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Abstract: - Direct numerical simulations at a range of Reynolds numbers are performed to investigate
mechanism of vortex breakdown in swirling jets. Both axisymmetric and fully three-dimensional simlations
are conducted using high-order numerical methods in cylindrical coordinates. Our results clearly indicate
vortex breakdown as a wave phenomenon. Our analyses show how the bifurcation diagram found at high
Reynolds numbers correlate with the flow field computed and how the behaviour changes at low Reynolds

numbers.
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1 Introduction

A commonly accepted definition of vortex break-
down is the abrupt and drastic change of struc-
ture which may occur in the vortex core of a
swirling flow, when the swirl ratio exceeds a thresh-
old value. In one of the first experimental works on
the topic, Harvey [3] describes the phenomenon as
the formation of a well confined region of reversed
flow with a shape of a body of revolution located
on the axis, imposing the approaching flow to move
around it.

Several technical applications employ swirl, but
the main reason of interest in vortex breakdown
arises because of its foundamental mechanism,
which seems to be similar to other fluid dynamic
phenomena like shock waves and the hydraulic
jump. In a swirling flow, even if the stability of the
basic flow is guaranteed, the restoring effect of the
Coriolis force generates longitudinal inertial waves,
the so called Kelvin waves [11]. In the absence of
axial velocity, these waves can propagate upstream
marginally, with the velocity becoming higher as
the swirl is increased. When the axial velocity is
not zero, but bigger than the speed of waves prop-
agating upstream, any perturbation is convected
downstream by the main flow. For a fixed axial ve-
locity, there exists a critical level of swirl for which
an infinitesimal axisymmetric standing wave can
be sustained from the base flow [1]. Below the criti-
cal level the flow is supercritical and waves can only
propagate downstream; upstream propagation of
energy becomes possible above the critical level,
when the flow is said to be subcritical.

The critical state is defined for a swirling flow
which is assumed to be columnar, extending to in-
finity both upstream and downstream. In real sit-
uations the flow is never uniform, but, due to ge-
ometrical contraints and viscous diffusion, it has
conditions slowly evolving which may lead an ini-
tial supercritical flow towards criticality. Whereas
if a critical condition is reached, perturbations
spreading from the subsequent subcritical region
will accumulate and amplify to large value result-
ing in a possible breakdown. Leibovich [6], using
a weakly non-linear analysis derives the evolution
of waves of finite amplitude in a vortex core. The
wave amplitude is governed by a Korteweg-de Vries
equation, whose solutions are the well known soli-
tons, waves of permanent form arising from the
non-linear interaction of dispersive waves. The re-
sulting finite wave presents a dependence of the
velocity on the amplitude: as it grows it becomes
faster and therefore can penetrate the supercriti-
cal region, unaccessible for small perturbations. In
this scenario, a steady configuration becomes pos-
sible only if a mechanism extracting energy from
the big wave arises. Experimental works [12] have
revealed a very weak sensitivity to viscosity for
high Reynolds numbers. Leibovich and Kribus [7]
suggest non-axisymmetric feautures, rather than
viscosity, as the most dissipative effect helping to
stabilize the wave.

This mechanism would provide some insights
into the histeretical behaviour that unsteady ax-
isymmetric simulations reveal for large Reynolds
numbers (Re>300) [4],[8]: some quantities, like the
minimum axial velocity, when represented as func-



tion of the swirl level, show multiple steady solu-
tions. Figure (1) illustrates a schematic representa-
tion of the minimum axial velocity W obtained for
different values of the swirl. Here we remark that
W< 0 indicates breakdown. Starting from a con-
dition with low swirl the solution moves along the
branch (I), corresponding to a quasi-columnar con-
figuration until the first folding point S1 is reached.
For S>S1 solution evolves towards branch (II) and
a stagnation point appears. At this stage, a succes-
sive reduction of swirl below the critical value S1 is
unable to restore the initial quasi-columnar config-
uration until a second folding point S2 is reached.

This behaviour is connected to bifurcating solu-
tions of the steady Navier-Stokes equations. Wang
and Rusak [14] apply a global variational approach
to the inviscid Rankine vortex in a pipe, and derive
a bifurcation diagram which resembles the viscous
results found by numerical computations. In par-
ticular they prove the existence of the two limit
points S1 and S2 such that for S1<S<S2 three solu-
tions exist: solutions on branch (I) representing a
columnar flow; solutions on branch (II) represent-
ing a well localized region of separated flow; there
exists a third branch (IIT), connecting the two fold-
ing points, which describes waves developing in the
main flow. This branch is unstable and cannot be
obtained as steady solution of a time marching cal-
culation, but could be found using a steady state
case in combination with continuation techniques
[2].

The numerical computations of Beran [2], Lopez
[8] and Herrada et al. [4] are seen as a viscous cor-
rection of the these results. S1 is the critical point
for infinitesimal disturbance, while S2 is believed
to be a critical state for finite amplitude waves
[14]. When the Reynolds number is high enough,
the flow becomes locally critical, non-linear waves
interact and propagate upstream; in the inviscid
limit the only mechanism which may trap the large
wave is due to the boundary conditions fixed at the
inlet. For moderate Reynolds numbers the dissipa-
tive effect of viscosity is no longer negligible, and
the large wave can come to rest before approaching
the inlet. The corresponding bifurcation diagram
is modified and the third branch becomes shorter
up to disappear.

In this work, we have carried out a fairly
extensive numerical investigation of compressible
swirling flows in open domains. The main object
of the study was to determine numerically the bi-
furcation diagram and see how it correlates with
the flow field computed. We have analyzed the
relation between the existence of branch (IT) and
the excursion of the vortex bubble. Furthermore,
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(1)
Figure 1: Typical bifurcation diagram

a fully three-dimensional case is presented to high-
light how non-axisymmetric features can develop.

2 Problem formulation

In the present investigation we study the evolution
of a vortex whose non-dimensional components in
cylindrical coordinates (r, 6, z) are

v, o= [ Sr@=r) 0<r<i

o= S/r r>1

V, =1 (1)
Vi =0

where the vortex core radius 7 and the uniform
axial velocity V, have been used as reference di-
mensional quantities. The swirl number S is the
ratio between the azimuthal velocity at the vortex
radius and the axial velocity. These velocity pro-
files have been recently investigated by Ruith et
al. [10] for incompressible flows. The thermody-
namic initial conditions are the following: density
is assumed constant in all the domain and pressure
is fixed to satisfy the radial momentum equation.
The reference density is the constant free-stream
density, the reference pressure is twice the dynamic
pressure at the inflow and the reference tempera-
ture is the temperature on the axis at the inflow,
thus we obtain:

p = 1

T = yMZlp (2)
op V@
or r

where M is the Mach number on the axis at the
inlet. The computational domain has the dimen-
sions R=8 and Z=16. To reflect the physical situ-
ation of a jet in an open domain, density and ve-
locity are kept constant at the inflow boundary ac-
cording to (1) and (2); non-reflective conditions are
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Figure 2: Re=400 case. (a): Evolution of istantaneous streamlines at S = 0.9. (b): Streamlines for steady solutions

found on branch (II).

applied at the open sides and, in the axisymmetric
calculations, a symmetric boundary is imposed on
the axis.

3 Numerical method

A finite difference method has been used to solve
the unsteady, compressible Navier-Stokes equa-
tions in cylindrical coordinates. The spatial dis-
cretization is performed using the sixth order Lele’s
compact scheme [5] for the axial and radial direc-
tion, while, in the three-dimensional calculations,
derivatives in the periodical direction are obtained
with a spectral method employing a FFT algo-
rithm. In order to obtain a better representation
of the higher wave numbers and to improve the
numerical stability, all the viscous terms requir-
ing evaluation of successive derivatives, for exam-

ple the terms
g ov,
ar M or

have been expanded and evaluated like:

8_u6VT N 9%V,
or Or # or?

Equations are explicitly integrated in time by a

[Re | n: | m | m ]
200 201 | 161 | 64
400 251 | 161 | -
1000 | 351 | 251 | -

Table 1: Grid resolution for different Reynolds numbers

fourth order low-storage Runge-Kutta method [15].
Boundary conditions are treated with the NSCBC
formulation of Poinsot and Lele [9] with viscous
corrections. We didn’t use any stretching of the
grid in order to preserve the overall high accuracy
of the scheme. For the three-dimensional simu-
lations, the grid is staggered to avoid the singu-
larity on the axis and in order to alleviate the
CFL time step restriction, azimuthal normal modes
taken for the spectral derivatives are dropped when
approaching the axis. Table 1 reports the grid reso-
lution requirements at different Reynolds numbers
to obtain a reasonable good grid convergence.

4 Results and discussion

We discuss results from three different Reynolds
numbers, namely Re=200, 400 and 1000. The Mach
number is M., = 0.5. For each case treated, branch
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Figure 3: Re=1000 case. (a): Evolution of istantaneous streamlines at S = 1. (b): Streamlines for steady solutions found

on branch (II).
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Figure 4: Computed bifurcation diagram at Re=1000
(squares), Re=400 (triangles) and Re=200 (circles)

(I) of the bifurcation diagram is obtained by in-
creasing the swirl number until a stagnation point
appears. Branch (II) is then derived assuming the
steady state solution at S=S1 as initial condition
for a new run with a slightly smaller value of S. The
process is then iterated until the quasi-columnar
configuration is established again. The computed
bifurcation diagram is presented in figure 4. For
Re=400 the quasi-columnar configuration is lost at
S=0.9. When this level of swirl is reached, the flow
evolves as shown in figure 2-a. Here the istanta-
neous streamlines on a meridian plane are plot-

ted at different times. The inflow is on the left
side. The perturbation arises close to the outflow
boundary, then it moves upstream growing in am-
plitude and leading to a region of separeted flow
at approximately Time=300. A final quasi-steady
configuration is reached at Time=500 with the vor-
tex bubble located in proximity of the inlet where
the velocity is kept fixed and no wave motion is
possible. A similar process develops for Re=1000
(fig. 3-a) . Here, as the first wave moves upstream,
an other wave takes place in the wake of it and
the final quasi-steady state presents a wave train
superimposed to the main flow. In this case the
amount of swirl necessary to breakdown the vor-
tex is much higher. This is consistent with the role
played by viscous diffusion, which is the driving el-
ement leading the initial supercritical flow towards
a local criticality. For the same reason, not only in
the two mentioned cases, but in all the simulations
carried on at moderate high Reynold numbers, we
have found that the perturbation leading to break-
down always begins to develop close to the outlet
boundary.

This feauture ceases to exist at low Reynolds
numbers (Re < 200) for which the whole process
apparently seems to lose the connotations of wave
phenomenon (see fig. 5); the perturbation builds
up far from the outlet boundary and no upstream
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Figure 5: Re=200 case. Streamlines for steady solutions.
The bubble is trapped where it develops.
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Figure 6: Time evolution of Vy at 6 =0, r=0.1, z=8
(solid line) and of maximum value of the function Vy(r) at
r=0.1, z=8 (dash line)

migration exists.

Now we investigate the flow behaviour when the
swirl number is sequentially decreased below the
critical value. For the Re=400 case, (see fig. 2-
b) the bubble becomes smaller and moves slightly
upstream at S=0.88. The region of reversed flow
disappears at S=0.87, however a well pronounced
swelling of the streamlines is still present, indicat-
ing that although there’s no breakdown, a wave of
finite amplitude is still localized. The wave be-
comes weaker as the swirl is decreased and un-
dergoes a small shift of its axial position before
disappearing. ~ The Re=1000 case (fig. 4-b) is
more interesting because it clearly shows the wave
convected downstrem from the main flow. When
the second folding point 52=0.82 is reached, a light
swelling is located exactly at the outlet, thus the
re-establishment of the columnar configuration is
associated to the expulsion of the wave from the
computational domain. We believe this case to be
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Figure 7: Iso-surface of azimuthal vorticity component.
Re=200, 5=1.095

quite well representative of the inviscid limit ana-
lyzed theoretically by Wang and Rusak [14]. When
the swirl is decreased below the critical value S1 the
main flow reduces its capibility to sustain waves
and the vortex bubble is pushed away weakened.
In a process where the dissipative effects of vis-
cosity are negligible one expects the wave result-
ing from the downstream migration to be located
where it was initially originited when the first point
S1 had been reached. Viscosity renders the process
unreversible: for intermediate Reynolds numbers
the bubble can reach the inlet at S=S1 but not
the outlet at S=S2 while at low Reynolds numbers
the viscous diffusion can be so high to trap the
wave where it’s formed. The existence of multiple
steady solutions seems therefore associated to the
downstream excursion of breakdown, and different
solutions on branch (II) represent a standing wave
positioned at different axial positions.

The flow behind the vortex bubble presents a
wake-like behaviour which is expected to undergo
helical vortex shedding arising from linear insta-
bility. Previous works of Tromp and Beran [13],
Ruith et al. [10] show that the mechanism leading
to breakdown is essentially axisymmetric, however
vortex breakdown found in experimental works [12]
generally presents non axisymmetric forms, the
so called spiral and double spiral forms. In our
work we have used axisymmetric steady solutions
obtained at Re=200 as initial conditions for fully
three-dimensional simulations. A random pertur-
bation in the azimuthal component of velocity has
been introduced at the inflow for the only first iter-
ation. Figure 6 illustrates the temporal evolution
of azimuthal velocity component at the location 4
=0, r=0.1, z=8 for the S=1.095 case. The signal
exhibits a trend of the form

t

e’ cos(wt — mb)



where the selected mode m is found to be 1 from
the spectral analysis of the function Vp = V,(6) at
Time=130. On the same figure is also plotted the
maximum azimuthal component for 0 < § < 2x
at the same axial and radial station. This curve
coincides with the envelope of the Vj(t) signal, in-
dicating that as the instability takes place, the
growing perturbation travels in the azimuthal di-
rection with a period of approximately T—6. The
iso-surface of the azimuthal vorticity component
confirms the wave number selection of m=1 (fig. 7).
We have found the flow stable at Re=100 while the
linear growth rate found at Re=200 , with S=0.95
and S=1.095 agrees well with the incompressible re-
sults of Ruith [10], suggesting a small dependence
on compressibility. In particular the case Re=200
S=1.095 is expected to be a limit point above which
higher modes can be selected and the double-helix
structure of breakdown can develop. This point is
under investigation.

5 Conclusions

As reported in [7], the main elements under-
lying vortex breakdown phenomenon are: (a)
large-amplitude axisymmetric waves, (b) three-
dimensional instabilities of small amplitude. Both
the elements are revealed in our numerical com-
putations. In particular, we have tried to empha-
size how the histeretical behaviour found at high
Reynold numbers can be explained in terms of the
vortex bubble motion.

In summary, our results support the idea that
multiple steady solutions exist when the vortex
bubble is so "strong" to be able to migrate up-
stream when the level of swirl is reduced under the
critical point S1. In this case, solutions on branch
(I1) of the bifurcation diagram represent standing
waves localized at different axial positions. The
critical point S2 represents always a small wave. It
will be located in proximity of the outlet bound-
ary if the Reynolds number is high enough, while
its axial position moves away from it as the dis-
sipative effect of viscosity increases. The highest
Reynolds number in correspondence of which the
vortex bubble is unable to move downstream repre-
sents the limit point when the bifurcation diagram
loses branch (II) and multiple solutions disappear.
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