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Abstract: - The dimensionless character of classical Reynolds numbers currently used in the fluid flow boundary 
layer literature for plates and internal or external flows in circular pipes are here revised from the perspective of 
discriminate dimensional analysis. On the one hand, this perspective leads to an unambiguous form for the group 
of quantities that take part in what we will call the “discriminated Reynolds number”, a new number that reduces 
to the classical Reynolds number in some geometries. On the other hand it is demonstrated that the application of 
discriminated dimensional analysis to boundary layer problems leads to monomials with a clear physical 
significance, i.e. the ratio “inertia forces/viscous forces”, an interpretation that is not always correct for the 
classical Reynolds number.  
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1   Introduction 
 

     In boundary layer fluid flow processes, the 
Reynolds number (Re hereinafter) is referred to in 
research literature and in most of text books as a 
typical dimensionless number that (approximately) 
characterizes the flow.  
     At low Re the flow is laminar, while at high Re 
the flow becomes turbulent [1-3]. The general 
expression for Re is  
 
 

Re = v*l*/ν      (1) 
 
 

in which v* (ms-1) and l* (m) denote characteristic 
velocity and length of the problem and ν (m2s-1) is the 
kinematics viscosity (or momentum diffusivity) of 
the fluid. Also, many text-books give Re the 
significance 
 
 

Re ≡ ratio of inertial to viscous forces. 
 
 

since the order of magnitude of these forces per unity 
of mass of fluid is v2/l and νv/l2, respectively. 
     The combination of quantities v*, l* and ν in Re 
arises from the immediate application of the 
dimensional analysis theory (or Buckingham pi 
theorem [4]) which consists of deducing the 
dimensionless independent groups of variables that 
can be formed from the relevant list of variables of 
the problem.  

     In Mechanics, the dimensional equation of these 
groups, named pi monomials, is L0 M0 T0, where 
{L,M,T} (length, mass and time), are the dimensions 
of the fundamental quantities that form part of the 
(dimensional) basis.  
     The most serious limitation for using dimensional 
analysis to provide some fundamental a priori 
information of the problem, is that it requires to know 
beforehand the exact variables that influence the 
problem, that is, it requires a thorough physical 
understanding of the phenomenon under study.  
     If the mathematical model of the problem is 
known, dimensionless groups can also be derived by 
manipulation of the differential equation. To this end, 
each dependent or independent variable of the 
equation is referred to other quantity of the problem 
of the same nature and finite value. The coefficients 
of the resulting differential equation would be the 
dimensionless groups that play a real role in the 
solution.  
     The aim of this paper is to demonstrate that 
classical dimensional analysis [5,6] leads, in general, 
to erroneous Re numbers that neither have physical 
significance (ratios of forces) nor play an independent 
role in the solution. In contrast, and using the same 
routine procedure as classical dimensional analysis, 
discriminate dimensional analysis leads to true Re 
that are really dimensionless and play a definitive 
role in the solution. 
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2  Classical dimensional analysis versus 
discriminated dimensional analysis 

     For cylindrical geometry, which is commonly 
used for internal and external (cross) flows, different 
discriminate basis would be chosen. Among others:  

While classical dimensional analysis (CDA) is a 
scalar theory, i.e., it does not distinguish the vectorial 
character of most of the quantities and physical 
properties of materials, discriminated dimensional 
analysis (DDA) assumes this fundamental character. 
For CDA, lengths, velocities, forces, viscosity and 
other physical quantities are dimensionally 
independent (between them) if they are connected to 
different spatial directions.  

 
{Lr,Ls,Lz,M,T} 
 
{Lr,φ,Lz,M,T} 
 
{Sz,Ls,Lz,M,T} 
 
{Lr,Sr,Lz,M,T} ... 
 

     In Mechanics, for example, the immediate 
consequence of this assumption is that the classical 
dimensional basis of the theory, {L,M,T}, becomes 
{Lx,Ly,Lz,M,T} in the rectangular geometry. The 
increasing of the number of quantities in the basis 
(this number is called the multiplicity of the basis [5]) 
deals, in general, to a less number of dimensionless 
groups if the problem has the same number of 
variables.  

where φ denotes the angle (rad), Sz denotes the 
surface normal to axial direction, and Sr the lateral 
surface of the cylinder. 
     The concept of discrimination is not only limited 
to spatial directions. Other physical considerations 
could be included within this concept. In the broad 
sense other types of discrimination that would 
increase the number of dimensions of the basis can be 
adopted. For example, mass may be used to account 
for inertia effects or to account for the amount of 
matter, which implies that two mass quantities must 
be recovered in the basis. Heat conduction is a kind 
of energy transport that has nothing to do with mass, 
so that, if simultaneous transport of heat and mass 
occurs and there is no conversion between mechanic 
and thermal energies (dissipations effects neglected), 
both Q and M will be part of the dimensional basis 
[6]. In addition, other quantities, such as surfaces and 
angles, could be included in the basis if it is 
convenient for the particular problem.  

     Let us study the flow over a flat plate, figure 1. On 
the above basis, we take the length lo in the direction 
of Lx, the velocity vo in the direction of Lx, and the 
kinematics viscosity that recognizes the momentum 
diffusivity in the direction of Lz.  
     The discriminate dimensional equations of these 
quantities are: 
 
[lo] = Lx  
 
[vo] = LxT-1  
      The only requirement, common to CDA and 

DDA, as regards the dimensional basis, is that the 
adopted basis has to be complete and the dimensions 
that contains independent [5]. 

[ν] = Lz
2T-1 

 
     The grouping of these variables in the form of 
Reynolds number, lovo/ν, is not a dimensionless 
number since  

 
 

 3 The classical Reynolds number and 
its determination  

[lovo/ν] = Lx
2/Lz

2 
 

 

It was Osborn Reynolds himself [8] who in the 19th-
century established a dimensionless parameter, now 
called Reynolds, to distinguish the type of flow, 
laminar or turbulent, in a closed conduit. Later, this 
pure number was subsequently applied to other types 
of flow that are completely enclose or that involved a 
moving object completely immersed in a fluid.  

 
 

 

v0 

l0 

Lz
Ly 

Lx 

 

     The reasoning of Reynolds around his parameter 
were not made using the dimensional analysis theory 
but they came from the balance of the existing forces 
(inertial and viscous). This is a correct reasoning as 
long as the lengths for which the forces are evaluated 
were also correct. As we shall see later, these lengths 
can or cannot be of the same order of magnitude 

 
 

Fig. 1. Laminar flow over a flat plate 
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according to the geometry of the problem. The fact 
that Re was dimensionless (for the CDA theory), as is 
be expected, perhaps validated it in the eyes of the 
scientific community. Schlichting [9], for example, 
deduces Re by a pure (classical) dimensional 
reasoning. 

     Taking these spatial directions, the dimensional 
basis for the three problems will be  
 
{Lr,Ls,Lz,M,T} 
 

 
4.2 The relevant list of variables      According to the type of flow, figure 2, Re 

numbers (v* l*/ν) are currently defined as: 
 

The characteristic quantities that make up the relevant 
list of variables are:  
 Flat plate:  ReL = v∞ L/ν 
(i) Flat Plate:   

L, the length of the plate (or the length in the velocity External flow in pipes: ReD = v∞ D/ν 
    direction where the force balance is established;   
    the length normal to L that defines this region is  Internal duct flow: ReD = v∞ D/ν 
     unknown),  
v∞, the velocity of the fluid far from the boundary  The subscript L or D denotes the characteristic length 

(l*) chosen in the definition of Re, and v∞ is the non-
disturbed fluid velocity.  

      layer, and   
 

ν, (or µ and ρ), the kinematics viscosity of the fluid 
     Since there only exists a finite length for each one 
of the flows, pure (classical) dimensional reasoning 
(as that of Schlichting for flat plates) led to the above 
Re for external flow in pipes and internal duct flow.  

    (or the dynamic viscosity and the density of the  
    fluid, separately) 
 
(ii) External cross flow in (circular) pipes: 

  

s, the length of arc that that defines the wet perimeter      (s is one of the lengths that defines the region where  
4 The discriminate Re numbers     the force balance is established, the other length  
 

   that defines this region is unknown)  

4.1 The dimensional basis  

v∞, as in flat plate,  

As mentioned above, discriminated dimensional 
analysis distinguishes as dimensionally independent 
the different spatial coordinates for each geometry.  

 

ν, (or µ and ρ), as in flat plate,  
 
(iii) Internal flow duct (large ducts):      Regardless of the type of flow, we will adopt a 

spatial coordinate connected to the direction of the 
fluid velocity (Ls) and other spatial coordinate 
connected to the normal to the sliding (viscous) 
surfaces (Lr). The third coordinate (Lz) which is 
necessary to express the dimensional equations of the 
variables of the problem, is normal to the two already 
defined, figure 2.  

 

D, the diameter of the pipe (also the transversal  
     region where the force balance is made; the axial  
     length of this region is unknown ), 
 

v∞, as in flat plate, 
 

ν, (or µ and ρ), as in flat plate,  
(the axial length of duct is irrelevant in large ducts) 
  

  
4.3 Dimensional equations of the variables  

 
 
 
 
 
                                (a) 
 
 
 
 
 
 
                                                                                   (c) 
 
 
                      (b) 

Lr Lz 

Ls 

Lr

Lz 

 Ls

Lz 

Lr

 Ls

 

 

The dimensional equations of these quantities (note 
that the dimensional equation of µ come from its 
definition through the Newton law of viscosity, F = µ 
S (∂v/∂n) are: 
 
(i) Flat Plate: 
 

[L] = Ls 
 
 

[v∞] = Ls T -1 
 
 

[ρ] = M Ls
-1Lr

-1Lz
-1 

  
 

[µ] = MLr Ls
-1Lz

-1T -1 Fig. 2. Types of flow: a) flat plates, b)external flows 
in pipes, c) internal flow duct 

 
 

[ν] = Lr
2T -1 
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(ii) External flow in (circular) pipes: 
 

[s] = Ls
 

 
 

[v∞] = Ls T -1 
 
 

[ρ] = M Lr
-1Ls

-1Lz
-1 

 
 

[µ] = MLr Ls
-1Lz

-1T -1 
 
 

[ν] = Lr
2T -1 

 
(iii) Internal flow duct (large ducts): 
 

[D] = Lr 
 
 

[v∞] = Ls T -1 
 
 

[ρ] = M Lr
-1Ls

-1Lz
-1 

 
 

[µ] = MLr Ls
-1Lz

-1T -1 
 
 

[ν] = Lr
2T -1 

 
Table 1 resumes the dimensional exponents of these 
variables according to in their respective basis. 
 

 
4.4 The discriminate dimensionless groups 
 

(i) Flat plate. From the variables L, v∞ and ν (which 
substitute the pair µ and ρ) and their dimensional 
exponents of Table 1 a), the application of 
Buckingham pi theorem does not provide any 
dimensionless monomial. In consequence, no type of 
Re number appears in the solution. 
     Everything dimensional analysis contributes with 
this Table is the order of magnitude of δ, a “hidden 
quantity”, in the radial direction, of dimension [δ] = 
Lr, which undoubtedly is the boundary layer thickness 
that limits the region where the force balance applies. 
It is straightforward to obtain the order of magnitude 
of this quantity 
 
δ ∼ (νL/v∞)1/2 

 
or, in terms of ReL 
 
δ ∼ L (ReL)-1/2 

 
     In this way, DDA does not lead to the classical Re 
but, instead, to a new one which we could define, for 
example, as  
 
Red = (v∞Lν/)(δ/L)2 = ReL(δ/L)2 
 
     Due to the real dimensionless character of Red, the 
classical ReL is related to the following meaning or 
order of magnitude 
 

ReL ∼ (L/δ)2 >>1 
 
the slenderness of the boundary layer region [10]. 
 
 

 

 L v∞ ρ µ ν 
Lr   -1 1 2 
Ls 1 1 -1 -1  
Lz   -1 -1  
M   1 1  
T  -1  -1 -1 

 
 

a) Flat plate 
 
 

 s v∞ ρ µ ν 
Lr   -1 1 2 
Ls 1 1 -1 -1  
Lz   -1 -1  
M   1 1  
T  -1  -1 -1 

 
 

b) External flow in circular pipe 
 
 

 D v∞ ρ µ ν 
Lr 1  -1 -1 2 
Ls  1 -1 -1  
Lz   -1 1  
M   1 1  
T  -1  -1 -1 

 
 

c) Internal duct flow 
 

Table 1. Dimensional exponents of the variables 
 

 
(ii) External flows in circular pipes. From the 
variables s, v∞ and ν and their exponents of Table 1 
b), the application of Buckingham pi theorem does 
not provide dimensionless monomials but, again, a 
hidden length appears in the radial direction, [δ] = Lr, 
with the same meaning as the former case, the 
boundary layer thickness.  
 
δ ∼ (νs/v∞)1/2 

 
or, in terms of Res 
 
δ ∼ s (Res)-1/2 
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     The Red provided by DDA is 
 
Red = (v∞s/ν)(δ/s)2 = Res (δ/s)2 

 
and the order of magnitude of Res is  
 
Re ∼ (s/δ)2 >>1 
 
again, the slenderness of the boundary layer region. 
 
(iii) Internal duct flows. Under the hypothesis of large 
ducts the variable L (real length of the duct) is not 
relevant. The list of variables of the problem is D, v∞ 
and ν and Table 1 c) of the dimensional exponents 
does not provide any dimensionless monomial.  
     The hidden length of this problem has the axial 
direction, [l*] = Ls. The order of magnitude of l* is   
 
l* = (v∞D2/ν) 

 
l* is the stretch of duct where the boundary layer is 
developed (l*<<L). Obviously, the boundary layer 
thickness connected to l* is R. The new discriminated 
dimensionless Red and its connection to the classical, 
ReD, is:  
 
Red = v∞D2/(νl*) = ReD(D/l*) 
 
the meaning of ReD also being the slenderness of 
boundary layer, 
 
Re ∼l*/D. 
 
For the internal ducts flows with L<l*, it is the length 
L which determines the thickness of the boundary 
layer, δ*, and not D (δ*<D).  
     The list of variables is now L, v∞ and ν, and the 
hidden quantity has the radial direction. From Table 
2,  
 
δ* = (Lν/v∞)1/2 

 
The discriminated dimensionless, Red, and its 
connection to the classical, ReD, is  
 
Red = v∞δ2/(νL) = ReD(δ/L)2 

 
Again, the meaning of ReD is the slenderness of 
boundary layer  
 
ReL ∼ (L/δ)2. 
 
a region of thickness in radial direction is less than 
the Radii. 

 

 L v∞ ρ µ ν 
Lr   -1 -1 2 
Ls 1 1 -1 -1  
Lz   -1 1  
M   1 1  
T  -1  -1 -1 

 
Table 2. Dimensional exponents of the variables for 

internal duct flow in short ducts 
 
 
5 The meaning of dimensionless 
discriminated Reynolds numbers  
 

The ratio of inertia forces to viscous forces per unity 
of mass for each one of the three flow configurations, 
within the boundary layer region confined by the two 
above mentioned lengths, yields the following 
expressions. 
 
Flat plate: 
 
fi (inertia forces) = ρ v∞

2/L 
 
fv (viscous forces) = µ v∞/δ2 
 
fi/fv = (v∞δ2)/(νL) = ReL(δ/L)2 = Red 
 
Transversal flow in pipes: 
 
fi (inertia forces) = ρ v∞

2/s 
 
fv (viscous forces) = µ v∞/δ2 
 
fi/fv = (v∞δ2)/(νs) = Res (δ/s)2 =  Red 
 
Internal duct flow, L>l*: 
 
fi (inertia forces) = ρ v∞

2/ l* 
 
fv (viscous forces) = µ v∞/D2 
 
fi/fv = (v∞D2)/(νl*) = ReD(D/l*) = Red 
 
Internal duct flow, L<l*: 
 
fi (inertia forces) = ρ v∞

2/ L 
 
fv (viscous forces) = µ v∞/δ*2 
 
fi/fv = (v∞δ*2)/(νL) = ReD(δ*/L)2 = Red 
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     When the L ≈ l*, the region of the boundary layer 
is confined by R and L (or δ and l*), since R≈δ. 
Using these approximations the ratio of inertia forces 
to viscous forces provides the same results at the last 
two cases. 
     As is shown, the meaning of the discriminated 
dimensional Reynolds number is clear and does not 
depend on the flow configuration, an important 
conclusion that confirms that the good use of 
discriminated dimensional analysis, in contrast to 
classical dimensional analysis, leads to definitive 
monomials that play an unquestionable role in the 
solution. 
 
 
6 Conclusions  
 

Discriminated dimensional analysis is demonstrated 
to be a fundamental and fast technique which is 
capable of deriving fundamental information for the 
problem under study without the need to develop 
bothersome mathematical calculus.   
     For the flow regimes studied, in contrast to 
classical dimensional analysis, discriminated 
dimensional analysis leads to (discriminated) 
Reynolds numbers with a clear meaning common to 
the three types of flow: flow along flat plates, 
external flow in pipes and internal flow in ducts. This 
meaning is the ratio of inertia to viscous forces 
within the region where the boundary layer develops.  
     The connection between classical and 
discriminated Reynolds is immediately shown and, 
from this connection, a geometrical meaning can be 
attributed to the classical dimensionless numbers.  
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