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stract: - The Galerkin finite element method is used to calculate the Navier-Stokes and continuity
uations to study the flow over a parabolic body, in a wind tunnel, at Reynolds numbers from 10 to 700.
e Reynolds numbers were calculated with respect to the height of the body and the inlet free stream
locity. The flow is steady and is nominated to be 2D, while the width of body extends to the whole width
the tunnel. The calculated velocity components, streamlines, pressure, vorticity, boundary layer, shear
ess and friction coefficient are presented and discussed with the work of other researchers. 
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uction 
r studies a nominated 2D flow in a wind 
th a parabolic wall-mounted body. The 
ady and laminar at the inlet. The fluid is 
 and incompressible. The Reynolds 
Re)h are calculated with respect to the 
ight and the inlet free stream velocity, 
om 10 to 700. The Reynolds numbers 
 with respect to the tunnel’s height are 
ight times (Re)h. The span-wise width of 
s equal to the channel’s width.  
 flow over a wall-mounted body of 
izes and shapes, even as backward-facing 
 been investigated by many researchers 
he flow has many applications to very 
 engineering problems. The flow, so far, 
investigated experimentally [1, 2, 9 et al.] 
rically [3, 4, 5, 6,  7, et al.] and it still 
vestigators interest. We first start 

ing a 2D flow over a rectangular wall-
obstacle [4, 5] using the finite element 
to solve Navier-Stokes equations 

ly. Since we needed to address other 
ow configurations, the air flow over a 
body is investigated in the present work. 
 of this work was to predict the 
te flow over a parabolic mounted body 
cing from a Stokes flow to higher 
numbers and studying the influence of the 
e flow. The body is submerged into the 

yer of the flow [3] and it is to be seen if 
 is disturbing the stream-wise velocity 

 
2  Governing Equations 
The nominated two-dimensional steady air flow 
around a surface-mounted body is described by the 
Navier-Stokes and continuity equations in a wind 
tunnel. 
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The computational domain of the flow and the 

boundary conditions are shown in Fig. 1. The 
equations and the boundary conditions are non-
dimensionalized by the inlet free stream velocity 
and the body’s height. The height of the body is 
smaller than its width, (h<b).  

 
Figure 1. Computational domain of nominally two 
dimensional flow over a mounted parabolic body 

The inlet boundary condition imposes a 
uniform free stream at the entrance of the 
computational domain. The no-slip boundary 
condition is governing along the top and bottom 
walls of the tunnel and along the surface of the 
body. The free boundary condition has been applied 
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at the outflow for a freely flow exit from the 
computational domain [8]. 

 
2.1  Finite Element Formulation 
The governing equations (1) and (2) were solved 
using the finite element (Galerkin) method. The 
computational mesh is shown in Fig.2. The mesh 
consists of isoparametric triangle elements with a 
curved side around the parabola and isoparametric 
quadrangle elements for the computations further of 
the parabola.                                    
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Figure 2.Mesh tessellation of computational domain 
,details around the body  

         The height of the computational domain, eight 
times the body’s height (H=8h), is chosen large enough 
so that the influence of the boundary conditions on the 
upper wall shear stress can be weak. The unknown 
velocities, u and v, were formulated by a quadratic basis 
function and the pressure, p, by a linear  basis. The 
unknowns were expanded in terms of Galerkin basis 
functions and weighted integrally with the basis  
functions  taking  the following continuity, , and 

momentum, , residuals: 
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where  is the vector of the velocity, I is the 
identity matrix, 

V
r
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∇+∇=  is the stress 

tensor of the Newtonian fluid with , TV ∇=∇
r

2 ∀d  
is the infinitely small volume of calculating domain 
and , are the linear and quadric basic 
functions in equations (3) and (4) respectively.  

ii ΦΨ ,

Applying the divergence theorem, the order of 
differentiation equation decreases (4).The residuals 
are evaluated numerically using nine-point Gaussian 
integration for the quadrangle elements and six-
point Gaussian integration for the triangle ones. The 
result is a system of nonlinear algebraic equations, 
which are solved with the Newton-Raphson iterative 
method. The banded matrix of the resulting linear 
equation is solved by a frontal solver at each 
iteration [4, 8]. The program was created by the 
authors for this work using a VISUAL FORTRAN  
language.  

                   Table 1 
Number of elements 9958 
Number of nodes 40311 
Number of unknowns 90833 
Computer used Pentium ( R) 4 CPU 3.4 

GHz 1.00 GB  
CPU time per iteration 5.899min 
Criterion of convergence 10-6   for velocity,4x10-3 

for pressure 
Grid system 0.005<∆x<0.5,   

0.00013<∆y<0.25 
 
3  Results and Discussion 
The calculated streamlines for three different 
Reynolds numbers,  200, 500 and 700, are shown in 
Figs. 3a, b, c. Fig. 3a shows the region upstream of 
the mounted body and Fig. 3b shows the region 
downstream of it. Fig. 3c shows a qualitative 
comparison of the present work with that of Leone 
et al. [7] for (Re)h = 200.  
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Figures 3a,b,c.Computed streamlines and  velocity 
profiles at different Reynolds numbers, 
(a)  upstream,   (b) downstream of the body, for 
(Re)h=700, (c) qualitative comparison between the 
present work and that of Leone et al. [7] for 
(Re)h=200 
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Although the similarities are obvious, the 
present work shows much more details of the flow 
around the body. It should be noticed that in both 
flow configurations the separation of the 
downstream of the bodies recirculation is on the top 
of the bodies. The investigation of Leone et al. [7] 
had to do with obtaining accurate solutions of the 
Navier-Stokes equations with centered finite 
differences via successive mesh refinement. The 
better details shown in Fig 3c are owed to much 
more improved method of solution, number of 
elements, equations, CPU time and probably the 
finer mesh. The stream-wise velocity distribution, at 
different positions along x*-axes, is also shown in 
the above figures. In the velocity distributions, in the 
recirculation regions upstream and downstream of 
the body, the negative values of the velocities are 
shown, too. 

Comparison of the stream-wise velocity 
profiles between the present work and that of Fragos 
et al. [4] are shown in Fig. 4 at different positions 
along the x*-axes and the top of the body for (Re)h = 
500. The velocity profiles show an absolute 
agreement. The difference of the two flow 
configuration is the size and the shape of the 
obstacle. In Fragos et al. [4] work the top of the 
body is horizontally flat and the length equal to the 
height. In the present work the top is a parabola and 
the length is longer than the height. 

(a)        (b)         (c)        (d)
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Figure 4. Comparison of longitudinal velocity 
profiles, (a) in the separation zone, (c) in the middle 
of the body and the (b) leading and (d) trailing edges 
of the body 
 

The computed length of separation and 
reattachment of the present work,  compared to 
computed data of other works, [2, 3, 5, 6] are shown 
in Figs 5a,b.  The experimental data of Acrivos et al. 
[1], Boum et al. [3] of Armaly et al. with Denham 
and Patric (1974) [2] and Hong et al. [6] are shown, 
too, in Fig. 5b. 

Figure 6 shows the growth of boundary layer 
along the x*-axis for different Reynolds numbers. It 
is shown that the body is submerged in the shear 
layer zone. The growth of the boundary layer is 
decreasing as the Re is increasing, close to the body,  
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                                      (b) 
Figure 5a,b. (a) separation and (b) reattachment 
length upstream and downstream of the body 
respectively.Comparison of the present work to 
numerical [3,4,6] and experimental [1,2,6] work 

 
Figure 6. Boundary layer growth along x*-axis for 
different (Re)h. 

 
to become almost constant downstream of the body, 
for (Re)h=200,500 and 700.  

Figures 7a, b show the stream-wise velocity 
profiles, in wall coordinates, at two different 
positions along x*-axis and for five different 
Reynolds numbers. The calculation of shear-stress 
velocity u* at x*=2 is based on a flow in the wind-
tunnel without the body, while at x*=45 it is based 
on the numerically calculated wall shear stress. 
Figures 7a,b show velocity profiles in normal scales, 
upstream of separation (x*=2) and    far downstream 
of reattachment (x*=45). Both figures show that 
either upstream of separation or downstream of 
reattachment the boundary layer does not follow a 
standard linear or logarithmic distribution. It seams 
that the boundary layer upstream of separation does 
not develop a normal boundary layer, because the 
body does not give space to the flow to develop it. 
Downstream of reattachment it seams that the 
distance of x=38.12h (x*=45) downstream of the 
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body is not enough for a normal boundary layer to 
develop. Figures 7a,b show also the best fit linear 
and logarithmic equations of the boundary layer 
upstream of separation,  x*=2 and downstream of 
reattachment, x*=45 for (Re)h=10 to 700.  
                                    (a)                                               

 
                                       (b ) 

 
Figures 7 a,b. Distribution of stream-wise velocity 
and wall terms in linear plot, at two positions. (a) 
upstream of the body, x*=2 and (b) downstream of 
reattachment, x*=45, for 10<=Re<=700  
 

 Figures 8a, b show a qualitative comparison 
of the isobars for (Re)h=200 (a) of the present work 
and that of (b) Leone et al. [7]. The two figures 
show similar distribution of the isobars around the 
body. The present work shows more details around 
the body. 
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Figures 8a,b.Qualitative comparison of the isobars for 
(Re)h=200 of (a) the present work and (b) Leone et al.[7] 

 

Figures 9a,b show qualitative comparison of 
the pressure coefficient, given by 

, along the wall for low 
Reynolds numbers, between (a) the calculated 
values of the present work and (b) the experimental 
data of Acrivos et al. [1]. 
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Figures  9a,b.Qualitative comparison of the pressure 
coefficient along the wall for low Reynolds numbers 
for (a) the calculated data of  present work and (b) 
for the experimental data of Acrivos et al. [1] 

 The results of Figs. 9a, b plotted in terms of 
X/Re=(x*-6)/Re (for the present work), along the 
wall downstream of the body are presented in Figs. 
10a,b. The qualitative comparison shows an 
agreement up to x*=14, Fig.9a and X/Re=0.2, Fig. 
10a. It should be noticed that the flow configuration 
of  Acrivos et al. is a step while in the present work 
it is a wall-mounted body. 

Figure 11 shows the pressure coefficient 
variations for 700(Re)100 ≤≤ h  downstream of 
the body. It should be noticed that after reattachment 
the pressure coefficient becomes almost constant. 

Figure 12 shows contours of vorticity of the 
flow domain for two different Reynolds numbers 
(10, 700 ). It is clearly shown that the presence of 
the body in the flow, even at Reynolds number 
much less than 1000, disturbs the flow far 
downstream of the body (x=43h) and far higher than 
the middle of the tunnel’s height (y=4h). 
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Figures 10a,b.Qualitative comparison of pressure 
coefficient in terms of X/Re for low (Re)h of  (a) the 
calculated data of the present work and (b) the 
experimental data of Acrivos  et al [1] 
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Figure 11.Pressure coefficient variations for      
100<Re<700 downstream of the body 
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Figure 12.Computed vorticity contours at different 
Reynolds numbers 
 

The contours of shear stress at two different 
Reynolds numbers are shown in Fig.13. They show 
how the shear stress becomes an important feature 
in the flow because of the body, as the Reynolds 
number is increasing, although it is between 
80<(Re)H<5600, (in tunnel’s height). The wall shear 
stress  coefficient  expressed  as   2/(Re) owh UC ρττ =

 (for qualitative comparison), is presented in Figs. 
14a, b for low Reynolds numbers. 
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    Figure 13. Computed shear stress contours at    
different Reynolds numbers 

  
 Figure 14a shows the distribution of Cτ along 

x*-axis of the present work and Fig. 14b shows that 
of Boum et al. [2]. Apart from the disturbances 
caused by the inlet conditions and the size of the 
pick (which in Boum’s figure has the double size of 
that in the present work), both figures show similar 
distributions, such as a pick on the top of the body, a 
low downstream of it while far downstream of 
reattachment the wall shear stress coefficient 
becomes about equal to one,  . 1≈τC

Figure 15 shows the distribution of Cτ for 
700(Re)100 ≤≤ h . It is shown that up to (Re)h = 

200 the  distribution is the same as in the previous 
figures. In the distribution for (Re)h =500 and 700  
the length of x*=50 seams not enough for the flow  
to stabilize the wall shear stress to a constant value. 
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Figures 14 a,b. Qualitative comparison of wall 
shear stress coefficient  along x*-axis given (a) by 
the present  work and (b) by Boum et al. [3] ,for low 
Reynolds numbers 
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Figure 15.Wall shear stress distribution along x*-
axis for 100<(Re)h<700 
 
Conclusions 

The Navier-Stokes and continuity equations 
have been solved numerically, using the finite 
element method to study a nominally two-
dimensional steady flow over a parabolic wall-
mounted body for different Reynolds numbers. The 
Reynolds number is based on body’s height and 
inlet free stream velocity. A uniform free stream 
flow is applied to the entrance of the tunnel, the no-
slip boundary conditions are applied along the walls 
and the free boundary condition at the exit of the 
tunnel. 

The calculated streamlines show the 
recirculation regions upstream and downstream of 
the parabolic body. Qualitative comparison to  
Leone et al. [7] show very good agreement though 
the present work shows more details around the 
body because of the different method of solution 
(finite elements) and the bigger number of elements, 
equations, CPU time and the finer mesh. As they 
suggest, the finite element method “… may be most 
appropriate if one is seeking accurate solutions ..”. 

Comparison of the stream-wise velocity 
distributions of the present work to those of Fragos 
et al. [4] over a rectangular obstacle, showed a very 
good agreement. The boundary layer growth for 
different Reynolds number is higher than the body. 
The growth of boundary layer is decreasing as the 
Reynolds number is increasing. The stream-wise 
velocity profiles, in wall coordinates, show that 
either upstream of separation or downstream of 
reattachment the boundary layer does not normally 
develop, because the flow needs more space 
upstream and downstream of the body to develop. 

Qualitative comparison of the isobars of the 
present work to the work of Leone et al. [7] and the 
comparison of the pressure coefficient to the work 
of Acrivos et al. [1] show very good agreement. 

The contours of vorticity show that the 
presence of the body in the flow disturbs the flow 
far downstream of the body and far higher than 
the middle of the tunnel’s height. The contours of 
shear stress also show the influence of  the body  in   
the flow. As the Reynold’s number is increasing the 

flow is disturbed up to centre of the tunnel, although 
(Re)H is between 80 to 5600. The wall shear stress of 
the present work compared with that of Boum et al. 
[3] shows many similarities apart from the 
disturbances caused by the inlet conditions. Far 
downstream of reattachment the wall shear stress 
coefficient becomes about equal to unity for low 
Reynolds number (up to 200),  while for (Re)h = 500 
and 700 it seems that the length of x* = 50 is not 
enough for the flow to stabilize the wall shear stress 
to a constant value. 
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