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Abstract: Journal bearings are among of the most common components in the industry due to their simple construction, low cost and 
high efficiency. Rotating  shafts are supported  by them,  and during  the transient periods  of  sequentially  start-ups and shut-downs  
and  extreme operation conditions also  that  occurred through their  life time, provoke  wear on the bearing pads. The wear produced in 
misaligned journal bearings is more intense than the wear produced in aligned ones. Thus in this paper the coupled phenomenon of 
journal bearing wear under misalignment angles in the two main directions is studied. The question is, if it is possible to identify the 
magnitude of the wear in the material of the bearings under misalignment conditions using response or other measurements. The second 
question under investigation is to find the dynamic coefficients, stiffness and damping, that are used to calculate the dynamic behavior 
or the stability of the rotor bearing system.  
The method presented in this paper describes an identification procedure of the wear of the bearings. The response should be measured 
at a particular point (the midpoint of the rotor) at two different speeds with different wear at each bearing. Least square method between 
the measured and the computed responses at the above particular point and for two different speeds is used to minimize the objective 
function and thus to find out the two different generally bearing wear percentages.  
Then the dynamic coefficients of the bearings are calculated by solving the Reynolds equation, obtaining thus the pressure distribution 
of the oil film, and by finding the equilibrium position. The 4x4 stiffness and damping matrices including the force-moment and 
displacement-rotation relations (the existence of moment-rotation relations is the characteristic difference between the aligned and 
misaligned cases) with all non-diagonal coupling terms as a function of the wear depth is taken into account for the analysis. Some of 
these dynamic coefficients are presented in this paper in the form of diagrams as functions of the Sommerfeld number.  
This method  stand in good stead  the early diagnosis  of the potentially bearing surface damage  due to worn effects, forwarding the  
safe  operation  of the rotating system and the cost savings of the future shut-downs. 
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1 Introduction 
In rotor-bearing systems, it is of highly interest the knowledge of 
the bearing condition, which affects the dynamic behaviour, as 
well as the stability of the system, and the possibility of the 
control. The wear of the bearing material during the operation of 
the system causes the change of the bearings clearance and 
therefore the change of the other dynamic characteristics of both 
the bearings and the rotor. 
Hydrodynamic journal bearing, which support misalignment 
rotating shafts, for a long period of time is the cause of 
significant wear in the bearing surfaces. So, the identification of 
the new operating radial clearances is of great importance.  
Dufrane et al [4] have investigated the worn journal bearing and 
establish a model of wear geometry for use in the analysis. This 
worn model is not of circular type.  
Vaidyanathan and Keith [5] have evaluated the performance 
characteristics of non–circular journal bearing for different 
bearing profiles namely circular, worn-circular, two lobe and 
elliptical. Hasimoto et al [6] have examined theoretically the 
effects of wear under normal operating conditions in both 
laminar and turbulence regimes. 
Anjani Kumar and SS. Mishra [7] have examined the effects of 
wear in journal bearing on the stability of a rigid shaft on two 
journal bearings, in turbulent flow and with not circular wear 
model.  
Nikolakopoulos and Papadopoulos [8] have examined the effects 
of the misalignments on the stability of a linear rotor-bearing 
system in laminar flow, via the direct method of Lyapunov.  
The inverse problem of structural damping of a Timoshenko 
beam in Wavy fluids is solved by Gounaris et al [3] using the so 
called predictor-corrector method. This method is used to locate 

the minimum of a multi-parametric function. This method could 
also be applied here to give a more efficient and fast solution for 
the minimum of the objective function. 
Fillon and Bouyer [12] present a thermodynamic analysis of a 
worn plain journal bearing. They conclude that the worn 
bearings present not only some disadvantages but also some 
advantages , such as lower temperature , since in certain cases of 
significant defects due to wear the geometry approaches that of a 
lobe bearing. 
Feng and Hahn [13] present a vibration analysis of statically 
indeterminate rotors with hydrodynamic bearings, taking in 
account the relative lateral alignment between the journal and the 
bearing housing 
In this paper pre-calculated responses are used instead of the 
measurements of the eccentricity of the rotor midpoint. These 
responses corresponds in the two different radial clearances 
(which later have to be determined), and depend on the angular 
velocity of the rotor as well as of the wear depth and 
misalignment angles. This calculation presupposes the numerical 
solution of the Reynolds equation which gives the pressure 
distribution of the oil film [2]. The misalignment angles are also 
taken here into consideration introducing at the same time the 
flexibility of the rotor. This point will be explained in detail in 
latter paragraph. The applied loads at each bearing are computed 
solving the static problem.  
The problem of the clearances identification of the two bearings 
is reduced of the minimization of the described objective 
function. All the known methods of minimum detection can be 
used in order to solve the problem for those clearances that 
correspond to the minimum value of the objective function.  
The eigenfrequencies are presented in both table and diagram 
form (Cambell diagrams). 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp293-298)

mailto:chris.papadopoulos@upatras.gr


2 Rotor model formulation using FEM 
The following assumptions are used in this work, 
• A rigid rotor supported by rigid bearings is assumed.  
• A steady state operation is assumed.  
• The rotor is rigid with circular cross section and the unbalance 

is represented as a concentrated mass on the shaft. 
• The bearings are anisotropic and rigid and are modeled as a 

set of linear spring and damping coefficients. 
• The wear is produced by misalignment forces. 
• The film thickness is described by the equation 13 according 

to figure 1 
• The wear model follows the model introduced by Dufranne et. 

al at ref. [4]  
• The external vertical load is considered constant  
 The finite element formulation of a rotating shaft with disks on 
two or more journal bearings is given by the following equations 
in matrix form [10]: 

[ ]{ } [ ]{ } [ ]{ } { }M X C X K X F+ + =�� �  (1.) 

Where [ ] [ ] [ ],M C and K  are the total mass, damping and 

stiffness matrices and { } { }andX F

e
R

e
R

the arrays of displacement-
rotation and forces-moment at any degree of freedom. The total 
mass, damping and stiffness matrices are assembled using the 
respective 8x8 matrices of all elements of the rotating shaft.  
The element mass matrix is 

[ ] [ ] [ ]e e
TM M M= +  (2.) 

Where are the translational and rotational 
mass matrices respectively given by [10], 

[ ] [ ]ande
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0
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translational and rotational shape functions respectively: 

( ) ( )2 3
1 1 3 / 2 /s sψ = − +A A , , 

, 

( ) ( )2
2 1 2 / /s s sψ ⎡= − +⎣ A A

( ) ( )2 3
3 3 / 2 /s sψ = −A A ( ) ( )2 3

4 / /s sψ ⎡ ⎤= − +⎣ ⎦A A A  

The element damping matrix based on the gyroscopic 
phenomenon and neglecting the internal damping effect is: 

[ ] [ ]e
GC Cω= − e  (4.) 

where ω is the angular velocity of the rotor and [  is the 
gyroscopic matrix of the element, given by: 

]e
GC

[ ] [ ] [ ]( )Te e eG N N⎛ ⎞= −⎜ ⎟
⎝ ⎠

, with [ ] [ ] [ ]
0

e
PJ dsΤ

Γ ΒΝ Φ Φ= ∫
A

 (5.) 

The stiffness matrix is: 

[ ] [ ]e
CK K= e  (6.) 

 

  

 
(d) 

Figure 1: (a) Geometry of bearing (b) of journal bearing, (c) of 
misalignment angles and (d) of the wear region [4]. 

 

[ ]eCK  is the conventional stiffness matrix of the beam element, 
based on the Euler-Bernoulli theory given by, 

[ ] [ ] [ ]
0

e dsΤ
ΒΚ ΕΙ Ψ Ψ′′ ′′= ∫

A

 (7.) 

If disks exist on the shaft at the DOF’s of the respective nodes 
the 4x4 mass matrix of the disk [ and the 4x4 gyroscopic 

matrix of the disk [ must be added to the global mass and 
gyroscopic matrices.  

]n
DM

]n
GC

Furthermore if the rotor is supported on journal bearings the 
stiffness and damping matrices have to be calculated, and the 
global stiffness and damping matrices must include the ones due 
to bearings. Although, in many cases in the literature only the 
four coefficients of the upper left sub-matrix (2x2) are included, 
here the full 4x4 matrix is considered for the calculation of the 
stability, 

[ ] [ ] [ ]e e
G BC C C= + n n and   (8.) [ ] [ ] [ ]e e

C BK K K= +

[ ]n
BC  and [ are the damping and stiffness matrices 

respectively corresponding to the bearing at node n. These 
matrices are presented in the section 3 where the Reynolds 
equation is solved. All other matrices are given in explicit form 
in Appendix A. For Timoshenko beam the corresponding 
matrices are given in ref. [1]. 

]eBK

 
3 Stiffness and damping matrices of the 
bearing 
In this chapter the bearing stiffness and damping matrices are 
calculated. A system of a rigid rotor on two identical journal 
bearings at both ends, enforced by a vertical constant force is 
considered here. 
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In the case that the bearing is perfectly aligned with respect to 
rotor, only hydrodynamic forces Fx or y = Fx or y(x, y, ), as 

functions of the displacements x, y and the velocities  in the 
two main directions of the journal center O

yx ��,
yx ��,

j, are present. In the 
misaligned case due to misalignment angles ψx and ψy, 
hydrodynamic moments are introduced. Both forces and 
moments in the misaligned case are functions of the 
displacements x, y, of the misalignment angles ψx and ψy and 
their corresponding velocities with respect to the journal center 
Oj. These forces and moments can be expressed in general form 
as, 

( , , , , , , , )x y xF F x y x y yψ ψ ψ ψ= � �� �  (9.) 

Where F stands for any of Fx, Fy, Mx, My. 
Under the assumption of small perturbations, the Taylor 
expansion of the above equation may be written, neglecting the 
terms of higher order, 

x y

x y

o Rx Ry R x R y

Rx Ry R x R y

F F K x K y K K

C x C y C C
ψ ψ

ψ ψ

δ δ δψ δψ

δ δ δψ δψ

= + + + + +

+ + + +� �� � � �� �
 (10.) 

Obviously there are four elastic and four damping linear 
coefficients. Generally, including the coupling terms, there are 
16 elastic and 16 damping coefficients which may be written as, 

i j

i
R X

j

F
K

X
∂

=
∂

 and 
i j

i
R X

j

F
C

X
∂

=
∂

� �   (11.) 

where , , , , , , ,j x y j xX x y X x y yψ ψ ψ ψ= =� � �� �  and Fi stands 
for force or moment, and i and j denote the directions x or y.  
All these are analytically calculated with the method, presented 
by Nikolakopoulos and Papadopoulos in [2]. In that reference 
the Reynolds equation is solved by FEM for laminar and 
incompressible flow with constant lubricant viscosity in order to 
obtain: 
a. The equilibrium positions of the rotor center in both bearings. 
These equilibrium positions will be used then to find the rotor’s 
position at the point where the measurements are taken, when 
solving the inverse problem. 
b. The bearings hydrodynamics coefficients (stiffness and 
damping) at the actual found bearing clearances to study the 
dynamics of rotor bearing system. 
Then the stiffness and the damping coefficients are calculated for 
both journal bearings, and are used for the assembly of the 
bearings in the global stage for the dynamic problem 
formulation. 
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Figure 2. Validation results of present paper and Ref [12] 

 
3.3 Wear Model  
The wear model used in the present analysis is the well known 
model presented in [4] by Dufranne at. al. 
The film thickness is given by superposition of film thicknesses 
as it is mentioned by Nikolakopoulos and Papadopoulos [8] and 
Dufranne at. al [4], for the abrasive bearing wear.  

0 0( , ) cos cos( ) sin( )y xh z c e z h0θ θ ψ θ φ ψ θ φ δ⎡ ⎤= + + + + + +⎣ ⎦  (13.) 

where, 

( 0 1 cos )h cδ δ θ= − −  (14.) 

The worn zone is supposed to be centered to the vertical load 
direction and is estimated by the equation, cos 0 1θ δ= −  
given at [7].  
 
3.4 Case study 
In figure 2 some validation results are illustrated between this 
analysis and these of reference [12], which are in a good 
agreement. 
Suppose a full (360o) journal bearing with bearing length l =50.8 
mm, diameter d = 50.8 mm, radial clearance c = 65 μm, oil 
viscosity μ = 0.012 Pa.s rotating at n = 150 rad/sec and loaded 
by four different vertical loads, 150 Nt, 250 Nt , 550 Nt and 
1250Nt. It is also supposed that the misalignment take place in 
two different angles, same on both of misalignment planes 
(figure 1), which is 0.0002559rad and 0.0005118rad 
respectively. Then the stiffness and damping coefficients for the 
full misaligned case are calculated and presented. 
As it is obvious that, besides the usual four terms of stiffness 
( , , ,

x x y yF x F y F y F xk k k k ) and four of damping 

( , , ,
x x y yF x F y F x F yc c c c ), there are also the stiffness terms of 

rotational degrees of freedom in the two main directions, as well 
as all the coupling terms for all degrees of freedom translational 
and rotational. 
In Figure 3 the variation of the sixteen stiffness and sixteen 
damping coefficients are depicted as a function of the 
dimensionless misalignment angles, Sommerfeld number and the 
wear depth.  
The dynamic coefficients coming from these figures could be 
used for the stability analysis, dynamic and control of a worn 
misaligned rotor - journal bearing systems. 
 
4 Inverse problem solution 
As it is well known journal bearing after a long period of 
running, depending on many factors (overloads, quality of 
lubricants, water in lubricants, misalignments effects etc), causes 
geometric changes due to wear with the most significant change, 
the change of the clearances. In this work it is assumed that the 
geometric changes due to wear follows the wear model  
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Figure 4: The midpoint response of the rotor as function of the 

eccentricities of the journal bearings. 
 
introduced at ref. [4] by Dufrane et al. The identification of these 
clearances is the main task of the present work.  
The position of the rotor midpoint (Figure 4), as it is obvious, is 
determined from the relative positions of the rotor ends that 
correspond to the axial position of the bearings, i.e. from the 
journal bearings eccentricities. In Figure 4 a rigid rotor is 
presented.  
However the method can also be applied in flexible rotors using 
similar relations, ref [13]:  

11 2 and
2 2

y yx x
xm ym

e ee e
e e

++
= = 2

deflection of the rotor has to be calcu

is 

rnal 

ined are the 

ed by assuming as “objective function” to be 

)2
e e e e e e e e

 (15.) 

The flexibility of the rotor is taken into consideration by 
assuming the mentioned misalignment angles Ψy, Ψx. These 
angles are arbitrarily assumed as a result of statically deflection 
of the rotor and a given misalignment of the bearing base. Surely 
if some unbalance has to be taken into consideration then the 

lated by equations (1).  
The eccentricity at a 
journal-bearing 
determined as the 
equilibrium position, where 
the external forces are 
opposite and equal to the 
forces coming from the oil 
film. This eccentricity 
depends on various 
parameters, including the 
angular velocity and the 
radial clearance as well as 
from the effects of the wear 
depth in respect to radial 
clearance and is determined 
solving the Reynolds 
equation as per ref. [2]. 
By maintaining all other 
parameters in the jou
bearing constants and 
assuming various 
combinations of worn 
effects as a function of 
radial clearances in both 
journal bearings, 
eccentricities are computed 
and thus the rotor midpoint 
eccentricities are 
determined as functions of 
the various worn effects 
combinations. 
Since the unknown which 
must be determ
two clearances, then two 
equations have to be used to 
solve iteratively the 

problem. This is achieved, if for each combination of wear 
depth, the journal bearing eccentricities and thus the rotor 
midpoint response (also supposed to be measured) is computed 
at two different rotor angular velocities. 
The above is obtain
minimized, the sum of the squares of the differences between the 
measured and computed responses to various worn effects 
combinations at the two different speeds. 

F Objective Function

( ) ( ) ( ) (2 2 2(1) (1) (1) (1) (2) (2) (2) (2)
meas meas meas measxm x ym y xm x ym y

= =

= − + − + − + −
  (16.) 

The above computed responses are those eccentricities 

ould be in any possible position of the 

 reasons, 

general method. It could be used for 

ich 

putations for 

.1 Case study of clearances identification 
ding to algorithm 

10

3.72 10
meas

measy

m

e m

−

−

×

= ×
 at 1200 rpm 

and  

y

m

e m

−

−

= ×

= ×
 at 2600 rpm 

The radius of the bearings is 25.4 mm,the bearing length is 

ercentage of the left and the right bearing is 20% and 

e picks 

t the surface of Figure 6.a, the wear depth of both 

calculated when equilibrium is obtained in the journal bearing. 
After that by applying equation (23) the response is found at the 
midpoint of the rotor.  
The measuring point c
rotor shaft and the same could be for the applied load.  
Here, both are assumed in the mid point for simplicity
but this does not affect on the generality of the presented method 
for the wear identification. 
The described method is a 
asymmetric loads, as well as for dissimilar bearings since there is 
not restriction for the calculation of the stiffness and damping 
bearings coefficients as a function of wear depth. These bearing 
properties could be calculated for any combination of external 
load, viscosity, bearing geometry and misalignment angles.  
Finally, the clearances requested as will be the ones wh
minimize the above objective function will be the surface 
minimum in a 3D drawing which indicates in the plane axes the 
clearances of the journal bearing and vertical to the plan the 
values of the above objective function computed. 
Regarding to the above equilibrium comGive data for rotor and journal bearing

W=1000N, μ=0.01Pas, d=50.8mm,
l/d=1, c=65μm, L=508mm

Misalignment angles
ψx=ψy=0.0005118 rad

Compute eccentricities for each
bearing to a range of wear/clearance
percentage, at the two speeds and at

the precomputed misalignments.
ω1=1200 and ω2=2600rpm
For δ0(left)=0 to 60% wear

For δ0(right)=0 to 60% wear

From all above combinations of
clearances and in both speeds and

from the journal bearing eccentricities
compute first the response at a point
and then the values of the objective

function.

Make the 3D furface and contours
drawings to identify worn clearances

in journal bearings.

Figure 5: Flow chart of the
algorithm used.

eccentricities, an assumed misalignment coming from the initial 
misalignment of the two bearings axes as well as from the static 
deflection of the shaft is taken into consideration. 
 
4
The current case study is created accor
illustrated at flow chart of figure 5. Two measurements are taken 
(virtually) at the middle of a shaft supported by two full 360ο 
journal-bearings at two different angular velocities (1200 and 
2600 rpm): 

(1) 2.48xe = 5

(1) 5

(2)
xe 5

(2) 5

1.275 10

3.13 10
meas

meas

50.8mm,the radial clearance is 65μm. and the oil viscosity is 
0.012Pa.s 
The wear p
30% of the radial clearance, respectively and the misalignment 
angle at both bearing positions is ψx=ψy=0.0005118rad.Then the 
objective function described by the equation (24). 
In the picture 6.a the –Log(F) is presented and th
correspond to the minimum of the function F. Two minimum 
can be identified: 30% wear of the left and 20% of the right or 
vise versa. 
To construc
bearings are changing from 0% to 60% μm of the radial 
clearance and the “measurements” are taken at 20% and 30%. 
Two rotational speeds are considered: 1200 and 2600 rpm. 
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Nomenclature 
A :  Area  
a, b, c :  Interpolation coef’s 
c :  Radial clearance 
D or d :  Journal diameter 
e0:  Eccentricity 
ε=e/c :  Eccentricity ratio 

K K
c

WF X F Xi j i j
= : Dimensionless 

Stiffness coefficients due to force 
displacement 

i j i jF F
cK K

WLψ ψ= : Dimensionless 

Stiffness coefficients due to force 
rotations 

K K
c

WLM X M Xi j i j
= : Dimensionless 

Stiffness coefficients due to moment 
displacement 
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a) Sommerfeld Number S=0.752, Misalignment angles 0.2x yΨ Ψ= =  
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b) Sommerfeld Number S=0.752, Misalignment angles 0.4x yΨ Ψ= =  

Figure 3: The stiffness and damping coefficients vs. wear depth, Sommerfel number and misalignment angles 
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