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1 Introduction

Chemically reacting mixtures represent a framework
for modelling of various processes in biology and
chemistry. My research in this area has been initi-
ated by J. Nečas who, during many years before he
passed away, spoke about “living fluids”, although he
never elaborated any concept of such fluids. To com-
promise thermodynamic amenability and mathemati-
cal rigor, the model proposed in [17, 18] uses incom-
pressible Newtonian framework with the barycen-
tric impulse balance, also called Eckart-Prigogine’s
[6, 14] concept; in the compressible case, see also
[1, 3, 4, 8]. The incompressibility refers here both
to each particular constituent and, through volume-
additivity hypothesis as in e.g. [11, 16], also to the
overall mixture. To cover biological applications on
a (sub-) cellular level where intensity of electric field
on cell membranes is very high (about 107Vm−1), the
self-induced electrostatic field must be considered. In
comparison with [17, 18] or [19, Sect. 12.6], we con-
sider here a non-Newtonian concept and prove exis-
tence of solution for the full system.

2 The model

We consider a mixture ofL mutually reacting chemi-
cal ionic constituents. Our model consists in a system

of n+L+2 differential equations combining thenon-
Newtonianmodification of theNavier-Stokes equa-
tion (balancing the barycentric momentumρv), the
Nernst-Planck equationmodified for moving media
(balancing the mass of particular constituents), the
heat equation(balancing the internal energycvθ), and
the quasistaticPoisson equationfor the electrostatic
field (balancing the electric inductionε∇φ):

ρ
∂v
∂t

+ ρ(v·∇)v−divτ(Dv)

+ ∇π = −q∇φ , div(v) = 0, (1a)

∂c`

∂t
−div

(

d∇c` +mc̀ (è −q)∇φ−c`v
)

= r`(c1, ...,cL,θ) , ` = 1, ...,L , (1b)

cv
∂θ
∂t

−div
(

κ∇θ−cvvθ
)

= τ(Dv):Dv

+d∇q·∇φ+
L

∑̀
=1

mc̀ e2
` |∇φ|2

−mq2|∇φ|2−
L

∑̀
=1

h`(θ)r`(c,θ), (1c)

div(ε∇φ)+q = 0, q =
L

∑̀
=1

è c` . (1d)

The variablesv, π, c`, θ, φ andq have the following
meaning:
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v barycenter velocity,
π pressure,
c` concentration of̀ -constituent,
φ electrostatic potential,
θ temperature,
q the total electric charge,

where the concentrationsc` are to satisfy

L

∑̀
=1

c` = 1, c` ≥ 0. (2)

In (1c) and later on,c abbreviates(c1, ...,cL). The
meaning of the data is:

τ = τ(Dv) stress tensor, Dv = 1
2(∇v)>+ 1

2∇v,
ρ > 0 mass density,
è valence (=charge) of̀-constituent,
ε > 0 permitivity,
r`(c1, ...,cL,θ) `-constituent production rate,
h` = h`(θ) enthalpy of thè -constituent,
κ > 0 thermal conductivity,
cv >0 heat capacity,
d > 0 a diffusion coefficient, and
m>0 a mobility coefficient.

The system (1) is to be completed by the initial con-
ditions

v(0, ·) = v0 , c`(0, ·) = c`0 , θ(0, ·) = θ0 (3)

on the considered fixed bounded Lipschitz domain
Ω ⊂ R

n, and by the boundary conditions correspond-
ing, e.g., to a closed container, which, in some sim-
plified version, leads to:

v = 0, c` = c`Σ, ε
∂φ
∂~n

= α(φΣ−φ), κ
∂θ
∂~n

= 0 (4)

on Σ := (0,T)×∂Ω, where~n is the unit outward nor-
mal to the boundary∂Ω andc`Σ andφΣ are prescribed.

3 Remarks to the model

The phenomenological flux j` := −d∇c` +
mc̀ (q−è )∇φ in (1b) equals to−m(c`∇µ` − fR)
where

µ` = è φ+
d
m

ln(c`), (5)

plays the role of anelectrochemical potentialand
where

fR := q∇φ (6)

is a “reaction force” keeping the natural requirement
∑L

`=1 j` = 0 satisfied, which eventually fixes also the

equality constraint in (2). The meaning of the heat
sources on the right-hand side of (1c) is: The first
term τ(Dv) : Dv represents the heat production rate
due to the loss of kinetic energy by viscosity. The
second termd∇q·∇φ is the power (per unit volume)
of the electric current arising by the diffusion flux,
which can create local cooling effects. A global cool-
ing effect seems possible via interaction with the en-
vironment if α 6= 0, expectedly related with the so-
calledPeltier effect. If α = 0, one can however see
that the overall production due to this term overΩ is
nonnegative: indeed, by using Green’s formula twice,
one gets
∫

Ω
∇q·∇φdx = −

∫

Ω
ε∇(∆φ)·∇φdx =

∫

Ω
ε|∆φ|2dx

−
∫

Γ
ε∆φ

∂φ
∂~n

dS≥
∫

Γ
qα(φΓ −φ)dS= 0. (7)

The third term ∑L
`=1mc̀ e2

` |∇φ|2 is the power of
Joule’s heatproduced by the electric currentsj`. The
fourth term−mq2|∇φ|2 = −m f2R is the rate of cool-
ing by the force which balances the volume-additivity
constraint, and its influence is presumably very small
as usually|q| << max̀ =1,...,L |è |. Besides, Joule’s
heat always dominates this cooling effect because

∑L
`=1c`e2

` ≥
(

∑L
`=1c`è

)2
if (2) holds, cf. [17, Re-

mark 2.2]. The last term∑L
`=1h`(θ)r`(c,θ) is the heat

produced or consumed by chemical reactions.
It should be emphasized that many simplifications

are adopted in the presented model: we consider
small electrical currents (i.e. magnetic field is ne-
glected), adopt the mentioned volume-additivity and
incompressibility assumption, assume the diffusion
fluxes independent of other constituent’s gradients
(cross-effects are neglected) as well as of the temper-
ature gradient (i.e. Soret’s effect is neglected) and (in
agreement with Onsager’s reciprocity principle) also
the heat flux independent of the concentration gradi-
ents (i.e. Dufour’s effect is neglected), and finally the
temperature-independent diffusion coefficients, mo-
bility coefficients, and mass densities that are the
same for each constituents, i.e.d, m, andρ, respec-
tively.

There is a newer and more rational concept by
Truesdell [23, 24, 25] balancing impulsesρc`v` (with
v` denoting the velocity of thè -constituent) of
all constituents separately together with interactive
forces between them, see also [2, 12, 13, 15, 20, 22].
Then our barycentric velocityv equals to∑L

`=1c`v`.
Recently, Samohýl [21] derived the model (1) by
various simplifications from this Truesdell’s rational
model. In particular, [21] showed that the reaction
force fR from (6) in (1b) can be derived from a so-
called Hittorf referential system related to the veloc-
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ity of a dominant un-charged non-reacting constituent
(typically water) after transformation to the barycen-
tric system related tov under the assumptions (among
others) of very diluted solution and negligible diffu-
sion velocities.

4 Existence analysis outlined

We naturally assume the mass conservation in all
chemical reactions and nonnegative production rate
of `th constituent if its concentration vanishes, and
the volume-additivity constraint holds for the initial
and the boundary conditions, i.e.

L

∑̀
=1

r`(c1, ...,cL) = 0, (8a)

r`(c1, ...,c`−1,0,c`+1, ...,cL) ≥ 0, (8b)
L

∑̀
=1

c`0 =
L

∑̀
=1

c`Σ = 1, c`0 ≥ 0, c`Σ ≥ 0. (8c)

Further, we assumeτ(D) = Φ′(|D|2), Φ : R → R
+,

and, for someε > 0,C ∈ R, it satisfies

Φ(0) = 0, Φ′(0) = 0, (9a)

Φ′′(|D|2)(B,B) ≥ ε
(

1+ |D|p−2)|B|2, (9b)
∣

∣Φ′′(|D|2)
∣

∣ ≤C
(

1+ |D|p−2) (9c)

for anyD,B∈ R
n×n symmetric. The Korn inequality

and (9a,b) imply (cf. [10, Lemma 2.1]) that, for any
v∈W1,2

0 (Ω;Rn),
∫

Ω
(τ(Dv1)−τ(Dv2)):D(v1−v2)dx≥ ζ

∥

∥∇v12
∥

∥

2
2 (10)

for someζ > 0 depending onε and onΩ and for‖·‖p
the norm inLp(Ω;Rn×n); later, it will also abbreviate
the norm inLp(Ω) or Lp(Ω;Rn).

We will prove the existence of a weak solution by
Schauder’s fixed point technique like in [17]. We de-
fine a retractK : M → {ξ∈M ; ξ` ≥ 0, ` = 1, ...,L}
by

K`(ξ) :=
ξ+

`

∑L
k=1 ξ+

k

, ξ+
` := max(ξ`,0), (11)

whereM denotes the affine manifold

M :=
{

ξ∈R
L;

L

∑̀
=1

ξ` = 1
}

. (12)

Let us note thatK is continuous and bounded onM .
Consideringγ = (γ1, ...,γL) = “old” concentrations

andϑ = “old” temperature, we define the(v,c,θ,φ)
as the weak solution to thede-coupled “retracted”
system:

ρ
∂v
∂t

+ ρ(v·∇)v−divτ(Dv)

+ ∇π = −q∇φ , div(v) = 0, (13a)

∂c`

∂t
−div

(

d∇c` +mK̀ (γ)(è −q)∇φ−c`v
)

= r`(K(γ),ϑ) , ` = 1, ...,L , (13b)

cv
∂θ
∂t

−div
(

κ∇θ−cvvθ
)

= τ(Dv):Dv

+d
L

∑̀
=1

è ∇c`·∇φ+m
L

∑̀
=1

K`(γ)e2
` |∇φ|2

−mq2|∇φ|2−
L

∑̀
=1

h`(ϑ)r`(K(γ),ϑ), (13c)

div(ε∇φ)+q = 0, q =
L

∑̀
=1

è K`(γ) (13d)

with the initial and boundary conditions (3)–(4). Ob-
viously, given(γ,ϑ), we are to solve subsequently the
(now decoupled) equations (13d), (13a), (13b), and
(13c) to obtainφ, v, c, andθ, respectively.

As the detailed analysis of the full system (1) is
indeed nontrivial and out of the scope of this contri-
bution, we outline it only in a particular casep= 5/2.
Also, for simplicity we assume

r`,h` continuous and bounded, (14)

although a sub-linear growth ofr`(c, ·) may be ad-
mitted, too; cf. [17]. Let us abbreviateI := (0,T) and
Q = I ×Ω.

Proposition 1 Let the assumptions (8), (9), (14)
hold, let v0 ∈ W1,p

0,DIV(Ω;Rn)), c0 ∈ L2(Ω;RL), θ0 ∈

L2(Ω), let Ω be of class C3, and α and φΣ(t, ·) be
smooth, n≤ 3, p = 5/2. Let (γ,ϑ) ∈ L2(Q;RL)×
L2(I ;W1,2(Ω)) be given such that∑L

`=1γ` = 1 a.e. on
Q. Then, for some C<+∞ independent of(γ,ϑ), (13)
has a unique weak solution which satisfies

σ :=
L

∑̀
=1

c` = 1 a.e. on Q (15)

(although c̀ ≥ 0 need not hold!), and also the follow-
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ing a-priori estimates
∥

∥v
∥

∥

L∞(I ;W1,p(Ω;Rn))∩L
2

p−1 (I ;W
2, 6

p+1 (Ω;Rn))
≤C (16a)

∥

∥

∥

∂v
∂t

∥

∥

∥

L2(I ;L2(Ω;Rn))
≤C, (16b)

∥

∥θ
∥

∥

L2(I ;W1,2(Ω))∩L∞(I ;L2(Ω))
≤C, (16c)

∥

∥

∥

∂θ
∂t

∥

∥

∥

L2(I ;W1,2(Ω)∗)
≤C, (16d)

∥

∥c
∥

∥

L2(I ;W1,2(Ω;RL))∩L∞(I ;L2(Ω;RL))
≤C, (16e)

∥

∥

∥

∂c
∂t

∥

∥

∥

L2(I ;W1,2(Ω;RL)∗)
≤C, (16f)

∥

∥φ
∥

∥

L∞(I ;W2,2(Ω))
≤C. (16g)

Sketch of the proof.First, we prove (15). By summing
(13c) for` = 1, ...,L and by (8a), one gets

∂σ
∂t

z−d∆σ+v·∇σ = 0 (17)

cf. also [17, Formula (3.18)]. Due to (8c), the unique
solution to this equation isσ ≡ 1.

Further, we realize that the chargeq = e·K(γ)
in (13d) is always bounded and, in particular, it
is in L∞(I ;L2(Ω)), and (16g) follows by usual
W2,2-regularity of the∆-operator with (4). Then
also the driving forceq∇φ in (13a) is bounded in
L∞(I ;L6(Ω;Rn)), hence certainly inL2(Q;Rn), and
we can use [10] where the estimates (16a,b) have
been derived by a very sophisticated usage of a shift
technique and a test by a truncated Laplacean.

Testing (13b) by c` gives (16e) stan-
dardly when we realize that the term
div(mK̀ (γ)(è −q)∇φ) − r`(K(γ),ϑ) is cer-
tainly bounded in L∞(I ;W1,6/5(Ω)∗) ⊂
L2(I ;W1,2(Ω)∗) and when we also use

∫

Ω
c`v·∇c` dx =

1
2

∫

Ω
v·∇c2

` dx

= −
1
2

∫

Ω
(divv)c2

` dx = 0. (18)

Then (16f) follows by testing (13b) by arbitraryz∈
L2(I ;W1,2(Ω)).

For p = 5/2, (16a) is the estimate of∇v in
L∞(I ;L5/2(Ω;Rn)) ∩ L4/3(I ;W1,12/7(Ω;Rn)) ⊂
L∞(I ;L5/2(Ω;Rn))∩ L4/3(I ;L5(Ω;Rn)) which is, by
interpolation with the coefficients( 4

15,
11
15), embedded

into L5(I ;L3+ε(Ω;Rn)), hereε = 18
19. Due to (9a,c),

τ(Dv):Dv is then certainly bounded inL2(I ;L6/5(Ω))
which is a subset of the natural “right-hand-side
space” L2(I ;W1,2(Ω)∗) for the heat equation. By

(16e,g), we also know that(e·∇c)·∇φ is bounded
in L2(I ;L3/2(Ω)). The other three terms on the
right-hand side of (13c) are even better. Then
(16c) follows standardly by testing (13c) byθ,
and (16d) then follows by using a test by arbitrary
z∈ L2(I ;W1,2(Ω)) for (13c).

Eventually, the uniqueness of solutions to (13b,c,d)
follows standardly because these equations are de-
coupled and linear, while uniqueness for (13a) is non-
trivial and has been proved in [10] ifp≥ 9/4. �

Proposition 2 Let the assumptions of Proposition 1
hold, then the mapping(γ,ϑ) 7→ (v,c,θ,φ) with
∑L

`=1γ` = 1 is continuous from the weak topology on
W L+1 with

W := L2(I ;W1,2(Ω))∩W1,2(I ;W1,2(Ω)∗) (19)

to the weak* topology related to the spaces from the
estimates (16).

Sketch of the proof.Take a sequence{(gk,ϑk)}k∈N

converging weakly to some(γ,ϑ) in W L+1. Take cor-
responding(vk,ck,θk,φk) and choose a subsequence
converging weakly* in the spaces specified in the es-
timates (16). By Aubin-Lions’ compact-embedding
theorem, cf. e.g. [19, Lemma 7.7],γk → γ strongly
in L2(I ;L6−ε(Ω;RL)) with ε > 0, which allows us to
pass to the limitK(γk)→ K(γ) and also ensuresφk →
φ strongly inL1/ε(I ;W2,2(Ω)). Then we get|∇φk|

2 →

|∇φ|2 in L1/(2ε)(I ;L3(Ω)) to exploit for (13c). Using
again Aubin-Lions’ theorem showsϑk → ϑ strongly
in L2(I ;L6−ε(Ω)), which allows us to pass to the
limit h`(ϑk)→ h`(ϑ) andr`(γk,ϑk)→ r`(γ,ϑ). More-
over, again by Aubin-Lions’ theorem and by interpo-
lation like in the proof of Proposition 1,∇vk → ∇v
in L5(I ;L3(Ω;Rn)) henceτ(Dvk):Dvk → τ(Dv):Dv
strongly inL2(I ;L6/5(Ω)), which is essential for the
limit passage in (13c). to obtain a conventional weak
solution. The limit passage in (13) is then routine.
The uniqueness proved in Proposition 1 ensures even-
tually the convergence of the whole sequence. �

Proposition 3 Let again the assumptions of Proposi-
tion 1 hold, then the mapping(γ,ϑ) 7→ (c,θ) : C → C

with

C :=
{

(c,θ)∈W L+1; ‖c‖W L ≤C,

‖θ‖W ≤C, c(·, ·)∈M a.e. on Q
}

(20)

with C from (16c-f) has a fixed point(c,θ) and, con-
sidering the correspondingφ and v, the quadruple
(v,c,θ,φ) is a weak solution to (1)–(4).
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Sketch of the proof.We useC equipped with the weak
topology. The fixed point then exists by Schauder’s
theorem (in Tikhonov’s modification).

Finally, by testing byc−` the resulted equation for
c`, i.e. (13b) withK(c) in place ofK(γ), we obtain
c−` = 0 if (8b,c) is taken into account. Hence (2) is
proved, andc` = K`(c), so that the retractK can even-
tually be forgotten in the this fixed point. �

5 Uniqueness in the isothermal case

Let us confine ourselves on the case that the temper-
ature variations can be neglected, hence instead of
r` = r`(c,θ) we consider onlyr` = r`(c); it is cer-
tainly well satisfied, e.g., in biological applications
on cellular level. Then (1) decouples to (1a,b,d) and
(1c). To show uniqueness, it suffices to consider only
(1a,b,d) because (1c) will follow.

Proposition 4 Let (9c) hold, r̀ be Lipschitz continu-
ous,Ω be of the C3-class,α andφΣ be smooth, n≤3,
and p≥5/2. Then there is at most one weak solution
to the problem (1a,b,d),(3),(4).

Proof. For notational simplicity, letρ=1. Recall that
q =∑L

`=1 è c` =: e·u. Consider the two weak solu-
tions (φ1,c1,v1) and (φ2,c2,v2) to (1a,b,d), and de-
noteφ12 := φ1−φ2, c12 := c1−c2, andv12 := v1−v2.
Test the difference of (1a) (resp. (1b)) written for two
solutions byv12 (resp.c12

` ), and use (10) to get:

d
dt

(

∥

∥v12
∥

∥

2
2 +

L

∑̀
=1

∥

∥c12
`

∥

∥

2
2

)

+ ζ
∥

∥∇v12
∥

∥

2
2

+d
L

∑̀
=1

∥

∥∇c12
`

∥

∥

2
2 =

∫

Ω

(

(

(v2·∇)v2− (v1·∇)v1)v12

+
(

q2∇φ2−q1∇φ1)·v12

+m
L

∑̀
=1

(

c2
`(è −q2)∇φ2−c1

`(è −q1)∇φ1
)

·∇c12
`

+
L

∑̀
=1

(

c1
`v1−c2

`v
2)∇c12

`

+
(

r(c1)− r(c2)
)

·c12
)

dx =: I1 + ...+ I5 (21)

The termI1 in (21), arising from the convective term,
can be handled as in [9, Theorem 4.29] modified with
zero-Dirichlet boundary condition providedp≥ 5/2,
namely

I1 = −

∫

Ω
(v12·∇)v1·v12dx

≤ ε
∥

∥∇v12
∥

∥

2
2 +Cε

∥

∥∇v1
∥

∥

2p/(2p−n)

p

∥

∥∇v12
∥

∥

2
2

for ε<ζ and then treated by Gronwall’s inequality.
Furthermore, from (1d) we getφ12 = ∆−1(e·c12)

where∆−1 denotes the inverse operator to∆ under the
homogeneous boundary conditions (4), i.e.ε∂φ/∂~n+
αφ = 0. Estimate the termI2 in (21), for each̀ =
1, ...L, as

I2 :=
∫

Ω

(

c2
`∇φ2−c1

`∇φ1
)

·v12dx

≤
1
4ε

∥

∥c12
`

∥

∥

2
2

∥

∥∇φ1
∥

∥

2
4 + ε

∥

∥v12
∥

∥

2
4

+
∥

∥c2
`

∥

∥

2
∞

∥

∥∇∆−1(e·c12)
∥

∥

2
2+

1
4

∥

∥v12
∥

∥

2
2 =: T1 + ..T4.

By (16e), q ∈ L2(I ;W1,2(Ω)), and then ∇φ1 ∈
L2(I ;W2,2(Ω;Rn))⊂ L2(I ;L4(Ω;Rn)) for n≤ 3 (here
even n ≤ 8 is allowed) through standardW3,2-
regularity results for the linear boundary-value prob-
lem (1d)–(4). Then the termT1 will be handled by
Gronwall’s inequality. As toT2 ≤ εN2‖∇v12‖2

2, we
will absorb it in the respective term coming from the
viscosity term (1a) ifε < ζ/N2 whereN is the norm
of the embeddingW1,2(Ω)⊂ L4(Ω). As toT3, we use
‖∇φ12‖2 ≤ C‖e·c12‖2 with someC depending onΩ
and onα, and then will handle it together withT4 by
Gronwall’s inequality. Now we estimate the termsI3`

with I3=∑L
`=1 I3` in (21) as

I3`

m
:=

∫

Ω

(

c1
`(è −q1)∇φ1−c2

`(è −q2)∇φ2
)

·∇c12
` dx

≤
3m
d

∥

∥c12
`

∥

∥

2
2

∥

∥è −q1
∥

∥

2
∞

∥

∥∇φ1
∥

∥

2
∞

+
3m
d

∥

∥c2
`

∥

∥

2
∞

∥

∥e·c12
∥

∥

2
2

∥

∥∇φ1
∥

∥

2
∞

+
3m
d

∥

∥c2
`

∥

∥

2
∞

∥

∥è −q2
∥

∥

2
∞

∥

∥∇φ12
∥

∥

2
2

+
d

4m

∥

∥∇c12
`

∥

∥

2
2 = T1 + ...+T4. (22)

Now we employ the regularity of∆−1 : L∞(Ω) →
W1,∞(Ω); this follows by the standardW2,p-regularity
theory with p > n, cf. e.g. [7], so that∇φ1 ∈
L∞(Q;Rn), which is needed for bothT1 andT2. These
terms are then to be treated by Gronwall’s inequality.
As to T3, estimate‖∇φ12‖2

2 ≤ C‖e·c12‖2
2, which will

lead to Gronwall’s inequality, whileT4 is to be ab-
sorbed in the left-hand side. Further, using also (18)
(here withv1 andc12

` instead ofv andc`, respectively)
we estimateI4` in the termI4=∑L

`=1 I4` in (21) as

I4` :=
∫

Ω

(

c1
`v1−c2

`v2)·∇c12
` dx =

∫

Ω
c2
`v12·∇c12

` dx

≤
1
d

∥

∥c2
`

∥

∥

2
∞

∥

∥v12
∥

∥

2
2 +

d
4

∥

∥∇c12
`

∥

∥

2
2. (23)
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Eventually, denoting byLr the Lipschitz constant of
r : R

L → R
L, we estimate the termI5 in as

I5 :=
∫

Ω

(

r(c1)− r(c2)
)

·c12dx≤ Lr
∥

∥c12
∥

∥

2
2. (24)

Then we sumI1 + ... + I5 and use the mentioned
Gronwall’s inequality to obtain bothv12 = 0 and
c12
` = 0. �

In fact, more sophisticated technique from [10] for
I1 allows even forp ≥ 9

4. For p = 9
4, the existence

seems to hold, too;ε in the proof of Proposition 1 is
then 0.0738. Yet, e.g.,p > 3 does not seem to work.
In the isothermal case, the existence of a weak solu-
tion was shown also in [18] or [19, Sect.12.6] in the
Navier-Stokes case (i.e.p = 2 was admitted).
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[14] I. Prigogine:Étude Thermodynamique des Pro-
cesses Irreversibles.Desoer, Lieg, 1947.

[15] K.R. Rajagopal, L. Tao:Mechanics of Mixtures.
World Scientific, River Edge, 1995.

[16] K.R. Rajagopal, A.S. Wineman, M. Gandhi:
On boundary conditions for a certain class of
problems in mixture theory.Int. J. Eng. Sci.24
(1986), 1453-1463.
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