
 
 
 

 
 
 
1. INTRODUCTION 
Heat transfer and temperature distribution in the slabs made 
of steel or other material play an important role in thermal 
applications. Slabs in casting mould, or slabs in buildings 
structures or slabs in engines (Internal Combustion) have 
sometimes complex geometry; which make the use of 
numerical method easier for solving heat transfer problems 
rather than the complexity of the analytical solution 
associated with there practical engineering applications also 
non uniform boundary conditions, time dependent boundary 
conditions and temperature dependent properties. 
 
In some cases, analytical solutions are possible, in principle, 
but the mechanics of obtaining the solution may be much 
more difficult than the task of solving the problem 
numerically as present here. 
 
Heat transfer in slabs has been the subject of investigations 
for many researchers [1-6]. In these studies i.e A.Paul et al 
[1] investigated the local heat transfer (Flux) in a slab caster, 
to determine the heat flux and temperature distribution 
through the mould wall. By experimental rig using thermo 
couples then they developed a mathematical model for 
mould. 
 
Brian et al [2] made a model of heat transfer between slabs-
on-grade and the ground to evaluate the dynamic behavior to 
evaluate the coefficient of the equations which governed 
these models to improve buildings heating and cooling loads 
to optimize energy use. 
 
Meng et al [3] adopted a model of one dimensional heat 
transfer and solidification of the continuous casting of steel 

slabs. This model besides it is one dimensional it is also 
transient and therefore they use the finite difference 
calculations of heat conduction within the solidifying steel 
shell coupled with two dimensional steady state with the 
mould wall slabs. 
 
Belet et al [4] used the finite element and boundary element 
techniques to describe the temperature distribution and heat 
flux through slabs of continuous casting process. 
 
Richard et al [5] developed and verified a fundamentally 
based model for low temperature radiant system which can 
be used within energy analysis programs to evaluate the 
temperature distribution and heat flux variation through one 
dimensional transient condition heat problems. They 
presented their work using Laplace transform techniques and 
also state space method. 
 
In this work the one dimensional heat problem which is time 
dependent is solved analytically, and the last formula 
obtained is a new formula. 
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2. ANALYTICAL SOLUTION 

Applying the transient one-dimensional heat 
conduction Equ. and using the steel slab stated as shown: 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 1: schematic representation of steel slab  
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Subject to the boundary conditions: 
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Initial conduction T(x,0) = Ti                    …(2c) 
 
Let 0),(),( TtxTtxT −=         (3) 
 
Then Equ.(1) and its B.Cs. become: 
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Let ),( txT = ξ(x,t) + w(x,t)          (10) 
 

Then Equ. (4) reduces to: 
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The B.C. at x=0 becomes 
 
ξ(0,t) = – w(0,t)           (12) 
 
Also the B.C. at x=L reduces to 
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now assume that: 
 
w(0,t) = 0           (14) 
 
then ξ(0,t) = 0        (15) 
 
Now separate w,ξ in Equ. (13) such that: 
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The solution of Equ. (16) is: 
 
w(x,t) = [T0 – f(t) ] (A + Bx) at x=L        (18) 
 
Where A and B are constants 
 
Since w(0,t) = 0 , then A=0 since T0 – f(t) ≠0 
 
Then Equ. (18) becomes: 
 
w(x,t) = [T0 – f(t) ] Bx at x = L        (19) 
 
Therefore; 
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Substitute Equ.s. (19) and (20) into Equ. (16) at x=L to 
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Substitute Equ. (22) into Equ. (19): 
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Differentiate Equ. (23) with respect to t and x then 
 

L
x

K
hL

K
hL

tf .
1

)(
 t

 w

+
′=

∂
∂       (24) 

 
and: 
 

0),(
2

2

=
∂

∂
x

txw           (25) 

 
Substitute Equ. (24) and (25) into Equ. (11): 
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Equ. 26 can be solved by the method of separation of 
variable as follows: 
 

02

2

=
∂
∂

−
∂
∂

xt
cc ξαξ        (27) 

 
Where cξ  is the complemntary function of variable cξ  
To solve Equ. (27) by separation of variable method, let: 
 

cξ  = g(t) . Y(x)        (28) 
 
Substitute Equ. (28) into Equ. (27) to get: 
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The solution of Equ. (29) is expressed as: 
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Substitute Equ. (15) into Equ. (30) then: 
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Differentiate Equ. (30) with respect to x: 
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Substitute Equ. (32a) and (32b) into Equ. (17) 
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Refer to Equ.(26),(37) and (40) then the following relation is 
obtained: Substituting with the complete Equ. of ),( txξ : 
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Hence the temperature distribution of the present work is: 
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nλ  can be determined from figure 2 or calculated from Equ. 
(34) and (35). 
 

 
 
 
 
 

                  
 
 
 
 
 
                            
                           
            
 
 
 
 
 
 

                         
 
 

                       
  

3. Results and Discussion: 
The derived temperature distribution relation as 

expressed in Equ. (59) was used to obtain the temperature 
distribution throughout the thick slab after 0.5, 0.9 and 1 
hour. 
 Overall, the results of this work turned out as 
expected. It was confirmed that the analytical method 
employed could be used to give an accurate solution which 

satisfy the needs of the engineers and designers who always 
push for more efficient and economic design. 
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       FIGURE -3- TEMPERATURE DISTRIBUTION AFTER 0.5 HOUR 
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    FIGURE-4- TEMPERATURE DISTRIBUTION IN THE SLAB AFTER 0.9 HOUR ELAPSED
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FIGURE-5- TEMPERATURE DISTRIBUTION IN THE SLAB AFTER ONE HOUR ELAPSED
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