Reynolds numbers or for small 
clearances.  The clearances used for mass transfer 
applications are usually much larger and also have a 
relatively small length to diameter ratio.  In the 

present paper, we take advantage of the accuracy  of 
computational fluid dynamics (CFD) simulations for 
laminar flow calculations to study the flow field for 
a Newtonian flow under these conditions.   
 
2 Problem Formulation 
 
2.1  Governing Equations 
The basic equations solved are the conservation of 
mass and momentum describing the flow of a 
constant property incompressible Newtonian fluid.  
 
Continuity equation: 

(1) 
 

Momentum equation 
 

(2) 
 
 

Here u is the velocity vector; p is the static pressure, 
ρ is the density and ν is the kinematic viscosity.  
Since the fluid under consideration is a liquid and 
the velocities are small, a constant-property fluid 
assumption is made.  
 
2.2 Flow Domain and Boundary Conditions 
The flow domain consists of the annular region 
between an inner rotating cylinder and an outer 
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stationary cylindrical vessel and is completely filled 
with a liquid. Both the cylinders are concentric with 
the axis of the vessel. The problem has been 
formulated as a steady flow problem in cylindrical 
coordinates with the wall of the inner cylinder 
moving away at a given tangential velocity.  The 
axial, radial and tangential components are u, v, and 
w respectively.  A no-slip boundary condition with 
tangential velocity equal to Ω*Ri, where Ω is the 
angular velocity of the rotating cylinder, and Ri is 
the radius of the inner cylinder, is imposed at the 
inner cylinder while a zero velocity no-slip 
condition is specified on the surface of the stationary 
outer cylinder. The top and the bottom surface are 
set to a shear-free surface and a stationary wall, 
respectively. Since the major flow is in the 
circumferential direction, all the three velocity 
components have to be resolved.  For this reason, 
the flow in a 450 sector the cylinder is simulated and 
a periodic condition is imposed on the two bounding 
circumferential planes.  
 
2.3 Numerical solution 
The solution of the coupled mass, momentum 
equations for various cases has been carried out 
using the commercially available CFX 4.4 computer 
code developed by AEA Technology, UK. It is a 
general purpose CFD code which uses a finite 
volume method for the discretization of the 
governing partial differential equations on a non-
staggered, structured, body-fitted grid. The chequer-
board type of oscillations of pressure and velocity 
that are associated with the use of a non-staggered 
grid are eliminated using the Rhie-Chow 
interpolation scheme [9] to estimate the face 
velocities.  The pressure-velocity coupling for 
incompressible flows is effected using the SIMPLE 
family of schemes [10] adapted for a non-staggered   
body-fitted grid. The convection terms in the 
governing flow equations have been discretized 
using the third order accurate QUICK scheme [11] 
while the diffusion terms have been discretized 
using the second order accurate central scheme. The 
overall accuracy of the discretization is thus 
formally second order. Typically, a 100 x 96 non-
uniform grid was used to discretize the two-
dimensional flow domain in the x-r (axial-radial) 
plane. The grid is uniform in the axial direction but 
is very fine in the radial direction near the inner wall 
where large velocity gradients are expected to occur. 
Preliminary calculations were made with different 
grids to check for grid independence of the results. 

The progression of the iterative solution of the 
coupled set of linearized and discretized governing 
was monitored in several ways: by examining the 

evolution of the field values at a particular point in 
the flow domain; by looking for significant 
reduction in the absolute values of the residuals of 
all the equations; by examining the evolution of the 
velocity profiles and finally by monitoring the 
torque on the inner cylinder.  It was found that a 
large number of iterations (typically 10000 to 
30000) were required for convergence for low 
Reynolds numbers.   
 
2.4 Estimation of Power number  
The power required for maintaining a steady 
rotational speed of the inner cylinder is estimated 
directly from the calculation of the total torque 
required to rotate the inner cylinder. The torque on 
the cylinder can be readily calculated as: 

( )z i i ii
T A Rτ=∑    (3) 

 where τz is the computed z-component of the shear 
stress on the ith control volume having the inner 
cylinder as one of the surfaces, Ai is the surface area 
on which the torque is acting, Ri is the radius of the 
inner cylinder. The summation is carried over all the 
cells in the ‘i’th direction. The power required for 
rotation of the cylinder at steady rotational speed N 
revolutions per second is then given by: 

2P N Tπ=      (4) 
and the power number Po, is computed as  

3 5
iD

PP o
Nρ

=      (5) 

where ρ is the density of the liquid, Di is the 
diameter of the inner cylinder. The above procedure 
of power estimation reduces the computational time 
requirement, by eliminating the transient solution of 
the energy equation to deduce the power from 
viscous energy dissipation. This approach has 
previously used by one of the authors [12] to 
calculate the power number for paddle mixing in 
unbaffled vessels. 
 
3   Results & Discussion 
 Calculations in a rotating cylinder have been made 
for several cases to investigate the effect of height-
to- hydraulic diameter (L/Dh) ratio, the ratio of the 
inner-to-outer cylinder radius ratio (η) and the 
Reynolds number (based on inner diameter) on the 
power number. The dimensions used in the present 
calculations are shown in Table 1. The results from 
these calculations are discussed below. 
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Table 1. Dimensions used in present calculations. 
 

 Case A Case B Case C 
Inner radius 
Ri (m) 0.015 0.015 0.015 

Outer radius  
Ro (m) 0.02375 0.0325 0.05 

Gap width  
d (m) 0.00875 0.0175 0.035 

Radius ratio 
 η 0.632 0.462 0.300 

Cylinder height 
L (m) 0.12 0.12 0.12 

L/Dh 6.85 3.42 1.71 
Reynolds  
number ReD 1 ~ 1000 

 
3.1 Flow field 
The radial profiles of the circumferential velocity at 
Reynolds number ReD (based on diameter and the 
surface speed of the inner cylinder) of 25 (Couette 
flow) & 500 (Taylor vortex flow) are shown in 
Figure 1 for a radius ratio of 0.30 at mid-height of 
the cylinder. The velocity profiles are plotted in 
dimensionless form in which the circumferential 
velocity is divided by the surface speed (= Ω*Ri, 
where Ri is the radius of inner cylinder and Ω is the 
angular velocity) and the radial distance from the 
wall of the inner cylinder is divided by the gap 
width. The radial profile of the tangential velocity 
component is found to be nearly linear and 
independent of Reynolds number for low ReD and a 
boundary-like flow is developed for high ReD.  It 
can be seen that under Taylor vortex flow condition, 
the central, well-mixed region has a small radial 
gradient.  
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Fig.1 Tangential velocity profile at ReD=25 and  
ReD=500 compared with the theoretical equation 6. 
 

The theoretical velocity profile can be 
derived from first principles as  
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where η is ratio of the inner to outer cylinder radius 
and Ro is the radius of the outer cylinder and r is the 
radial distance from the axis of the inner cylinder.  
Figure 1 shows the theoretical velocity profile also 
for the Couette flow case.  Excellent agreement is 
found between the predicted and the theoretical 
velocity profiles. Typical radial velocity contours in 
the annular region are shown in Figure 2 along the 
radial plane at a Reynolds number, ReD 96 and the 
radius ratio 0.30.  The contours show that the Taylor 
vortices have already been formed at this Reynolds 
number.  For a given radius ratio, the Taylor cells 
are formed beyond a critical Reynolds number [13].  
It has been found that this critical value has been 
predicted well for the three radius ratios considered 
in the present study.  
 

 
 
Fig.2 Radial velocity contours at Reynolds number 
ReD of 96 for radius ratio of 0.30. 

 
3.2 Effect of L/Dh ratio 
Typically, a number of Taylor cells are set up if the 
cylinder height is long enough. The wall shear stress 
variation along the height is shown in Figure 3.  This 
shows that except close to the bottom wall, a 
periodic shear stress variation, consistent with the 
Taylor cell pattern, is obtained on the inner cylinder 
surface.  Thus, for a long enough height, a repeating 
pattern is obtained.  However, if the cylinder height 
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is less, it is possible that the L/Dh ratio has an effect 
on the Taylor cell pattern.  In order to investigate 
this, some calculations have been performed with 
the cylinder height increased by a factor of two to 
0.24 m.   
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Fig.3 Wall shear stress variation along the height of 
the cylinder at ReD=760. 
 

The resulting axial shear stress variation is 
compared in Figure 3 for a Reynolds number ReD of 
760.  It can be seen that the shear stress variation for 
the shorter cylinder case overlaps that for the longer 
cylinder case.  Calculations with a wider gap show 
however that the predicted pattern may be affected if 
the gap width in increased by a factor of two while 
keeping the same height. These calculations show 
that the minimum height of the cylinder should be so 
as to allow a couple of Taylor cells to be resolved.  
Since the cell height is typically about the same as 
the gap width (see Figure 2), it can be concluded 
that the effect of liquid height would not be 
significant if L/Dh > 2. 
 
3.3 Effect of radius ratio 
The effect of radius ratio on the dimensionless 
velocity profiles for Couette regime and Taylor 
vortex regime is summarized in Figure 4 and Figure 
5, respectively.  Here the dimensionless tangential 
velocity is plotted in terms of dimensionless radial 
distance for three radius ratios, namely, 0.632, 
0.462, 0.300 at a Reynolds number, ReD of 50 which 
corresponds to before the onset of Taylor vortex and 
at a Reynolds number, ReD of 760 which 
corresponds to after the onset.  

From Figure 4, we note that, for small gap 
widths or high values of η, the radial velocity profile 
is linear.  As η decreases, the velocity profile 
becomes non-linear, though monotonically 
decreasing. In the Taylor vortex regime condition 
also as shown in Figure 5 the radius ratio has a 
significant effect on the tangential velocity profile.  

It is therefore to be expected that the radius ratio 
will have a parametric influence on the power 
number.  
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Fig.4 Tangential velocity profiles for three radius 
ratios in Couette flow region. ReD=50. 
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Fig.5 Tangential velocity profiles for three radius 
ratios in Taylor vortex region. ReD=760. 
 
3.4 Effect of Reynolds number  
 At very low Reynolds number, the flow is of 
Couette type and as the Reynolds number increases, 
Taylor vortex flow is set up.  The variation of the 
power number with Reynolds number exhibits 
different characteristics in these two regimes as 
shown in Figure 6 and Figure 7.  In the Couette 
flow, the power number (Po) varies as  
  Po α ReDh

-1     (7) 
which is consistent with the experimental data of 
Sinevic et al. [1].  In the Taylor vortex flow regime, 
the power number varies as  

Po α ReDh
-n       where n ~ 0.7   (8) 

which again is consistent with the data of Sinevic et 
al. [1].  The CFD simulations show that, in the range 
of radius ratios investigated, the variation is as given 
by equation (7).  However, the exponent n in 
equation (8) for Taylor vortex conditions is found to 
be different for different radius ratios as illustrated 
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in Figure 8.  This may be attributed to the short L/Dh 
employed in the present case (which is typical of 
solid dissolution applications).  As seen from Figure 
3, the application of zero velocity boundary 
condition on the bottom surface of the flow domain 
leads to a typical variation of the wall shear stress 
near the bottom wall.  The wall shear stress, and 
hence the torque acting on the rotating cylinder, is 
thus not the same as that acting on an infinitely long 
cylinder in the same configuration.  In the typical 
Taylor-Couette flow literature, long aspect ratios 
(large values of L/Dh) resulting from small annular 
gaps are employed and hence the asymmetric 
bottom boundary condition effect is not accounted 
for.  This may be important in mass transfer 
applications where the cylinder heights are small 
and the annular gaps are large.  
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Fig.6 Power number variation with Reynolds 
number in the Couette flow regime for a radius ratio 
of 0.30. 
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Fig.7 Power number variation with Reynolds 
number in the Taylor vortex flow regime for a radius 
ratio of 0.30. 
 
3.5 Correlation for Power number 
Using the numerical "data" obtained from the CFD 
simulations, the following correlations for the Power 
number have been developed which take account of 

three parameters, namely, Reynolds number, radius 
ratio and the L/Dh ratio (Γ): 
 
For the Couette flow regime, 

 
1 2.25 0.4310 Re (1 e )DhPo η− − − Γ= −  (9) 

 
For the Taylor vortex flow regime,  

0.7 1.75 0.4120 Re (1 )DhPo eη− − − Γ= − (1 0) 
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Fig.8 Power number variation with Reynolds 
number for three different radius ratios in Taylor 
vortex flow regime. 
 
The transition between the Couette flow regime and 
the Taylor vortex flow regime is described in terms 
of the critical Taylor number given by DiPrima et al. 
[13].  Figure 9 shows comparison between the 
power number correlation (Eq. 10) and the 
experimental data of Sinevic et al. [1] for a radius 
ratio of 0.7, which shows very good agreement 
between the two. 
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Fig.9 Comparison between Power number predicted 
(Equation 10) and experimental data of Sinevic et al 
[1] at radius ratio of 0.7 for Taylor vortex flow 
regime. 
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4   Conclusion 
In the present paper, the flow field, and the power 
number have been predicted for an inner rotating 
cylinder in a stationary cylindrical vessel. The 
results show that the onset of Taylor vortices has a 
strong effect on the flow field.  The power number 
(Po) varies as Po α ReDh

-1 in the laminar Couette 
region and Po α ReDh

-0.7 in the laminar Taylor vortex 
region for different radius ratios considered. 
Correlations are proposed for power number as a 
function of Reynolds numbers, radius ratio and the 
L/Dh ratio. 
 
Acknowledgement: The calculations reported here 
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Nomenclature: 
A area of the cylinder, m2 
d gap width, m 
D cylinder diameter, m 
Dh hydraulic diameter, 2d, m 
i, o inner and outer cylinder 
L cylinder height, m 
P power required 
Po Power number, P/ρN3Di

5 
N revolutions per second, rps 
r radial distance from the wall of the  

inner cylinder, m 
R cylinder radius, m 
ReDh Reynolds number based on hydraulic  

diameter, ΩRi(2d) / ν 
ReD Reynolds number based on inner  

cylinder diameter, ΩRi(Di) / ν 
t time, s 
T torque 
u,  axial velocity, m/s 
v radial velocity, m/s 
w tangential velocity, m/s 
Wtip inner cylinder surface speed, Ri*Ω, 

m/sec 
 
Greek letters  
Ω angular velocity, rad/s 
ρ density, kg/m3 

ν kinematic viscosity, m2/s 
η radius ratio, Ri/Ro 
τz z-component shear stress, N/m2 
Γ height-hydraulic diameter ratio, 

L/Dh 
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