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Abstract: - The goal of the inverse analysis is to find a set of heaters over some parts of boundary, called the 
heater surface, to satisfy the desired heat flux profile over the design surface. Micro-genetic algorithm is 
employed to inverse design of a radiant enclosure with absorbing-emitting medium. The direct problem of 
radiative heat transfer is solved by the discrete transfer method. The inverse problem is solved through the 
minimization of an appropriate objective function using the micro-genetic algorithm. A smoothing criterion is 
used to achieve a smooth distribution of heaters over the heater surface. The desired heat fluxes over the 
design surface are well recovered by employing a smooth distribution of heaters over the heater surface. The 
ability of the method to solve the inverse problem in complex geometries is investigated by a complex 
problem.  
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1   Introduction 
Radiation is an important, often dominant mode of 
heat transfer in the design of combustion systems 
such as furnaces, combustors and jet flames. Design 
of the radiant enclosures often requires that desired 
conditions, temperature and heat flux, satisfy over 
the design surface.   
In recent years, optimization methods are widely 
used to design of radiant enclosures. The main idea 
in these methods is to minimize an objective 
function that is defined in such a way that its 
minimum corresponds to the ideal design 
configuration. A comprehensive review of the 
inverse methods for the design and control of radiant 
sources is reported by Howell et al. [1]. Many 
algorithms can be used in the procedure of 
minimizing the objective function. Federov et al. [2] 
and Sarvari et al. [3] used the Levenberg-Marquart 
technique to solve the inverse radiation boundary 
design problem. Conjugate gradient method has 
been applied to solve the inverse design radiation 
problem by Daun et al. [4] and Sarvari et al. [5-6].   
As the engineering problems are complex and are 
usually multi-optimum problems, a genetic 
algorithm (GA) is one of the best techniques that can 
be used to find the global optimum. It employs the 

Darwinian survival-of-the-fittest theory to yield the 
best or better characters among the old population 
and perform a random information exchange to 
create superior offspring. A comprehensive study of 
the genetic algorithm has been reported by Goldberg 
[7]. Mera et al. [8] used genetic algorithm for 
solving ill-posed problems. Tsourkas and Rubinsky 
[9] solved 2-D steady-state conduction by 
evolutionary-genetic algorithm. Chiwiacowsky and 
Velho [10] compared the conjugate gradient method 
with the genetic algorithm for solution of an inverse 
heat conduction problem. Li and Yang [11] applied 
genetic algorithm to solve the inverse problem for 
simultaneously determining the single scattering 
albedo, the optimal thickness and the phase function, 
from the knowledge of the exit radiation intensities. 
 There are several  versions of the genetic 
algorithms. The micro-genetic algorithm developed 
by Krishnakumar [12] is one of the most widely 
used GAs. Micro-genetic algorithm is a very robust 
algorithm in finding the global optimum rather than 
local optimum for a given domain. Carroll [13] 
presented the application of the micro-genetic 
algorithm for optimizing the performance of a laser 
system. An implementation of the micro-genetic 
algorithm in a design support tool for solar hot water 
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systems is reported by Loomans and Visser [14]. 
Senecal and Reitz [15] presented the application of 
the micro-genetic algorithm for computational 
optimization of a heavy-duty direct-injection diesel 
engine. In this paper, we present an inverse analysis 
of radiative heat transfer to produce the desired heat 
flux and temperature distributions over the design 
surface of a radiant enclosure with absorbing-
emitting media through the genetic algorithm. The 
direct procedure of solving the radiation transfer 
equation is based on the discrete transfer method, 
developed by Lockwood and Shah [16]. 
A smoothing criterion is applied to absent the 
fluctuation of solution and achieve a smooth 
distribution of heat flux over the heater surface. An 
example problem is presented to show the ability of 
the method to solve the inverse problem in complex 
geometries.   
      
 
2   Problem Formulation 
2.1 Nomenclature 
a  absorption coefficient,   )/1( m
A  area,  )( 2m
e  error 
E  blackbody radiation energy, , 4Tσ ( )2/ mW  
F   objective function 
I  radiation intensity, ( )srmW 2/  
K  optical depth  
L  length, ( )  m
M  number of elements over design surface 
N  number of heaters  
n   unit surface normal 
q  heat flux, ( )2/ mW  
s  geometric path length 
s   unit vector into a given direction 
T  temperature, ( ) K
W  weighting function 
ε   emissivity 
γ   peripheral length,  )(m
Γ   boundary of solution domain,  )(m
σ   stefan-boltzmannconstant, ( )42/ KmW                                       
Ω   solid angle 
Subscripts 
b  blackbody value 
d  desired, design 
e  estimated 
h  heater 
i  ray direction  
j  surface element 
m     design surface element 
n  heater surface element 

w      wall 
k   entry into an element 

1+k   exit from an element 
 
 
2.2 Direct problem 
Consider an absorbing-emitting gray two-
dimensional medium in radiation equilibrium. The 
equation of radiative heat transfer and the boundary 
conditions can be written as: 
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where the subscript w denotes the values at the wall. 
Using the discrete transfer method, the solution for 
the radiation intensity through an element is 
expressed in the form 
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where  and  are the intensities along the 
direction of irradiation ray i on entry and exit , 
respectively, and  

ikI , ikI ,1+

s∆  is the distance traveled by the 
ray through the element. 
Given a wall temperature distribution, the boundary 
condition can be expressed as follows: 
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where  is the radiation intensity at surface 

element  j of the irradiation ray i and  is the 

weighting applied to . The radiant heat flux at 
the boundaries is 
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The computational algorithm for the DTM is 
described in detail in [5] and will not be repeated. 
 
2.3  Inverse problem 
The inverse radiation problem involves the 
determination of the heat fluxes over the heater 
surface, },...,,{ ,2,1, Nhhhh qqq=q , from the 
knowledge of the desired heat fluxes, 

},...,,{ ,2,1, Mdddd qqq=q , over the design surface. 
The objective function is defined as: 

[ ] [ ]ed
T

edhF qqqqq −−=)(         (5)
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There are several different versions of genetic 
algorithms. The micro-genetic algorithm (µGA) is 
one of the most widely used GAs. It is able to avoid 
the premature convergence and perform better in 
reaching the optimal region than the traditional GAs. 
Basically, µGA uses the similar evolutionary 
strategy as that used in the traditional GAs. 
Reproduction and crossover are still the basic 
genetic operations while mutation is usually omitted. 
Another operation which is recommended to use is 
called elitism. elitism means the best individual 
must be replicated among the next generation. The 
main differences of µGA from the traditional GAs 
are in the population size and the mechanism to 
introduce and maintain the genetic diversity. 
Generally, µGA operates on a very small 

population. The small population very often 
converges in a few generations. To maintain the 
genetic diversity in population, µGA uses a restart 
strategy not the conventional mutation operation. 
That is, once the current population converges, a 
new population would be generated, which has the 
same population size and consists of the best 
individual from the previously converged generation 
and other new randomly generated ones. This 
evolutionary process would be sequentially 
conducted until the global is found. 

where  and  are the vectors of the desired and 
estimated heat fluxes over the design surface, 
respectively. The solution of the inverse problem is 
based on the minimization of the objective function 
with respect to the unknown parameters. A genetic 
algorithm is used for this optimization process, 
which is described next. 

dq eq

The standard GA uses a population (i.e. a group of 
possible solutions) of individuals (i.e. parameter 
sets) that is represented in a binary format. Each 
parameter is encoded in a binary string. The strings 
for the separate parameters then are grouped into 
one long string. The individuals are randomly 
determined from the search space. The genetic 
algorithm consists of three basic operations: 
reproduction, crossover, and mutation. 
Reproduction is simply a process to decide which 
strings should survive and how many copies of them 
should be produced. The decision is made by 
comparing the fitness of each string with the average 
fitness of the population. The fitness is an indicator 
of the survival potential and reproduction capability 
of the string in the subsequent generations. For an 
optimization problem, the fitness is the objective 
function. In minimization problems, a string with 
smaller fitness will receive correspondingly more 
copies in the new population. 
Crossover is a means for two high-fitness strings 
(parents) to produce two offspring by mixing and 
matching their desirable qualities through a random 
process. 
Mutation plays an important role as a safeguard. 
Mutation occurs with a small probability in the 
genetic algorithm to reflect the small rate of 
mutation existing in the real world. In mutation 
phase, some bits will be changed in all strings 
according to mutation rate.    

The heater strengths are selected such that 

1,11, qqqq nhnh −≥−+ . Fig. 1 shows some 

possible selected profiles using the smoothing 
criterion. 

γ
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Fig. 1: Some possible selected profiles by using the 

smoothing criterion 
 
4   Results 
Consider the radiative heat transfer in an enclosure 
shown in Fig. 2. All the walls are diffuse and gray 
with a unit emissive power ( ). The 
emissivity on the outer and the inner (design) 
surfaces are 0.8, 0.5, respectively. The enclosure 
contains an absorbing-emitting medium. The goal of 
the design problem is then to find a symmetrical 
arrangement of 30 heaters over the outer boundary 
surface to produce a uniform dimensionless heat 
flux of  over the design surface.  

2/1 mWE =

2/2/ mWEqd −=
Fig. 3 shows the estimated heat flux distribution 
over the design surface for different values of 
optical depth defined by . As shown, the 
uniform desired heat flux distribution is recovered 
using the inverse method. The estimated heat flux 
distribution over the heater surface is shown in Fig. 

RaKR ×=
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4. Fig. 5 shows the rate of convergence for objective 
function versus the number of iterations for different 
optical depth. As shown, the objective function is 
rapidly converged to a small value. Fig. 6 shows the 
emissive power contours for optical depth of 

. 0.1=RK
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Fig. 2: The geometry and wall radiative properties 
of an enclosure containing an absorbing-emitting 

medium. 
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Fig. 3: The dimensionless estimated heat flux 

distribution over the design surface  for different 
values of optical depth. 
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Fig. 4:  The dimensionless heat flux distribution 
over the heater surface  for different values of 

optical depth. 
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Fig. 5:  The rate of convergence for objective 

function versus the number of iterations for different 
values optical depth. 
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Fig. 6: The emissive power contours in the 

medium for . 0.1=RK
 
4   Conclusion 
   A micro-genetic algorithm has been used to solve 
the inverse boundary design problem in a radiant 
enclosure with absorbing-emitting medium. The 
discrete transfer method has been employed to solve 
the radiative transfer equation. A smoothing 
criterion has been applied to GA to achieve a 
smooth profile of heat flux over the heater surface. 
The inverse problem has been formulated as an 
optimization problem that minimizes the errors 
between desired and estimated heat fluxes over the 
design surface. An example problem has been 
investigated to show the ability of the method for 
solving the inverse problem in complex geometries.  
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