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Abstract:- In this work we compute the hyperbolic temperature profile produced in an infinite band which
is irradiated by a laser source. We study the temperature response in different cases according to the
type of the laser applied: The temporal profile can be continuous or a rectangular pulse, and the spatial
profile can be Gaussian or doughnut-shaped. The temperature profiles in each case are computed from
Green’s function of the Neumann problem for the axially symmetric hyperbolic heat conduction equation
in an infinite band.
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1 Introduction
We are interested in the temperature response in an
infinite band which is irradiated by different types
of laser sources. Due to the physical environment
of the problem, the more interesting solutions are
those ones being axially symmetric with respect
to the vertical z-axis. Actually, it is well known
that the accurate study of these processes needs
the use of the hyperbolic heat conduction equation,
more involved than the classical parabolic Fourier
equation.

The formulation of this kind of problems usually
implies the study of a Neumann problem for the
hyperbolic heat equation in which the boundary
or initial conditions are given by irregular distrib-
utions such as the Heaviside or the Dirac δ func-
tions. However, in spite of being very “complex”
problems, in the most of the cases the temperature
computations are only made in a purely formal way
without doing any theoretic reasoning.

In [7] we have developed a rigorous mathemati-
cal study of the hyperbolic heat conduction equa-
tion in order to provide the theoretical foundations
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for temperature computation in different heat con-
duction problems, including those whose initial and
boundary conditions are given by irregular distri-
butions. The basis of this mathematical treatment
is the study of the Green’s function of the Neu-
mann problem for the hyperbolic heat equation.
At the end of this study we have computed the
Green’s function of the Neumann problem for the
axially symmetric hyperbolic heat equation in an
infinite band and we have found an expression that
relates the temperature solution of a heat conduc-
tion problem in the band with its Green’s function.

The objective of this work is to use the results
of [7] related to Green’s function in order to ob-
tain the temperature response in an infinite band
irradiated by different types of laser sources: The
temporal profile can be continuous or a rectangu-
lar pulse, and the spatial profile can be Gaussian
or doughnut-shaped. This problem has been solved
in [3] in a different way. At the end of this work we
discuss the solution found in [3] and we compare it
with our solution.

2 Analytical development
The hyperbolic heat conduction problem is based
in the irradiation of an infinite band by a laser
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source. In cylindrical coordinates the governing
equation of the problem is
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for (ρ, η, ξ) ∈]0,∞[×]0, L0[×]0,∞[, where T is the
temperature and α and τ are the thermal diffusiv-
ity and the thermal relaxation time of the medium,
respectively. The initial and boundary conditions
of the problem are
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where k is the conductivity, Q0 is a factor cor-
responding to the maximum incident flux for a
Gaussian source and is related to surface physics,
d is a characteristic beam radius which represents
the circular boundary within the Gaussian source
that contains 63% of the total beam power incident
to the surface, f(t) is the function that determines
the laser temporal profile and A0 is the fraction
of the total flux that contains the Gaussian mode
and varies from 0 to 1. When the laser spatial pro-
file is Gaussian the maximum irradiation is found
at the center and A0 = 1, this profile is employed
in material processing applications involving high
reflective metallic surfaces. When the laser spa-
tial profile is doughnut the maximum irradiation is
found in a ring around the center and A0 = 0, this
profile is employed in some processes of materials
cut.

For convenience we work with following dimen-
sionless variables
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Bearing in mind these variables the problem that
we want to solve is
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for (ρ, η, ξ) ∈]0,∞[×]0, L0[×]0,∞[, verifying the
following initial and boundary conditions

lim
ξ→∞

V (ρ, η, ξ) = lim
ξ→∞

∂V

∂ ξ
(ρ, η, ξ) = 0

V (ρ, η, 0) =
∂V

∂ξ
(ρ, η, 0) = 0 in ]0,∞[×]0, L0[ ,

∂V

∂η
(ρ, 0, ξ) = 2F (ξ)

(
A0 + (1−A0)µ2ρ2

)
e−ρ2µ2

(3)
∂V

∂η
(ρ, L0, ξ) = 0 in ]0,∞[×]0,∞[ ,

∂V

∂ρ
(0, η, ξ) = 0 in ]0, L0[×]0,∞[ .

Given these initial and boundary conditions, ac-
cording to [4] the formula which relates the tem-
perature and Green’s function for this problem is
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where Θ(ρ, η, ξ|ρ0, η0, ξ0) is Green’s function corre-
sponding to the Neumann problem for the axially
symmetric hyperbolic heat equation in an infinite
band. In [4] we have obtained this Green’s function
which is
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where g(k, ρ, ρ0) := kJ0(kρ)J0(kρ0), D(n) := 1 −
n2π2

L2
0

and B(k, n) := D(n)− k2.

3 Analysis
We solve the problem assuming four different cases
depending on the laser spatial and temporal profile.

3.1 Continuous doughnut laser source
If the laser is continuous and doughnut f(t) = H(t)
and A0 = 0, where H(t) is the Heaviside function.
Then, the dimensionless form of condition (1) is
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. (6)

In order to compute the temperature profile in
this case we put (6) and (5) into formula (4). More-
over, to simplify the resulting expression we use
formula 9.210 in [2]. In this way we obtain the
temperature profile:
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3.2 Continuous Gaussian laser source
If the laser is continuous and Gaussian f(t) = H(t)
and A0 = 1. Then, the dimensionless form of con-
dition (1) is
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. (8)

As in the previous case, to obtain the temper-
ature profile we put (8) and (5) into formula (4)
and use formula 4 of section 6.631 in [2]. Following
these steps we get the desired temperature profile:
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3.3 Single pulse doughnut laser source
Since the spatial profile is doughnut-shaped as in
section 3.1 A0 = 0. And the temporal profile is
f(t) = H(t)−H(t−∆t), where ∆t represents the
application time of the laser pulse. Introducing
these values into (1) and taking dimensionless vari-
ables we get the following condition
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(ρ, 0, ξ) = [2 (H(ξ)−H(ξ −∆ξ))

+δ(ξ)− δ(ξ −∆ξ)]µ2ρ2e−µ2ρ2
. (10)

To solve the problem we put condition (10) into
(4). Then, we follow the same steps than in section
3.2. We have to be careful in this case with the sim-
plification of Dirac delta and Heaviside functions.
Finally, we get the temperature response
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3.4 Single pulse Gaussian laser source
Being a Gaussian spatial profile A0 = 1 and the
temporal profile is represented as in the previous
case by f(t) = H(t) − H(t − ∆t). Putting these
values into (1) and using dimensionless variables
we obtain in this case
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+δ(ξ)− δ(ξ −∆ξ)] e−µ2ρ2
. (12)

The solution of this problem is obtained follow-
ing the same steps than in section 3.2. Now, we

have to bear in mind that we have to put equation
(12) into (4) instead of (8) and we have to be care-
ful simplifying Dirac delta and Heaviside functions.
In this way we get the desired temperature profile
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4 Graphic discussion

We use the software Mathematica to discuss the
obtained temperature profiles. We assume that
the band is made with a refractory material whose
physical properties are α = 8.1 10−6 m2/s and
τ = 2.9 10−11 s (see [6]). Moreover, we assume
d = 2.45 10−6 m (see [1]) and L = 3 10−8 m. The
value of the variables are those in which hyperbolic
model has sense: t between nano or picoseconds
and r and z between nano or micrometers.

Firstly, figure 1 shows the temperature distrib-
ution as a function of ρ in the case of a contin-
uous laser source on the surface η = 0 at differ-
ent times. We can see that the temperature has
a doughnut behavior since the maximum temper-
ature is reached in a ring around the center of the
band (not in the center). Moreover, if the time in-
creases, the temperature of a point increases too.

Figure 2 shows the temperature variation as a
function of ρ in the case of a continuous Gaussian
laser source on the surface η = 0 at different times.
The temperature distribution follows a Gaussian
profile since the maximum temperature is reached
at the center of the band. We can also observe
that greater is the time, higher is the temperature
reached.

Figure 3 depicts the temperature distribution in
the center of the band as a function of η at dif-
ferent times in the case of a continuous Gaussian
laser source. We can see that for ξ = 0.6 there
exists a spatial interval in which the temperature
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Figure 1: Temperature distribution as a function of ρ from
a continuous doughnut laser at η = 0 for different times.
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Figure 2: Temperature distribution as a function of ρ from
a continuous Gaussian laser at η = 0 for different times.

is zero since the heat flux has not arrived, and an-
other zone where the temperature is bigger than
zero since the heat flux has arrived. This fact is
due to the consideration of a finite speed of heat
conduction. For ξ = 1.2 we can observe the ther-
mal wave has reached the insulated boundary at
η = 1, and reflected. This effect is showed by the
jump in temperature at η = 0.8.

Figure 4 shows the temperature distribution in
the center of the band as a function of ξ in the
case of a pulse Gaussian laser source on the surface
η = 1. Firstly in figure 4 we observe the existence
of a zone where the temperature is zero since at
this time the heat flux has not arrived at η = 1 and
suddenly (at ξ = 1) the temperature increases be-
cause the heat flux produced by the application of
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Figure 3: Variation of center temperature as a function of
η from a continuous Gaussian laser at different times

the laser has reached this point. We have assumed
that the application time of the laser is ∆ξ = 0.2,
then during this time the temperature is increasing
and after this interval decreases. Again, initially all
the points of the band are not a higher tempera-
ture than the initial due to the consideration of
a finite speed of heat conduction. We can notice
at ξ = 3 that temperature increases again, this is
due to the wave which has reached the insulated
boundary and it is reflected.
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Figure 4: Variation of center temperature as a function of
ξ from a pulse Gaussian source on the surface η = 1.
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5 Comparison with the solution
found in [3]

As we have said at the introduction this problem
has been solved in [3] in a different way. Apart from
the fact that we have based our computation in
rigorous theoretical foundations, we have observed
other differences between our solution and the so-
lution found in [3].

One of the main differences is that the solution
of the problem in every case that we provide is
valid for large and small values of time whereas the
solution of [3] is obtained making a simplification
and it is only valid for small times.

Regarding to the computations, our solution it is
obtained easier and more quickly. In our case it is
not necessary to solve all the problem in every case,
we only have to bear in mind the flux condition in
each case and put it into the formula which relates
temperature and Green’s function.

According to the graphics we have also observed
differences when we want to make a graphic with
the temperature profiles found in [3] (for example
in the case of a continuous Gaussian laser source).
In this case we have to consider a large number of
terms in the summations whereas in our case the
convergence of the summation is faster what allow
us to obtain the figures in less time.

6 Conclusions
In this paper we have obtained the hyperbolic so-
lution of a heat conduction problem based on the
irradiation of a an infinite band by different types
of laser sources. The solution is found from a pre-
vious research that we have made about Green’s
function and the expression that relates this func-
tion and the temperature for a specific problem.
Based in this previous study the solutions in such
case are easily obtained and they are valid for all
times.

As we can see with the graphics, the temporal
profiles that we get show some of the main charac-
teristics of the hyperbolic model: a finite speed of
heat conduction and a its wave nature.

We compare our solution with the obtained in [3]
by a different way. Our solution is easier to obtain
and represent than [3], and moreover, it is based

on theoretical foundations and valid for all values
of time and not only for small ones as in [3].
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