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Abstract: We consider stationary incompressible Navier-Stokes flows in an exterior domain in R
3. Under

the assumption that the velocity at infinity is nonzero, we study how the velocity, its gradient and and the
pressure behave far from the complement of the exterior domain.
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1 Introduction

When exterior flows with nonzero velocity at in-
finity are modeled by the stationary incompress-
ible Navier-Stokes system, then usually the fol-
lowing boundary value problem arises:

−∆u + τ · D1u + τ · (u · ∇)u + ∇π = f, (1)
divu = 0 in R

3\Ω,

u | ∂Ω = b, |u(x)| → 0 for |x| → ∞,

with τ ∈ (0,∞) (Reynolds number), and Ω ⊂ R
3

a bounded open set. Note that the zero bound-
ary conditions at infinity appear here because
the original problem with nonzero conditions was
transformed by a translation; see [1]. In fact, the
transformed problem is easier to treat than the
original one. We suppose that Ω has a connected
complement and a compact Lipschitz boundary.
Abbreviate V c := R

3\V for V ⊂ R
3, Br := {y ∈

R
3 : |y| < r} and Ωr := Br\Ω for r ∈ (0,∞).

Then we assume that f ∈ L6/5(Ωc)3, and that
there are numbers γ, S ∈ (0,∞), σ ∈ (4,∞) such
that Ω ⊂ BS and

| f(y) | ≤ γ · |y|−σ for y ∈ Bc
S. (2)

In addition, we suppose that problem (1)
admits a solution (u, π) with these properties:

u ∈ W
2, 6/5
loc (Ωc)3, π ∈ W

1, 6/5
loc (Ωc), (3)

∇u ∈ L2(Ωc)9,

R ·
∫

∂B1

|u(R · x) |2 dox → 0 for R → ∞,

u |ΩR ∈ L2(ΩR)3, π |ΩR ∈ L2(ΩR),
π |Bc

R ∈ L3(Bc
R) for R ∈ (S,∞).

Such a solution exists if the preceding assump-
tions on f and Ω are valid, and if b ∈ H1/2(∂Ω)2
and the flow of b through ∂Ω is small in the sense
of [6, Theorem IX.4.1]; see [6, Theorem IX.4.1,
IX.1.1, Lemma IX.1.1]. Note that the assumption
f ∈ L6/5(Ωc)3 implies that f belongs to the func-
tion space D−1,2

0 (Ωc) from [6, Theorem IX.4.1].
Actually, according to the preceding references,
this latter relation is the only condition which has
to be imposed on f in order to obtain a solution
of (1) with properties as stated in (3).

The domain Ω, the functions f, u and π, and
the parameters τ, S and γ will be kept fixed
throughout. We want to study the decay of u, ∇u
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and π when |x| tends to infinity. Before stat-
ing our main result in this respect, let us intro-
duce some further notations. By the letter C, we
denote constants depending on Ω, S, τ, γ, σ and
u. For r > 0, x ∈ R

3, we write Br(x) for the
open ball with radius r and center at x (hence
Br = BR). Put for x ∈ R

3\{0},
να

β (x, τ) := |x|α · (1 + τ · |x| − τ · x1)β,

να(x) := |x|α for α, β ∈ R, β �= 0;

	(x, τ) := |x|−2 + τ1/2 · ν−3/2
−3/2(x, τ).

Let V ⊂ R
3 be bounded and open, with 0 ∈ V.

For a function v : V c �→ R, and for α, β ∈ R with
β �= 0, σ ∈ {

να
β ( · , τ), να, 	( · , τ)−1

}
, we put

‖v‖∞, σ := sup
{ | v(x) | · σ(x) : x ∈ V c

}
.

It turned out that the norm ‖ ‖∞, ν1
1 ( · ,τ) is a

good choice to measure the decay of u, and the
norm ‖ ‖∞, �( · ,τ)−1 is well adapted to charac-
tize the asymptotic behaviour of ∇u. In fact, the
ensuing theorem holds:

Theorem 1 There is some S0 ∈ [S,∞) with

‖u |Bc
S0

‖∞, ν1
1( · , τ) + ‖∇u |Bc

S0
‖∞, �( · , τ)−1

+ ‖π |Bc
S0

‖∞, ν2 < ∞.

Theorem 1 was shown in [3] for small values of
τ ; see [3, Theorem 1.2]. Here we do not im-
pose a condition on τ . In this case, the relation
‖u |Bc

S0
‖∞, ν1

1( · , τ) < ∞ is new, whereas the re-
sults on ∇u and π may be read into [5] and [1];
also see [6, Section IX.8]. The aim of this article
consists in establishing the preceding relation for
u, and at the same time presenting a rather direct
access to all the results of Theorem 1. It turned
out that such an access was possible on the basis
of [6, Theorem IX.7.1] (Lp-regularity of u near in-
finity) and some results from [7] (weighted point-
wise estimates of convolutions of the Oseen fun-
damental solution). Theorem 1 plays an essential
role in [2], so we think it is worthwhile to study
its proof.

2 Proof of Theorem 1

In the following, we will use a result from [4],
which states that for any β ∈ (0,∞), there is
C(β) > 0 with ∫

∂Br

(1 + |y| − y1)−β doy (4)

≤ C(β) · r2−min{1, β} · σ(r) for r ∈ (0,∞),

with σ(r) := 1 if β �= 1, and σ(r) := 1 + ln(1 + r)
if β = 1. Moreover we will need [3, Lemma 4.8],
which states that

|x|−1 ≤ C · (1 + τ · |x| − τ · x1)−1 (5)

for x ∈ Bc
S. Assumption (2) implies in particu-

lar that f |BS
c ∈ Lr(BS

c)3 for any r ∈ [1,∞).
Therefore we know by [6, Theorem VIII.5.1] that
u |BS

c ∈ W 2,r
loc (BS

c)3, π |BS
c ∈ W 1,r

loc (BS
c) for

any r ∈ [1,∞).
Now fix some T ∈ (S,∞), for example, T =

2 · S. It follows by Sobolev inequalities,

u |Bc
T ∈ C1(Bc

T )3, π |Bc
T ∈ C0(Bc

T ). (6)

Moreover, by [6, Theorem XI.7.1],

u |Bc
T ∈ Lr(Bc

T )3 for r ∈ (2,∞], (7)
∇u |Bc

T ∈ Lr(Bc
T )9 for r ∈ (4/3, ∞].

Define

g := −τ · (u · ∇)u |Bc
T ,

h(l) := (τ · ul · ui |Bc
T )1≤i≤3

for 1 ≤ l ≤ 3. By [6, Lemma IX.7.1, (IX.7.9)], we
have g, h(l) ∈ L6/5(Bc

T )3.
Let a fundamental solution (Ejk)1≤j≤4, 1≤k≤3

of the Oseen system be defined as in [3, Definition
4.1], for example. Here we will only need the
following properties of this solution ([7, (1.39)]):

|Ejk(z) | ≤ C · ν−1
−1(z, τ), (8)

|DmEjk(z) | ≤ C · 	(z, τ),

|DnDm(Ejk − Ujk)(z) | ≤ C · τ · ν−2
−1(z, τ)

for z ∈ R
3\{0}, j, k, m, n ∈ {1, 2, 3}, where Ujk

denotes the velocity part of the Stokes fundamen-
tal solution, that is,

Ujk(z) :=

(8 · π)−1 · ( δjk · |z|−1 + zj · zk · |z|−3
)

for j, k ∈ {1, 2, 3}, z ∈ R
3\{0}. If V ⊂ R

3

is measurable and ϕ ∈ L6/5(V )3, define R(ϕ) :
R

3 �→ R
3, S(ϕ) : R

3 �→ R by

Rj(ϕ)(x) :=
∫

V

3∑
k=1

Ejk(x − y) · ϕk(y) dy,

S(ϕ)(x) :=
∫

V

3∑
k=1

E4k(x − y) · ϕk(y) dy

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp7-11)



for j ∈ {1, 2, 3} and a.e. x ∈ R
3 (”volume po-

tentials”). For V, ϕ as before, we have R(f) ∈
W 1,1

loc (R3)3, and the integral

∫
V

3∑
k=1

DlEjk(x − y) ϕk(y) dy

exists and equals DlRj(ϕ)(x) for a. e. x ∈
R

3, 1 ≤ j, l ≤ 3. If in addition ϕ ∈ L∞
loc(V )3,

then R(f) ∈ C1(R3)3, and the qualification “a.
e.” may be dropped.

Referring to [3, (5.23), (5.26) - (5.29)] with
Ω, S, S1 replaced by BT , 2 · T, 3 · T , and to [3,
Theorem 4.9] with S replaced by T , we find for
x ∈ Bc

3·T :

|u(x)| ≤ C · ν−1
−1(x, τ) + |R(g)(x)|, (9)

|∇u(x)| ≤ C · 	(x, τ) + |∇R(g)(x)|,
|π(x)| ≤ C · |x|−2 + |S(g)(x)|.

Since∫
Bc

R

|f · u| dx ≤ C · R−σ+9/4 · ‖u |Bc
T ‖3

(R ∈ (T,∞)) by (2), and ‖u |Bc
T ‖3 < ∞ by

(7), we may argue as in [6, p. 131], to obtain
|R(g)(x)| ≤ C · |x|−63/64 for x ∈ Bc

2·T , hence with
(9) and (6): |u(x)| ≤ C · |x|−63/64 (x ∈ Bc

T ). This
estimate and the relation ‖∇u‖2 < ∞ (see (3))
allow us to transform R(f)(x) by a partial inte-
gration. We obtain for x ∈ BT

c
, 1 ≤ j ≤ 3:

Rj(g)(x) = −
3∑

l=1

DlRj(h(l))(x) (10)

+
∫

∂BT

3∑
k,l=1

Ejk(x − y) · h(l)
k (y) · yl/T doy.

Using the estimate |u(x)| ≤ C · |x|−63/64 (x ∈
Bc

T ) again, as well as (8) and (7), we find
as in the proof of [6, Theorem IX.8.1] that
|DlRj(h(l))(x) | ≤ C ·|x|−47/32 for x ∈ B2·T , 1 ≤
j, l ≤ 3. The boundary integral on the right-
hand side of (10) may easily be estimated by
C · (ν−1

−1(x, τ) + |x|−3/2) (x ∈ Bc
2·T ). (Add and

subtract the term
∑3

k,l=1 Ejk(x) · h(l)
k (y) · yl/T in

this integral, and then use the mean-value theo-
rem, (8) and (6).) Thus we may conclude from
(6), (10) and (9):

|u(x)| ≤ C · (ν−1
−1(x, τ) + |x|−47/32) (11)

for x ∈ Bc
T . Next we begin estimating the term

|∇u(x)|. To this end, take j, l ∈ {1, 2, 3}. We
split DlR(g)(x) into four parts: DlR(g)(x) =∑4

m=1 Im(x), with

I1(x) := −
∫

Bc
T \BT (x)

3∑
i,k=1

DiDlEjk(x − y)

·h(k)
i (y) dy,

I2(x) :=
∫

BT (x)

3∑
k=1

DlEjk(x − y)

·gk(y) dy,

I3(x) := −
∫

∂BT (x)

3∑
i,k=1

DlEjk(x − y)

·h(k)
i (y) · (x − y)i/T dy,

I4(x) := −
∫

∂BT

3∑
i,k=1

DlEjk(x − y) (12)

·h(k)
i (y) · (−yi/T ) dy,

for x ∈ B2·T . By adding and subtracting the term∑3
i,k=1 DlEjk(x) ·h(k)

i (y) · (−yi/T ) in the integral
defining I4(x), we get with the mean-value theo-
rem, (8) and (6):

|I4(x)| ≤ C · 	(x, τ) for x ∈ Bc
2·T . (13)

In addition, |I3(x)| ≤ C · |x|−2 (x ∈ Bc
2·T ), as fol-

lows from (8) and (11). Arguing as in the proof of
[6, (IX.8.30), (IX.8.31)], we obtain with (8), (4),
(11): |I1(x)| ≤ C · |x|−31/16 for x ∈ Bc

2·T . Thus,
in view of (9) and the previous decomposition of
R(g)(x), we may conclude

|Dluj(x)| ≤ C · ( 	(x, τ) + |x|−31/16
)

(14)
+ |I2(x)| (x ∈ Bc

2·T ).

For a first estimate of I2(x), we observe that
|∇u(x)| ≤ C (x ∈ Bc

T ) by (6), (7). Thus we get
by (11) and (8): |I2(x)| ≤ C · |x|−1 (x ∈ Bc

2·T ).
It follows with (14) and (6) that |Dluj(x)| ≤
C · |x|−1 (x ∈ Bc

T ). This result, (11) and (8)
yield |I2(x)| ≤ C · |x|−2 (x ∈ B2·T ), hence with
(14) and (6):

|Dluj(x)| ≤ C · ( 	(x, τ) + |x|−31/16
)

(15)
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for x ∈ Bc
T , 1 ≤ j, l ≤ 3. Inequalities (11) and

(15) imply

|g(y)| ≤ C · ( ν
−5/2
−1 (y, τ) + |y|−7/2+3/16

)
(16)

for y ∈ Bc
T . By (5), this means in particular

that |g(x)| is bounded by C · ν−5/2+3/16
−1 (x, τ) for

x ∈ Bc
T , hence by [7, Theorem 3.1]: |R(g)(x)| ≤

C · ν−1
−1(x, τ) for x ∈ R

3\{0}. Thus we get by (9):

|u(x)| ≤ C · ν−1
−1(x, τ) (x ∈ Bc

T ). (17)

This means that we have shown the result on
u stated in Theorem 1. Our next aim is to es-
timate |∇u(x)| by C · 	(x, τ). To this end, let
j, l ∈ {1, 2, 3} and x ∈ Bc

2·T . Then we have
DlRj(g)(x) =

∑3
m=1 Jm(x), with

Jm(x) :=
∫

Um

3∑
k=1

DlEjk(x − y) · g(y) dy

for m ∈ {1, 2, 3}, where U1 := Bc
2·|x|, U2 :=

B2·|x|\B|x|/2, U3 := B|x|/2\BT . It may be de-
duced from (8), (16) and (4) that |J1(x)| ≤
C · |x|−2. Moreover, [7, Theorem 3.2] yields

∫
R3

3∑
k=1

|DlEjk(x − y)| · ν−5/2
−1 (y, τ) dy

≤ C · ν−3/2
−3/2(x, τ).

By (8),
∫
U2

|DlEjk(x − y)| dx ≤ C · |x|, hence∫
U2

|DlEjk(x − y)| · |y|−7/2+3/16 dx ≤ C · |x|−2.
In view of (16), we thus have found |J2(x)| ≤
	(x, τ). Turning to J3(x), we first get by a partial
integration that J3(x) =

∑3
m=1 Hm(x) + I4(x),

with

H1(x) := −
∫

B|x|/2\BT

3∑
i,k=1

DiDl(Ejk − Ujk)(x − y) · h(k)
i (y) dy,

H3(x) := −
∫

∂B|x|/2

3∑
i,k=1

DlEjk(x − y)

·h(k)
i (y) · 2 · yi/|x| dy.

The term H2(x) is defined as H1(x), but with
the kernel Ejk − Ujk replaced by Ujk. For the
definition of I4(x), see (12). Noting that by (17),

|h(k)
i (y)| ≤ ν−2

−2(y, τ) (y ∈ Bc
T , 1 ≤ i, k ≤ 3), (18)

we get with [7, Theorem 3.3] that

|H1(x)| ≤ C · ν−2
−1(x, τ) · ( 1 + | ln(τ · |x|)| ).

A simple calculation which makes use of the es-
timate |h(k)

i (y)| ≤ C · |y|−2 (y ∈ Bc
T ) yields

|H2(x)| ≤ C · |x|−2. Observing that 	(x − y, τ) ≤
C · |x|−3/2 for y ∈ ∂B|x|/2, and recalling (18), (8)
and (4), we obtain |H3(x)| ≤ C|x|−5/2. Combin-
ing these estimates of H1(x) - H3(x), the estimate
of I4(x) in (13), and the inequalities we found for
|J1(x)| and |J2(x)|, we obtain

|DlRj(g)(x) | ≤ C · ( 	(x, τ)

+ ν−2
−1(x, τ) · ( 1 + | ln(τ · |x|)| ) )

.

Now we may conclude with (9) and (6) that for
x ∈ Bc

T , 1 ≤ j, l ≤ 3,

|Dluj(x)| ≤ C · ( 	(x, τ)

+ ν−2
−1(x, τ) · ( 1 + | ln(τ · |x|)| ) )

.

It follows with inequality (17) that |g(y)| ≤ C ·
ν
−5/2
−1 (y, τ) (y ∈ Bc

T ). Now [7, Theorem 3.2]
yields

|∇R(g)(x)| ≤ C · ν−3/2
−3/2 (x, τ) (x ∈ R

3\{0}),

hence by (9): |∇u(x)| ≤ C · 	(x, τ) for x ∈ Bc
T .

This leaves us to evaluate |π(x)|. To this end, we
observe that our preceding estimate of g(y) im-
plies in particular |g(y)| ≤ C · ν

−5/2
−3/4 (y, τ) (y ∈

Bc
T ). Therefore [7, Theorem 3.4] yields that

|S(g)(x)| ≤ C · |x|−2 for x ∈ R
3\{0}, hence with

(9): |π(x)| ≤ C · |x|−2 (x ∈ Bc
T ).

This completes the proof of Theorem 1.

3 Conclusion

We studied the asymptotic behaviour of 3D
exterior stationary incompressible Navier-Stokes
flows. It was shown that that the velocity, the
gradient of the velocity, and the pressuere each
exhibit a specific decay behaviour, which in the
case of the velocity and its gradient is inhomoge-
neous (wake phenomenon).
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