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A note on incompressible ionized fluid mixtures

TOMAS ROUBCEK
Mathematical Institute, Charles University,
Sokolovska 83, CZ-186 75 Praha 8
and
Institute of Information Theory and Automation, AcademySaiences,
Pod vodarenskou vézi 4, CZ-182 08 Praha 8,
CzECH REPUBLIC
tomas.roubicek@mff.cuni.cz, http://www.karlin.mffrawcz/roubicek

Abstract: The model combining non-Newtonian generalization of thgidlaStokes equation for barycentric velocity
with Nernst-Planck equation for concentrations of patdcmutually reacting ionic constituents, the heat equatmd
also the Poisson equation for self-induced quasistatatrdield is presented. Existence of weak solutions isioed
and, in a special isothermal case, also uniqueness is proved
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1 Introduction of n+L+2 differential equations combining tm®n-
Newtonianmodification of theNavier-Stokes equa-

Chemically reacting mixtures represent a framewolikn (balancing the barycentric momentum), the

for modelling of various processes in biology antlernst-Planck equatiomodified for moving media

chemistry. My research in this area has been inifpalancing the mass of particular constituents), the

ated by J. Netas who, during many years before Iigat equatiorfbalancing the internal energy6), and

passed away, spoke about “living fluids”, although liee quasistatidoisson equatiorior the electrostatic

never elaborated any concept of such fluids. To cofield (balancing the electric inductiailg):

promise thermodynamic amenability and mathemati-

cal rigor, the model proposed in [17, 18] uses incom- p_V +p(v-O)v—divt(Dv)

pressible Newtonian framework with the barycen- = Ot

tric impulse balance, also called Eckart-Prigogine’s + Om= —qde, div(v) =0, (1a)

[6, 14] concept; in the compressible case, see alsoy. y

[1, 3, 4, 8]. The incompressibility refers here both a—fdiv(chHmQ(eg—q)D(p— CgV)

to each particular constituent and, through volume- L

additivity hypothesis as in e.g. [11, 16], also to the =ry(Cy,....c,0), ¢=1..,L, (1b)

overall mixture. To cover biological applications on 98 .

a (sub-) cellular level where intensity of electric field © 35 — div(kJ6 —c,v8) = T(Dv):Dv

on cell membranes is very high (about ¥on—1), the L

self-induced electrostatic field must be considered. In +qu-D(p+; erf\Dq)!z

comparison with [17, 18] or [19, Sect. 12.6], we con- =

sider here a non-Newtonian concept and prove exis- L
tence of solution for the full system. — mcf| D2 _; he(8)r.(c, 8), (10)
=1
_ L
2 The model div(eDg)+q=0,  g= glegCg : (1d)

We consider a mixture df mutually reacting chemi- The variablesy, 11, ¢/, 6, ¢ and q have the following
cal ionic constituents. Our model consists in a systameaning:
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v barycenter velocity, equality constraint in (2). The meaning of the heat
Tipressure, sources on the right-hand side of (1c) is: The first
C, concentration of-constituent, term 1(Dv) : Dv represents the heat production rate
@ electrostatic potential, due to the loss of kinetic energy by viscosity. The

0 temperature, second termdg-Og is the power (per unit volume)

g the total electric charge, of the electric current arising by the diffusion flux,
where the concentratiorts are to satisfy which can create local cooling effects. A global cool-
ing effect seems possible via interaction with the en-

L vironment ifa £ 0, expectedly related with the so-

/Zlcﬁ =1 <=0 (2) called Peltier effect If o = 0, one can however see

that the overall production due to this term o2is

In (1c) and later onc abbreviatesc, ...,c.). The nonnegative: indeed, by using Green’s formula twice,

meaning of the data is: one gets

T = 1(DV) stress tensor, D= 1(0Ov) "+ 0y,

. (Dy) o donsity, 2(V) /Q O Depelx = — /Q e0(Ag)- Dogdx = /Q £|Agl2dx

g valence (=charge) dgfconstituent, o0

€ > 0 permitivity, —/sA(p—dsz /qa((pr —@dS=0. (7)

re(cy, ...,CL,0) ¢-constituent production rate, roon r

h; = h,(8) enthalpy of the/-constituent, The third term S5, mge?|0¢? is the power of

k > 0 thermal conductivity, Joule’s heaproduced by the electric currenis The

¢ >0 heat capacity, fourth term—mcf| D@2 = —m 2 is the rate of cool-

d > 0 a diffusion coefficient, and ing by the force which balances the volume-additivity

m>0 a mobility coefficient. ~ constraint, and its influence is presumably very small
T_h_e system (1) is to be completed by the initial coRg usually|q| << max_1. |e/|. Besides, Joule’s
ditions heat always dominates this cooling effect because

(3) TG > (s%_iceer)? if (2) holds, cf. [17, Re-
mark 2.2]. The last terny5_, hy(8)r(c, ) is the heat
on the considered fixed bounded Lipschitz domatoduced or consumed by chemical reactions.
Q c R", and by the boundary conditions correspond- It should be emphasized that many simplifications
ing, e.g., to a closed container, which, in some sirate adopted in the presented model: we consider
plified version, leads to: small electrical currents (i.e. magnetic field is ne-
glected), adopt the mentioned volume-additivity and
[0} incompressibility assumption, assume the diffusion
v=0 & =0Cz, e2=0(g-¢), K5z=0 (4 fuyes independent of other constituent's gradients
(cross-effects are neglected) as well as of the temper-
onX:= (0,T) x0Q, wherefiis the unit outward nor- ature gradient (i.e. Soret’s effect is neglected) and (in
mal to the boundargQ andc,s andgs are prescribed. agreement with Onsager’s reciprocity principle) also
the heat flux independent of the concentration gradi-
ents (i.e. Dufour’s effect is neglected), and finally the

v(0,-) =Vvo, ¢€¢(0,-) =cp, 6(0,-) =0

3 Remarks to the model temperature-independent diffusion coefficients, mo-
] ) bility coefficients, and mass densities that are the
The phenomenological flux j, = —dlc, + same for each constituents, icc.m, andp, respec-
mc(d—e)0e in (1b) equals to—m(c,Ow — fr) tively.
where There is a newer and more rational concept by
d Truesdell [23, 24, 25] balancing impulspsyv, (with
W = e+ ﬁln(c[), (5) v, denoting the velocity of the/-constituent) of

all constituents separately together with interactive
plays the role of arelectrochemical potentiahnd forces between them, see also [2, 12, 13, 15, 20, 22].
where Then our barycentric velocity equals toy 5_; ¢v;.
Recently, Samohyl [21] derived the model (1) by
fr:=qde (6) various simplifications from this Truesdell’s rational
model. In particular, [21] showed that the reaction
is a “reaction forcé keeping the natural requirementorce fg from (6) in (1b) can be derived from a so-
Z?:l je = 0 satisfied, which eventually fixes also thealled Hittorf referential system related to the veloc-
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ity of a dominant un-charged non-reacting constituesdd = “old” temperature, we define th@,c, 6, @)
(typically water) after transformation to the baryceras the weak solution to thde-coupled “retracted
tric system related te under the assumptions (amongystem

others) of very diluted solution and negligible diffu-
sion velocities.

v
Pat
4 Existence analysis outlined +0n=—-qle,  div(v)=0, (13a)

+ p(v-O)v—divt(Dv)

an .
We naturally assume the mass conservation in all E—dIV(dDC£+mKe(V)(e£—Q)D(P— )
chemical reactions and nonnegative production rate

of /th constituent if its concentration vanishes, and = re(K(y),9), =1L, (13b)
the volume-additivity constraint holds for the initial 0 .
and the boundary conditions, i.e. “or div (k08— ¢,v8) = T(Dv):Dv
L L
L
d Oc,-0 Ko (y)e?|Ogl?
[Z:er(cl,---,CL) =0, (8a) + /Zlez Ce-LIQ+ m/Zl (V€7 |0g)
L
re(Ca,-.sC-1,0,Cr41,...,€L) > 0, (8b) —qu\D(p|2—/Z he(9)re(K(y),9), (13c)
L L =1
[z Cro= ; Cz=1 ¢€o>0, ¢z>0 (8¢ L
S5 A div(eDg) +9=0. a= 3 eKi(y (13d)
=1
Further, we assumg(D) = @(|DJ?), ®: R — R",
and, for some > 0,C € R, it satisfies with the initial and boundary conditions (3)—(4). Ob-
®(0)=0, ®'(0)=0 (9a) viously, given(y,9), we are to solve subsequently the

(now decoupled) equations (13d), (13a), (13b), and
®"(ID%)(B,B) > €(1+|D|P?)|Bf>,  (9b) (13c) to obtainy, v, ¢, and®, respectively.
|<D”(\D]2)| §C(1+\D]p‘2) (9c)  As the detailed analysis of the full system (1) is
indeed nontrivial and out of the scope of this contri-
for anyD, B € R™" symmetric. The Korn inequality bution, we outline it only in a particular cage=5/2.
and (9a,b) imply (cf. [10, Lemma 2.1]) that, for anyAlso, for simplicity we assume
ve WA (Q;R),
re,hy continuous and bounded (14)
/(T(Dvl)—T(DVZ))ZD(V]_—Vg)dX2 Z||ov¥?)| (0)

@ although a sub-linear growth af(c,-) may be ad-
for some > 0 depending om and onQ and for|| - ||, mitted, too; cf. [17]. Let us abbreviate= (0,T) and
the norm inLP(Q; R™"); later, it will also abbreviate Q = | x Q.
the norm inLP(Q) or LP(Q; R").

We will prove the existence of a weak solution by
Schauder’s fixed point technique like in [17]. We deéProposition 1 Let the assumptions (8), (9), (14)
fine aretracK : M — {EcM; & >0, £=1,...L} nold, let v € WEP (Q;R")), ¢ € L2(Q;RY), By €

0,DIv

by L2(Q), let Q be of class € anda and gs(t,-) be
& smooth, n< 3, p=5/2. Let(y,9) € L2(Q;R%) x

Ke(€) = ¢ & § =max§,0), (1) [2(1;Wl2(Q)) be given such thag’_,y, = 1a.e. on
215k Q. Then, for some € + « independent ofy,3), (13)

whered/ denotes the affine manifold has a unique weak solution which satisfies

M = {EERL; /ilﬁe = 1}. 12) 0:= ;L c=1 ae. onQ (15)
=1

Let us note thaK is continuous and bounded &v.
Consideringy = (vi,...,y.) = “old” concentrations (although ¢ > 0 need not hold!), and also the follow-
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ing a-priori estimates (16e,9), we also know thate-Uc)-Ug is bounded
in L2(1;L%2(Q)). The other three terms on the
HVHLwa;w1=p(Q;Rn))mL%(|;w2‘ﬁ(g;ﬂgn)) <C (169 right-hand side of (13c) are even better. Then
v (16¢c) follows standardly by testing (13c) b,
H_ <C, (16b) and (16d) then follows by using a test by arbitrary
ot lliLz(iLz(rn)) ze L?(1;W2(Q)) for (13c).
HBHL2(I'W1-2(Q))DL°°(I'L2(Q)) <C, (16¢c)  Eventually, the uniqueness of solutions to (13b,c,d)
20 ’ ' follows standardly because these equations are de-
H i <C, (16d) coupled and linear, while uniqueness for (13a) is non-
ot llL2(wt2(Q)) trivial and has been proved in [10] jf > 9/4. O
6]l 2 wr2(@u ez @) < C (16e) y . .
dc Proposition 2 Let the assumptions of Proposition 1
H— <C, (16f) hold, then the mappingy,d9) — (v,c,0,9) with
ot llL2gwr2(Qirl)7) Lo\ 4 -
S i—1Ye = 1is continuous from the weak topology on
|l Le(w22(q)) < C- (169) gpL+1 with

Sketch of the proof-irst, we prove (15). By summing g4/ :— |_2(| ;lez(Q)) mwl-,2(| ;WLZ(Q)*) (19)
(13c) for¢ =1,...,L and by (8a), one gets
to the weak* topology related to the spaces from the

%—fz— dAc+v-0o=0 (17) estimates (16).
cf. also [17, Formula (3.18)]. Due to (8c), the uniqueketch of the proofTake a sequence(gk, dk) tren
solution to this equation is = 1. converging weakly to som,9) in W-*1. Take cor-

Further, we realize that the charge= eK(y) responding(vk,ck,08, @) and choose a subsequence
in (13d) is always bounded and, in particular, fonverging weakly* in the spaces specified in the es-
is in L°(1;L%Q)), and (16g) follows by usualtimates (16). By Aubin-Lions’ compact-embedding
W22-regularity of theA-operator with (4). Then theorem, cf. e.g. [19, Lemma 7. &} — y strongly
also the driving forceqle in (13a) is bounded inin L?(1;L%5(Q;R")) with € > 0, which allows us to
L>(1;L8(Q;R")), hence certainly in2(Q;R"), and Pass to the limiK(yx) — K(y) and also ensureg —
we can use [10] where the estimates (16a,b) hagetrongly inLY(1;W22(Q)). Then we getlg|? —
been derived by a very sophisticated usage of a shifig? in L1/(%)(1;1L3(Q)) to exploit for (13c). Using
technique and a test by a truncated Laplacean.  again Aubin-Lions’ theorem show — 9 strongly

Testing (13b) by c, gives (16e) stan-in L?(1;L5%(Q)), which allows us to pass to the
dardly when we realize that the terntimit hy(3x)— hy(3)andr,(yk,9x) — re(y,d). More-
divimK,(y)(e;—q)0p) — ry(K(y),8) is cer- over, again by Aubin-Lions’ theorem and by interpo-
tainly bounded in  L°(1;W18/5(Q)*) < lation like in the proof of Proposition Llv — Ov

L2(1;W2(Q)*) and when we also use in L>(1;L3(Q;R") hencet(Dvi):Dvk — T(Dv):Dv
L strongly inL2(1;L%5(Q)), which is essential for the
] _ =z : limit passage in (13c). to obtain a conventional weak
/chv bce ax Z/QV DC%dX solution. The limit passage in (13) is then routine.

1 . 2 The unigueness proved in Proposition 1 ensures even-
=73 /Q(d'VV)Cé dx = 0. (18) tually the convergence of the whole sequence. (]

Then (16f) follows by testing (13b) by arbitrage  proposition 3 Let again the assumptions of Proposi-

L(W™5(Q)). _ _ _ tion 1 hold, then the mappingy,3) — (¢,8): C — C
For p = 5/2, (16a) is the estimate oflv in th

L=(LY2(Q;RY) N L¥Y3(LWHTT(Q;R)  C

L*(1;L52(Q; R")) N L43(1;L5(Q;R")) which is, by C:={(c,0)e W |c||yn <C,

interpolation with the coefficients, 1), embedded 184 <C. c()eM ae.onQ  (20)

into L5(1;L3¢(Q;R")), heree = 3. Due to (9a,c), -

1(Dv):Dv is then certainly bounded i?(1;L%5(Q)) with C from (16¢-f) has a fixed poittt, 8) and, con-

which is a subset of the natural “right-hand-sidgidering the corresponding and v, the quadruple

space”L?(1;W2(Q)*) for the heat equation. By(v,c,8, ) is a weak solution to (1)—(4).
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Sketch of the proofVe useC equipped with the weakfor e< and then treated by Gronwall’'s inequality.

topology. The fixed point then exists by Schauder’s Furthermore, from (1d) we gef'? = A~1(e-c'?)

theorem (in Tikhonov’s modification). whereA~1 denotes the inverse operatortander the
Finally, by testing byc, the resulted equation forhomogeneous boundary conditions (4), édxp/on -+

C, i.e. (13b) withK(c) in place ofK(y), we obtain a@= 0. Estimate the ternt, in (21), for each/ =

¢, = 0if (8b,c) is taken into account. Hence (2) ig, .. L, as

proved, and; = K(c), so that the retrad¢ can even-

tually be forgotten in the this fixed point. O Iz::/§2<c§D(p2—c}Dcpl)-v12dX

1
< 2 eIz 0+ ellv2ll;

Let us confine ourselves on the case that the temper-- Hcg“iHDA*l(e.cﬂ)HiJr }HVlZHE =T +.Ts

ature variations can be neglected, hence instead of 4

re = re(c,8) we consider onlyr, = ry(c); it is cer- )

tainly well satisfied, e.g., in biologiéal application8Y (162e2), qc< Lz(l’gvl’z(?))’ nand then Dg* <

on cellular level. Then (1) decouples to (1a,b,d) akd(liW>*(QR")) C L?(1;L*(Q;R")) for n< 3 (here

(1c). To show uniqueness, it suffices to consider orlyen n < 8 is allowed) through standardv®2-

(1a,b,d) because (1c) will follow. regularity results for the linear boundary-value prob-
lem (1d)—(4). Then the terr; will be handled by

Proposition 4 Let (9¢) hold, y be Lipschitz continu- Gronwall’s inequality. As toT, < eN?||0v!?|3, we

ous,Q be of the C-class,a and @z be smooth, /13, will absorb it in the respective term coming from the

and p>5/2. Then there is at most one weak solutiofiscosity term (1a) i < /N2 whereN is the norm

to the problem (1a,b,d),(3),(4). of the embeddingv?(Q) c L*(Q). As toTs, we use

|0¢?||2 < C|le-ct?||, with someC depending orQ

Proof. For notational simplicity, lep=1. Recall that . X ;
q=3%,ec = eu Consider the two weak solu-and ona, and then will handle it together wiffy by

. I’'s i lity. N [ h
fions (g1, 1) and (. \2) to (1ab,d), and 4. Cronwall's inequality. Now we estimate the terigs

with I3=5% 13, in (21) as
note@'? := @'—¢?, c'?:=cl—c?, andv? := V12, 3=2ialain(2h)
Test the difference of (1a) (resp. (1b)) written for two

5 Unigueness in the isothermal case

|
solutions byw!? (resp.c!?), and use (10) to get: %32 Q<C%(ef—ql)D‘Pl—cﬁ(eé—qz)D@z) -Ocj?dx
d 2 & 2 2 3My a2, 12 2
a(HvleerleHcsz)+ZHDV12H2 < 5 el lle = ol [T,

3m
+ a5l o

L
ray o= [ ((Pone- ot o)
2100~ | 30 e 20

n (qZD(pz_qlmcpl)‘le

d 2
L +—||Oc?|5 =Ta+ .. + Ta. (22)
+ m; (cﬁ(eg—qz)mcpz —~ c%(eg—ql)Dq}) -Oc}? 4m ?
=1

. Now we employ the regularity oAt : L*(Q) —
4 [Z (!t — AR) Ocl2 W(Q); this follows by the standan/>P-regularity
= theory with p > n, cf. e.g. [7], so thatdg! €
L*(Q;R"), which is needed for bothy andT,. These
+(r(ch) —r(c?) 'C12> dx=:l1+..+1Is (21) terms are then to be treated by Gronwall’s inequality.
As to T, estimate||J¢'?||3 < C|le-ct?||3, which will
The termly in (21), arising from the convective termlead to Gronwall’s inequality, whildy is to be ab-
can be handled as in [9, Theorem 4.29] modified wigorbed in the left-hand side. Further, using also (18)
zero-Dirichlet boundary condition providga> 5/2, (here withv! andc}? instead ofv andcy, respectively)
namely we estimatdy, in the termly=S"5_; 14 in (21) as

: 1 12 2. 112
= _/Q(vlz_D)vl_Vlde ¢ .:/Q(cgvl—cfvz)ﬂcg dx:/chv1 -Oct2dx

B 1 2 2 d 2
< ]| OvI2)2 G| DV |22 [ v 2 < gl lalvelz+Z 0] (23)
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Eventually, denoting by, the Lipschitz constant of[10]
r : Rt — RL, we estimate the terfig in as

5= [ (r(e) (@) k< L[5 (24)

Then we sumiy + ... +Is and use the mentioned11]
Gronwall’s inequality to obtain botiv*? = 0 and
c?=0 O

Z .

In fact, more sophisticated technique from [10] fdid 2]
1 allows even forp > 3. For p = 3, the existence
seems to hold, toc in the proof of Proposition 1 is
then 0.0738. Yet, e.gp > 3 does not seem to work[13]
In the isothermal case, the existence of a weak solu-
tion was shown also in [18] or [19, Sect.12.6] in the
Navier-Stokes case (i.p.= 2 was admitted). [14]
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