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Abstract: We study a shape optimization problem for a paper machine headbox which distributes a mixture of
water and wood fibers in the paper manufacturing process. The aim is to find a shape which a priori ensures
the given velocity profile on the outlet part. The state problem is represented by the generalised Navier-Stokes
system with nontrivial boundary conditions. The objective of this paper is to prove the existence of an optimal
shape.
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1 Introduction

This contribution deals with shape optimization
of a paper machine headbox. The headbox shape
and the fluid flow phenomena taking place there
largely determines the quality of the produced
paper. The first flow passage in the headbox is
a dividing manifold, called the header. It is de-
signed to distribute the fiber suspension on the
wire so that the produced paper has an opti-
mal basis weight and fiber orientation across the
whole width of a paper machine. The aim of this
work is to find an optimal shape for the back wall
of the header so that the outlet flow rate distri-
bution from the headbox results in an optimal
paper quality.

This work was motivated by some previous
papers: The fluid flow model which is used
here has been derived and studied numerically in
Hämäläinen [2]. The shape optimization problem
has also been solved numerically and the results
are presented in Hämäläinen, Mäkinen and Tar-
vainen [1], see also Haslinger and Mäkinen [3].

Both fluid flow model and shape optimization
problem have been studied there formally with-
out establishing existence results. Therefore our
goal is to give the theoretical analysis of the flow
equations and of the whole optimization problem.

We assume a steady flow of an incompress-
ible liquid with an algebraic turbulence model,
which is very similar to model of non-Newtonian
fluids with shear dependent viscosity (see Ra-
jagopal [11], Málek, Nečas, Rokyta, Růžička [8]
and Málek, Rajagopal, and Růžička [9] for more
details about non-Newtonian fluids).

The text is organized as follows. In Section 2
we present the fluid flow model and analyze the
existence of a solution. The existence proof is
based on appropriate energy estimates and the
Galerkin method. A shape optimization problem
is formulated in Section 3 and the existence of
an optimal shape is established. The continuous
dependence of solutions to state problems with
respect to shape variations is the most important
result of this part.

The detailed mathematical analysis together
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Figure 1: Geometry of Ω(α) and parts of the
boundary ∂Ω(α).

with a justification of the fluid model can be
found in [4].

2 Steady flow of a non-New-

tonian fluid

For describing the fluid flow in the header we shall
use a two–dimensional stationary model. First we
define the geometry of the problem.

2.1 Description of admissible domains

Let L1, L2, L3 > 0, H1 ≥ H2 > 0, αmax ≥ αmin >
0, γ > 0 be given and suppose that α ∈ Uad,
where

Uad =
{
α ∈ C0,1([0, L]); αmin ≤ α ≤ αmax,

α|[0,L1] = H1, α|[L1+L2,L] = H2,

|α′| ≤ γ a.e. in [0, L]
}

. (1)

Here C0,1([0, L]) denotes the set of Lipschitz con-
tinuous functions on [0, L] and L = L1 +L2 +L3.
With any α ∈ Uad we associate the domain Ω(α),
see Fig. 1:

Ω(α) =
{
(x1, x2) ∈ R

2; 0 < x1 < L,

0 < x2 < α(x1)
}

(2)

and introduce the system of admissible domains

O =
{
Ω; ∃ α ∈ Uad : Ω = Ω(α)

}
.

Further we shall need the domains

Ω̂ = (0, L) × (0, αmax)

and

Ω0 =
(
(0, L1) × (0,H1)

) ∪ (
(0, L) × (0, αmin)

)
∪ (

(L1 + L2, L) × (0,H2)
)
.

Clearly Ω(α) ∈ C0,1 for all α ∈ Uad, where C0,1

is the system of bounded domains with Lipschitz
continuous boundaries. We shall denote the parts
of the boundary ∂Ω(α) as follows (see Fig. 1):

ΓD =
{

(x1, x2) ∈ ∂Ω(α);x1 = 0 or x1 = L
}
,

Γout =
{

(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2,

x2 = 0
}

,

Γα =
{

(x1, x2) ∈ ∂Ω(α);L1 ≤ x1 ≤ L1 + L2,

x2 = α(x1)
}

,

Γf = ∂Ω(α) \ (
ΓD ∪ Γout ∪ Γα

)
.

The components ΓD, Γout and Γf are fixed for
every α ∈ Uad.

2.2 Classical formulation of the state
problem

The fluid motion in Ω(α) is described by the gen-
eralised Navier–Stokes system

−div T (p,D(u)) + ρdiv(u ⊗ u) = 0
div u = 0

}
in Ω(α).

(3)
Here u means the velocity, p the pressure, ρ is
the density of the fluid and the stress tensor T is
defined by the following formulae:

Tij(p,D(u)) = −pδij + 2µ(|D(u)|)Dij(u),

i, j = 1, 2,

µ(|D(u)|) := µ0 + µt(|D(u)|) = µ0 + ρl2m,α|D(u)|,
where µ0 > 0 is a constant laminar viscosity and
µt(|D(u)|) stands for a turbulent viscosity. The
function lm,α represents a mixing length in the
algebraic model of turbulence and it has the fol-
lowing form (see Hämäläinen, Mäkinen and Tar-
vainen [1] for more details):

lm,α(x) =
1
2
α(x1)

[
0.14 − 0.08

(
1 − 2dα(x)

α(x1)

)2

−0.06
(

1 − 2dα(x)
α(x1)

)4
]

,
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where dα(x) = min {x2, α(x1) − x2} , x ∈ Ω(α).
The equations are completed by the following

boundary conditions:

u = 0 on Γf ∪ Γα,
u = uD on ΓD,

u · τ = u1 = 0 on Γout,
T22 = −σ|u2|u2 on Γout,

(4)

where ν, τ stands for the unit normal, tangential
vector, respectively and σ > 0 is a given suction
coefficient. The condition (4)4 originates in the
homogenization of a complex geometry of Γout

(for more details we refer to Hämäläinen [2]).

2.3 Weak formulation of the state
problem

Throughout the paper we assume that there ex-
ists a function u0 ∈ (

W 1,3(Ω0)
)2, which satisfies

the Dirichlet boundary conditions in the sense of
traces, i.e.

u0|ΓD
= uD, u0|∂Ω0\(ΓD∪Γout) = 0, u0 ·τ |Γout = 0

and, in addition, div u0 = 0 in Ω0. We extend u0

by zero on Ω̂ \ Ω0. Then, due to the boundary
conditions, u0 ∈ (

W 1,3(Ω̂)
)2 and div u0 = 0 in Ω̂.

2.3.1 Function spaces

For any α ∈ Uad we introduce the following func-
tion spaces:

V(α) :=
{

ϕ ∈ (C∞(Ω(α)))2; div ϕ = 0 in Ω(α)
}

,

V0(α) :=
{

ϕ = (ϕ1, ϕ2) ∈ V(α); ϕ1 ∈ C∞
0 (Ω(α)),

dist(supp(ϕ2), ∂Ω(α) � Γout) > 0
}

,

W (α) := V(α)
‖·‖α

,

W0(α) := V0(α)
‖·‖α

,
Wu0(α) :=

{
v ∈ W (α); v − u0 ∈ W0(α)

}
,

where the norm ‖ · ‖α is defined by

‖v‖α := ‖v‖1,2,Ω(α) + ‖Mα|D(v)|‖3,Ω(α),

with

Mα(x) :=
(
lm,α(x)

)2/3
, x ∈ Ω(α). (5)

Here we use standard notations: the norm
in Ls(Ω(α)), W k,s(Ω(α)) will be denoted by
‖ ‖s,Ω(α), ‖ ‖k,s,Ω(α), respectively, in what follows.
We shall also use the Einstein summation conven-
tion, i.e. aibi :=

∑n
i=1 aibi.

Lemma 2.1. W (α) and W0(α) are separable re-
flexive Banach spaces.

Definition 2.1. Define the operator Aα :
W (α) → (

W (α)
)∗ by the formula

〈
Aα(v), w

〉
α

:=
∫

Ω(α)
M3

α|D(v)|Dij(v)Dij(w)dx;

v,w ∈ W (α).

The symbol
〈·, ·〉

α
denotes the duality pairing be-

tween
(
W (α)

)∗ and W (α).

Remark 2.1. Since Mα = 0 on ∂Ω(α) \ ΓD, it
can be extended by zero on Ω̂\Ω(α). The resulting
function, which is continuous in Ω̂ and which will
be used in the subsequent analysis, will be denoted
by M̃α.

Lemma 2.2. (Some properties of Mα and Aα,
α ∈ Uad)

(i) If αn ⇒ α in [0, L] then M̃αn ⇒ M̃α in Ω̂.

(ii) Aα is monotone in W (α):〈
Aα(v)−Aα(w), v −w

〉
α
≥ 0 ∀v,w ∈ W (α),

and strictly monotone in W0(α), i.e. the pre-
vious inequality is sharp for v 
= w, where
v,w ∈ W0(α).

(iii) Aα is continuous in W (α).

Definition 2.2. For every u, v, w ∈(
W 1,2(Ω(α))

)2 we define the trilinear form
bα:

bα(u, v, w) :=
∫

Ω(α)
uj

∂vi

∂xj
wi dx.

Remark 2.2. The same analysis can be done for
any weight function Mα : Ω̂ �→ R satisfying the
following conditions:

(i) ∀α ∈ Uad Mα ∈ C(Ω̂);

(ii) ∀α ∈ Uad it holds that Mα|Ω(α) > 0;

(iii) ∀αn, α ∈ Uad αn ⇒ α in [0, L] ⇒ Mαn ⇒
Mα in Ω̂.
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2.3.2 Definition of a weak solution

We are now ready to give the weak formulation
of the state problem. It can be formally derived
by multiplying the equations (3) by a smooth
solenoidal test function ϕ and integrating over
Ω(α) with the use of the Green theorem.

Definition 2.3. A function u := u(α) is said to
be a weak solution of the state problem (P(α)) iff

• u ∈ Wu0(α),

• for every ϕ ∈ W0(α) it holds:

2µ0

∫
Ω(α)

Dij(u)Dij(ϕ) dx + 2ρ
〈
Aα(u), ϕ

〉
α

+ ρbα(u, u, ϕ) + σ

∫
Γout

|u2|u2ϕ2 dS = 0. (6)

Remark 2.3. Since ϕ = 0 on ∂Ω(α) � Γout and
div ϕ = 0 in Ω(α), the pressure disappeared from
the weak formulation.

Next the existence of a weak solution to (P(α))
on a fixed domain Ω(α), α ∈ Uad will be exam-
ined. Thus for simplicity the letter α in the argu-
ment will be omitted (we shall write Ω := Ω(α),
W := W (α), b := bα etc. in what follows).

2.4 Energy estimates

Recall that the function u0 is now defined in the
whole Ω̂ and it does not depend on α ∈ Uad.

Theorem 2.1. Let ‖∇u0‖3,bΩ be sufficiently small
and σ > ρ

2 . Then there exists a constant CE :=
CE(‖∇u0‖3,bΩ) such that for any weak solution u

of (P(α)) the following estimate holds:

‖∇u‖2
2,Ω+‖M |D(u)|‖3

3,Ω+
∫

Γout

|u2|3 dS ≤ CE . (7)

Remark 2.4. From the proof it follows that es-
timate (7) holds with a constant CE independent
of α ∈ Uad.

Remark 2.5. Let us comment on the assump-
tions of Theorem 2.1.

(i) The condition σ > ρ
2 can be possibly satis-

fied by adjusting the outflow properties of the
headbox.

(ii) Assume that there exists a constant C > 0
such that

∀α ∈ Uad ‖M−1
α ‖2,Ω(α) ≤ C. (8)

Then Theorem 2.1 holds for any ‖∇u0‖3,bΩ

with a constant C ′
E > 0 independent of α,

provided that σ > ρ
2 .

Remark 2.6. A direct calculation shows that the
function Mα defined in (5) does not satisfy (8)
since Mα ≈ x

2/3
2 in a vicinity of ∂Ω(α) \ ΓD.

This condition will be satisfied if Mα decays as
x

1/2−ε
2 with ε > 0 arbitrarily small.

2.5 Existence and uniqueness

The existence proof is based on the Galerkin
method. It is easy to show that the Galerkin
approximation exists on any finite dimensional
subspace of W0(α). Using the energy estimate
(7) we obtain the following existence result.

Theorem 2.2 (Existence of a weak solu-
tion). Let the assumptions of Theorem 2.1 be
satisfied. Then there exists a weak solution of
(P(α)).

Theorem 2.3 (Uniqueness). Let all the as-
sumptions of Theorem 2.1 be satisfied and
‖∇u0‖3,bΩ be small enough. Then there exists a
unique solution to (P(α)).

Remark 2.7. Let us observe that the bound guar-
anteeing uniqueness of the solution to (P(α)) is
also independent of α ∈ Uad.

3 Shape optimization problem

The aim of this part is to formulate a shape op-
timization problem and to prove the existence of
its solution.

3.1 Formulation of the problem

We proved that, under certain assumptions,
which do not depend on a particular choice of
Ω(α) ∈ O, there exists at least one weak solution
of the state problem (P(α)). Let G be the graph
of the control–to–state (generally multi-valued)
mapping:

G := {(α, u); α ∈ Uad, u is a weak solution

of (P(α))} .
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Further, let us define the cost functional J : G →
R by

J : (α, u) �→
∫

Γ̃
|u2 − zD|2 dS, u = (u1, u2), (9)

where zD ∈ L2(Γ̃) is a given function representing
the desired outlet velocity profile and Γ̃ ⊂ Γout.
This choice of J reflects the optimization goal
formulated in Section 1.

We now formulate the following problem:

Find (α∗, u∗) ∈ G such that

J(α∗, u∗) ≤ J(α, u) ∀(α, u) ∈ G. (P)

Next we introduce convergence of a sequence of
domains.

Definition 3.1. Let {Ω(αn)}, αn ∈ Uad be a se-
quence of domains. We say that {Ω(αn)} con-
verges to Ω(α), shortly Ω(αn) � Ω(α), iff αn ⇒
α in [0, L].

As a direct consequence of the Arzelà–Ascoli
theorem we have the following compactness re-
sult.

Lemma 3.1. System O is compact with respect
to convergence introduced in Definition 3.1.

3.2 Existence of an optimal shape

First let us recall that the function u0 which re-
alizes the boundary conditions is the same for all
domains Ω ∈ O. We now rewrite (P(α)), α ∈ Uad

using the formulation on the fixed domain Ω̂:

2µ0

∫
bΩ

Dij(ũ(α))Dij(ϕ̃) dx+2ρ
〈
Ãα(ũ(α)), ϕ̃

〉
bΩ

+ρb
bΩ
(ũ(α), ũ(α), ϕ̃)+σ

∫
Γout

|ũ2(α)|ũ2(α)ϕ̃2 dS = 0

∀ϕ ∈ W0(α), (P̂(α))

where the symbol˜stands for the zero extension
of functions from Ω(α) on Ω̂,〈

Ãα(ũ(α)), ϕ̃
〉

bΩ

:=
∫

bΩ
M̃3

α|D(ũ(α))|Dij(ũ(α))Dij(ϕ̃) dx,

b
bΩ(ũ(α), ũ(α), ϕ̃) :=

∫
bΩ

ũj(α)
∂ũi(α)

∂xj
ϕ̃i dx.

Further let

Ŵ (α) :=
{
v ∈ (

W 1,2(Ω(α))
)2 ;

div v = 0 in Ω(α), Mα|D(v)| ∈ L3(Ω(α))
}

and define

Ŵu0(α) :=
{
v ∈ Ŵ (α); v satisfies the Dirichlet

conditions (4)1 − (4)3 on ∂Ω(α)
}

.

Remark 3.1. It holds that Wu0(α) ⊆ Ŵu0(α).
The question arises, if these spaces are identical.
This is in fact the density problem which remains
still open.

Theorem 2.1 gives the following energy esti-
mate:

‖∇ũ(α)‖2
2,bΩ

+‖M̃α|D(ũ(α))|‖3
3,bΩ

+
∫

Γout

|u2(α)|3 dS

≤ CE(‖∇u0‖3,bΩ) (11)

for every (α, u(α)) ∈ G with the constant
CE(‖∇u0‖3,bΩ) independent of α provided that as-
sumptions of Theorem 2.1 are satisfied.

Theorem 3.1. Let αn ⇒ α in [0, L], αn, α ∈ Uad

and un := u(αn) be a solution of (P(αn)). Then
there exists û ∈ (

W 1,2(Ω̂)
)2 and a subsequence of

{ũn} (denoted by the same symbol) such that

ũn ⇀ û in
(
W 1,2(Ω̂)

)2

M̃αnD(ũn) ⇀ M̃αD(û) in
(
L3(Ω̂)

)2×2
, n → ∞.

(12)
In addition, the function u(α) := û|Ω(α) solves
(P(α)) provided that u(α) ∈ Wu0(α).

Remark 3.2. Under the assumptions which
guarantee uniqueness of the solution to (P(α))
the whole sequence {ũn} tends to ũ(α) in the
sense of Theorem 3.1.

Remark 3.3. If Wu0(α) = Ŵu0(α), the assump-
tion u(α) ∈ Wu0(α) is automatically satisfied.

Theorem 3.2 (Existence of an optimal
shape). Let there exist a minimizing sequence
{(αn, un)}, (αn, un) ∈ G, of (P) with an ac-
cumulation point (α∗, u∗) such that u∗|Ω(α∗) ∈
Wu0(α

∗). Then (α∗, u∗|Ω(α∗)) is an optimal pair
for (P).
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4 Conclusion

The paper consists of two parts. The first one
deals with the existence proof for the generalised
steady-state Navier–Stokes system. In the sec-
ond part the shape optimization problem with
the Navier–Stokes system as a state constraint is
studied.

Due to an algebraic turbulence model the weak
formulation of the state problem involves the
weighted Sobolev spaces. The existence and
uniqueness of a solution is proved for small data
and with a constraint imposed on the model pa-
rameters by using energy estimates, the mono-
tone operator theory and the Galerkin method.
The analysis of the state problem share many
similarities with the techniques presented in La-
dyzhenskaya [5, 6], Lions [7] and Parés [10].

The proof of the continuous dependence of so-
lutions on boundary variations is the key result
in the shape optimization part. This property is
proved under an additional assumption, namely
that the limit function of a minimizing sequence
belongs to an appropriate space meaning that the
existence of an optimal shape is conditional. The
paper however suggests a way how to get an un-
conditional type result.
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Linéaires. Dunod, Paris, (in French).
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