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Abstract: We investigate the higher regularity of the time derivative of a solution to the nonlinear systems
describing planar motions of a generalised Newtonian fluid. The system is equipped with homogeneous
Dirichlet boundary condition. This condition, together with the nonlinear elliptic term and pressure cause
the main difficulty and make the task interesting. The key issue is to show that the second time derivative
belongs to L∞

loc
(I, L2(Ω)) ∩L2

loc
(I, W 1,2(Ω)). Once we obtain this, the Hölder continuity of time derivative of

solution follows. The method is based on a bootstrapping argument in Nikolskii spaces.
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1 Introduction

Let Ω ⊂ R
2 be a bounded domain, I := (0, T )

for some T > 0, Q := I × Ω. We investigate
the existence of a regular solution u : Q → R

2,
π : Q → R of the following two dimensional initial
value problem

∂tu + ui
∂u

∂xi
− div(T (Du)) + ∇π = f,

div u = 0 in Q,
∫

Ω
π(t) = 0 for a.e. t ∈ I,

u = u0 in {0} × Ω

(1)

under the homogeneous Dirichlet boundary con-
dition

u = 0 on I × ∂Ω. (2)

We assume that T : S → S is of class C2
loc(S),

S being the set of all symmetric 2 × 2 matrices,
and there exists p ≥ 1 and C1 > 0 such that for
all D,E ∈ S

C1(1 + |D|2)
p−2

2 |E|2 ≤ ∂ijTkl(D)EijEkl. (3)

In [3, 5] it was proved that under suitable con-
ditions on f , u0, T and its growth there ex-
ists a weak solution of (1) equipped with peri-
odic or Dirichlet boundary condition which has

Hölder continuous space gradient. It is a natu-
ral question whether this information allows us
to get some better properties of time derivative
of u. From Hölder continuity of gradient and
(3) it follows that the system can be regarded
as a parabolic system with bounded and mea-
surable coefficients. Consequently, the regular-
ity of time derivative of u can be easily obtained
provided we consider periodic boundary condi-
tions. Indeed, we can differentiate the equation
with respect to time. Multiplying it thereafter
with ∂t∆u and integrating over Ω we obtain that
∂tu ∈ L∞(I,W 1,2(Ω)) ∩ L2(I,W 2,2(Ω)). For this
step it is decisive that we consider the periodic
boundary conditions. In fact, it allows us to test
the differentiated equation with ∂t∆u as it sat-
isfies the boundary conditions and consequently
the pressure term vanishes as ∂t∆u is solenoidal
(compare [5]). Knowing this it is easy to get
the information about ∂2

t u and all other results
from Theorem 1 below in the case of the periodic
boundary conditions.

This method unfortunately does not work in
the case of Dirichlet boundary conditions because
naturally ∂t∆u need not have a zero trace. This
situation is normally solved by using a cut off
functions as you can see in [7]. But as soon as
you use a cut of function the solenoidality of ∂t∆u
is ruined and the pressure remains present in the
estimates, i.e. we have to know an information
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about time derivative of pressure (precisely, we
need to know ∂tπ in L2

loc(I, L2(Ω))). Now we
get to the heart of the matter. In the system
(1) differentiated with respect to time there are
namely two problematic terms-the time deriva-
tive ∂2

t u and the pressure ∇∂tπ. If we know
that one of them belongs to L2

loc(I,W−1,2(Ω)) we
get also the same information about the second.
By Nečas’s theorem on negative norms then fol-
lows that ∂tπ is locally square integrable in Q.
But how to get the initial information? In the
case of the Navier-Stokes equations (T (D) = D
for all D ∈ S) the information about ∂2

t u is ob-
tained first (even more then necessary) by test-
ing the equation (1) differentiated with respect
to time with ∂2

t u. This is possible due to the
fact that when differentiating Laplace operator
we obtain again the Laplace operator for deriva-
tives and

∫

Ω ∆∂tu∂2
t u = ∂t ‖∇∂tu‖

2
2. Clearly, this

method is not applicable whensoever the tensor
T is nonlinear, we would namely obtain an addi-
tional term

∫

∂DT |D∂tu||D∂2
t u| and we did not

succeed in estimating it. Similar problems we
get also if we try to differentiate (1) twice with
respect to time and then test with ∂2

t u. How-
ever, when considering a time differences of (1)
instead of time derivatives it appears that it is
possible to improve the differentiability of ∂tu in
time. It is shown in Lemma 4. Being aware
of this fact, we can then improve regularity of
time differences of the solution u on all time lev-
els, see Lemma 5. Iterating this two steps we
get even ∂2

t u ∈ L∞

loc(I, L2(Ω)) as it is written in
Theorem 1. The whole method is based on the
fact that when taking time differences of the sys-
tem (1) we do not need any cut-off functions in
space and when improving the regularity in space
we are only on one time layer, also we consider
the stationary problem, and there the localisation
does not make such troubles as when localising
parabolic problem.

2 The main results

Let us assume, that the weak solution u of the
problem (1), (2) exists and for a given q > 2
satisfies

u ∈ L∞

loc(I,W 2,q(Ω)),

∂tu ∈ Lq
loc(I,W 1,q(Ω))

(4)

which is exactly the regularity obtained in [3, 5].
Our main result is the following

Theorem 1 Let (3) and (4) hold. Let Ω ∈ C2

and f ∈ W 2,∞(I, L2(Ω)). Then

∂2
t u ∈ L∞

loc
(I, L2(Ω)) ∩ L2

loc
(I,W 1,2(Ω)). (5)

Consequently,

∇∂tπ,∇2∂tu ∈ L∞

loc(I, L2(Ω)). (6)

Moreover, if f ∈ W 2,∞(I, Lq(Ω)) then there is
s > 2

∂2
t u ∈ L∞

loc(I, Ls(Ω)) ∩ Ls
loc(I,W 1,s(Ω)), (7)

∂tu ∈ L∞

loc(I,W 2,s(Ω)) (8)

and α > 0 such that

∂tu ∈ C0,α
loc

(I, C1,α(Ω)).

Combining the result of Theorem 1 and [3] we
get

Theorem 2 Let T (D) = ∇DF (|D|2) for some
F : [0,+∞) → [0,+∞), F ∈ C3([0,+∞)).
Let (3) holds with p ∈ [2, 4) and |∂DT (D)| ≤
C2(1 + |D|)p−2 for some C2 > 0 and all D ∈ S.
Let Ω ∈ C2, f ∈ W 2,∞(I, Lq(Ω)) with q > 2
and u0 ∈ L2(Ω). Then there is α > 0 such
that the unique weak solution of (1)-(2) satisfies

u ∈ C1,α
loc

(I, C1,α(Ω)).

In the proof of Theorem 1 we will use Nikolskii
spaces N α,q(I,X), α ∈ (0, 1), q ∈ [1,∞] and X
being a Banach space, defined by (compare [8])

Nα,q(I,X) = {g ∈ Lq(I,X) :

sup
h>0

h−α ‖f(·) − f(· − h)‖Lq(Ih,X) < +∞}.

We defined Ih := {t ∈ I : t − h ∈ I}. For
simplicity we identify N 0,q(I,X) = Lq(I,X) and
N 1,q(I,X) = W 1,q(I,X).

3 Proof of Theorem 1

Before we prove the theorem, we state some aux-
iliary lemmas. Setting h ∈ (0, T ) we may de-
fine w(t, x) := u(t, x) − u(t − h, x) and σ(t, x) :=
π(t, x) − π(t − h, x) if t > h. For the so-defined
differences the following lemma holds.

Lemma 3 Let

F (t, x) :=f(t, x) − f(t − h, x)

+ (u · ∇)u(t, x) − (u · ∇)u(t − h, x),

A(t, x) :=

∫ 1

0
∂DT (sDu(t, x)

+ (1 − s)Du(t − h, x))ds.
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The equation

∂tw − div(ADw) + ∇σ = F, div w = 0 (9)

is satisfied pointwise almost everywhere in
(h, T ) × Ω and w(t) = 0 on ∂Ω in the sense of
traces for a.e. t ∈ (h, T ).

The validity of the lemma follows easily from
(3) and (4). At this moment it is worth noting
that for A ∈ L∞(Q) there exists by (3) and (4)
γ2 ≥ γ1 > 0 such that for all E ∈ S

γ1 |E|2 ≤ AE ⊗ E ≤ γ2 |E|2 . (10)

Moreover, by (4) and the fact that T ∈ C2
loc(S)

|∂tA| ≤ C(|D∂tu(t)| + |D∂tu(t − h)|). (11)

The first of the main ideas of the proof of The-
orem 1 is that from (9) we can slightly improve
regularity of u in time.

Lemma 4 Let α ∈ [0, 1] and r > 1 such that
1 = 1/2 + 1/q + 1/r. From

u ∈ Nα,∞
loc

(I,W 2,2(Ω)) (12)

it follows that

∂tu ∈ N
2

r
+(1− 2

r
)α,∞

loc
(I, L2(Ω)), (13)

∂tu ∈ N
2

r
+(1− 2

r
)α,2

loc
(I,W 1,2(Ω)), (14)

u ∈ N
2

r
+(1− 2

r
)α,∞

loc
(I,W 1,2(Ω)). (15)

Proof. To remove any possible problems with lo-
calising in time we follow [6]. First we multiply
(9) by ∂tw and integrate it over Ω to obtain for
all times t ∈ (h, T )

‖∂tw‖2
2 ≤ C

∫

Ω
(|F∂tw| + |ADwD∂tw|). (16)

The pressure term vanished due to div ∂tw = 0.
In the next step we differentiate (9) with re-

spect to time. The so-obtained equation we
multiply by ∂tw and integrate over Ω. Using
div ∂tw = 0 to eliminate the pressure term and
properties (10), (11) of A we get

∂t ‖∂tw‖2
2 + ‖D∂tw‖2

2 ≤ C

∫

Ω
∂tF∂tw

+ (|D∂tu(t)| + |D∂tu(t − h)|)|Dw||D∂tw|.
(17)

As the equations (16) and (17) make sense only
for t > h we multiply (16) by ∂tη and (17) by η
(η is a suitable cut off function in time) and sum
them together. On the right hand side we obtain
many terms but we mention only the worst of
them

∂t(η ‖∂tw‖2
2) + η ‖D∂tw‖2

2 ≤

Cη

∫

Ω
(|D∂tu(t)| + |D∂tu(t − h)|)|Dw||D∂tw|

+ Cη

∫

Ω
|∂tu(t − h)||∇w| |∂tw|.

(18)
The origin of the first term on the right is clear
and the second one is a representative of terms
which are hidden in (17) in ∂tF∂tw. Let us now
estimate the first term on the right hand side by
Young’s inequality

η

∫

Ω
|D∂tu||Dw||D∂tw| ≤

η(
1

2
‖D∂tw‖2

2 + C ‖D∂tu‖
q
q + C ‖Dw‖r

r).

By interpolation ‖Dw‖r
r ≤ C ‖Dw‖2

2 ‖Dw‖r−2
1,2 we

get, estimating
∫

I
η ‖Dw‖2

2 ≤ Ch2

by (4) and

sup
supp η

‖Dw‖r−2
1,2 ≤ Chα(r−2)

by (12), that

∫

I
η ‖Dw‖r

r ≤ C

∫

I
η ‖Dw‖2

2 ‖Dw‖r−2
1,2

≤ Chr( 2

r
+ r−2

r
α).

Concerning the second term on the right hand
side of (18) we consider (4) and estimate it with
help of embedding theorem, Hölder’s and Young’s
inequality as follows

η

∫

Ω
|∂tu(t − h)||∇w| |∂tw|

≤ η ‖∂tu‖∞ ‖∇w‖2 ‖∂tw‖2

≤ C ‖∂tu‖
2
1,q + η ‖∇w‖2

2 ‖∂tw‖2
2 .

We see that if we divide equation (18) by

h2( 2

r
+(1− 2

r
)α) and denote w̃ = w/h

2

r
+(1− 2

r
)α we
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get after repeating the above calculations and in-
tegration from 0 to t ∈ (h, T ) that

‖∂tw̃‖2
2 (t) +

∫ t

0
η ‖D∂tw̃‖2

2 ≤

C(1 +

∫ T

0
η ‖∂tu‖

q
1,q +

∫ t

0
η ‖∇w̃‖2

2 ‖∂tw̃‖2
2).

Now it is enough to realize that due to
(4)

∫

I η ‖∇w‖2
2 ≤ Ch2 and that ∂tu ∈

Lq
loc(I,W 1,q(Ω)). Gronwall’s inequality than im-

plies the statements (13) and (14). Since

∂t(η ‖Dw‖2
2) ≤ C(‖Dw‖2

2 + ‖∂tDw‖2
2)

by Young’s inequality, (15) is a consequence of
(4) and (14). The lemma is proved. �

The second milestone of the proof of Theorem 1
is that after the improvement of the regularity in
time, we can improve also regularity in space on
single time layers.

Lemma 5 Let β ∈ [0, 1]. If

∂tu ∈ N β,∞
loc

(I, L2(Ω)),

u ∈ N β,∞
loc

(I,W 1,2(Ω))
(19)

then
u ∈ N β,∞

loc
(I,W 2,2(Ω)). (20)

Proof. To prove this lemma we note, that under
its assumptions for all t ∈ J (J ⊂ J ⊂ I)

‖G(t)‖2 := ‖F (t) − ∂tw(t)‖2 ≤ Chβ, (21)

and use the difference technique in space for all
time levels t ∈ J . As we deal with the Dirich-
let boundary condition it is technically difficult,
especially in the neighbourhood of ∂Ω. Never-
theless, it was described in detail for example in
[4] or [7] and it works in our case in the same
manner. That’s why we only sketch the proof
here. The main idea is to differentiate the equa-
tion (9) in some space direction, we denote this
differentiation with an apostrophe, and test with
w′. Note that we have enough regularity to write
all integrals because of (4), but though we are
not allowed to test with w′ since it does not sat-
isfy the boundary conditions. Consult the tech-
nique how to avoid this problems with [4]. We
just want to emphasise that it is important that
in the moment we handle the stationary equa-
tion. The method from [4] namely doesn’t work

well in the case of parabolic equations. Also just
informally

∫

Ω
ADw′Dw′ ≤ C

∫

Ω
(|Gw′′|

+ (|Du′(t + h)| + |Du′(t)|)|Dw||Dw′|).

(22)

The first term on the right we estimate (ε > 0
small)

∫

Ω
|Gw′′| ≤ ‖G‖2

2 + ε
∥

∥Dw′
∥

∥

2

2

and the second one (ε > 0 small)

∫

Ω
|Du′||Dw||Dw′| ≤

C
∥

∥Du′
∥

∥

2

q
‖Dw‖2

r + ε
∥

∥Dw′
∥

∥

2

2
.

Since ‖Du′‖q is bounded in J by (4) and

‖Dw‖2
r ≤ ε

∥

∥D2w
∥

∥

2

2
+ C ‖Dw‖2

2 by Ehrling’s
lemma we get by (19) and (21) that

(RHS of (22)) ≤ ε
∥

∥D2w
∥

∥

2

2
+ Ch2β .

Then (20) follows from (22) by (10). �

Finally we are ready to prove the main theo-
rem.
Proof of Theorem 1. To prove the theorem
we use a bootstrap argument. Let us define
α1 = 0, αi+1 = 2/r + (1 − 2/r)αi for all i ∈
N. Then {αi}

∞

i=1 is a monotone sequence con-

verging to 1. Since u ∈ N 0,∞
loc (I,W 2,2(Ω)) by

(4) and from Lemmas 4 and 5 it follows for
all i ∈ N that if u ∈ N αi,∞

loc (I,W 2,2(Ω)) then

u ∈ N
αi+1,∞
loc (I,W 2,2(Ω)), we have that for all

i ∈ N

u ∈ Nαi,∞
loc (I,W 2,2(Ω)),

∂tu ∈ Nαi,2
loc (I,W 1,2(Ω)).

Let J ⊂ K ⊂ I, h > 0 such that for all t ∈ J it
is t+h ∈ K and t−h ∈ K. Denoting now w̃(t) =
u(t+h)−2u(t)+u(t−h) the second time difference
of u, it follows from u ∈ N αi,∞

loc (I,W 2,2(Ω)) that

ess-supJ ‖w̃‖2,2 ≤ Chαi . (23)

Similarly, we have from ∂tu ∈ Nαi,2
loc (I,W 1,2(Ω))

that

(

∫

J
‖w̃‖2

1,2)
1/2 ≤ Chαi+1. (24)
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Standard interpolation together with (23) and
(24) gives

∫

J
‖w̃‖4

1,4 ≤

∫

J
‖w̃‖2

1,2 ‖w̃‖2
2,2 ≤ Ch4αi+2.

Consequently, choosing i ∈ N such that αi >
1/2, by Reduction theorem, see [1, Section 5.4]

∂tu ∈ N
αi−1/2,4
loc (I,W 1,4(Ω)) and clearly also

∂tu ∈ L4
loc(I,W 1,4(Ω)). Knowing this it is easy

to get

ess-supJ ‖∂tw‖2
2 (t) +

∫

J
‖D∂tw‖2

2 ≤ Ch2

from (18) and (5) follows.
With help of (5) we can realize that the as-

sumptions of Lemma 5 are fulfilled with β = 1.
It follows that ∇2∂tu ∈ L∞

loc(I, L2(Ω)). Differen-
tiating (1) with respect to time

∂2
t u−div(∂DT (Du)D∂tu) + ∇∂tπ

=∂t(f − u · ∇u)
(25)

we reread from (25) that ∇∂tπ ∈ L∞

loc(I, L2(Ω)),
hence (6) is proved.

To prove (7) and (8) one can use the method
from the article [3, Section 3] for the equation
(25). The scheme of the proof is the following.
First (7) is shown. Consequently, ∂2

t u is moved
to the right hand side of (25) and the elliptic
theory is applied at almost every time level. Both
these steps are based on using the Lq-theory for
the generalised Stokes problem (see [3, 4]) to (25)
differentiated with respect to time (in the first
case) or in space (in the second case). Note that
the situation is slightly complicated than in [3,
Section 3], since we obtain some additional terms
when differentiating the elliptic term. We sketch
only how to estimate these terms. When getting
the information about ∂2

t u we differentiate (25)
with respect to time. The additional term we get
from elliptic term is ∂2

DT (Du)D∂tuD∂tu which
belongs to L∞

loc(I, Ls(Ω)) for all s > 1 due to (6).
So we can proceed as in [3, Lemma 3.3] to get (7).
Knowing this we move ∂2

t u in (25) to the right
and on a fixed time level use regularity theory for
elliptic problems, see [4]. Also here an unpleasant
term arising when differentiating the elliptic one
appears. It is ∂2

D(Du)D2uD∂tu which however
belongs to L∞

loc(I, Ls(Ω)) for some s > 2 thanks to
(4) and (6), and (8) follows in the same way as in
[4]. The Hölder continuity of ∂tu is a consequence
of (7), (8) and the embedding [2, Lemma 2.2].
The theorem is proved. �
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