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Abstract: - In the present paper the theory of the micropolar fluids based on the theory of Cosserat continua 
has been applied for analysis of Stokes flow (i.e., creeping flow) past a rigid sphere. The flow is considered in 
the presence of Trostel's slip boundary condition which states that the tangential velocity on the solid wall (i.e. 
slip velocity) is proportional to the shear stress on the wall. The solution of problem in this case is reduced to 
simultaneous solution of biharmonic and Helmholtz equations for Stokes stream function. The problem is 
solved by the method of separation of variables in spherical coordinates. The solution is used to plot 
streamline topology of this flow and the pressure and drag coefficients are studied as the slip parameter is 
varying. 
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1   Introduction 
The concept of Cosserat continua was introduced in 
a paper submitted by two French brothers E. and F. 
Cosserat in 1909 [1]. In this continuum, we consider 
the effect of couples on a material element in 
addition to and independent of the effect of forces. 
The theory of micro-fluids, introduced by A. C. 
Eringen [2,3,4], deals with a class of fluids which 
exhibit certain microscopic effects arising from the 
local structure and micromotions of fluid element. A 
subclass of these is the micropolar fluid which has 
the microrotational effects and microrotational 
inertia [3]. 
This class of fluids can support the couple stress, the 
body couples and the non-symmetric stress tensor 
and possess a rotation field, which is independent of 
the velocity field. The rotation field is no longer 
equal to the half of the curl of the velocity vector 
field. Because of the assumption of infinitesimal 
rotations, we can treat the rotation field as a vector 
field. 
The theory, thus, has two independent kinematic 
variables; the velocity vector  and the spin or 
microrotation vector 

V
ν . 

The linear constitutive equation for non-symmetric 
stress tensor (i.e., Cauchy's stress tensor), contains 
an additional viscosity coefficient . The value of 

 shows the influence of the microrotation field on 
the stress tensor. 

vk

vk

The linear constitutive equation for couple stress 
also contains three additional viscosity coefficients 

vα , vβ  and . vγ
The slippage of fluids on solid walls was a 
challenging discussion among fluid dynamists 
during the history of development of this science. 
There are 3 ideas about boundary condition of fluid 
on solid walls in 19th century: 
The fluid adheres the wall and the velocity is 
growing continuously from boundary (i.e. the so-
called no-slip condition) 
A layer of fluid with finite width remains stationary 
on the wall and the remainder of fluid slips on this 
layer. 
The fluid is slipping on wall, which is known as slip 
boundary condition. 
Finally, Stokes stated that the "the slip doesn't exist" 
and ended the discussions. But Trostel starts the 
discussion about this matter again in 1988. He 
proved that fluids slip on solid walls [5,6,7]. He 
proposed that the tangential velocity on the wall is 
proportional to the value of the shear stress, namely 

tBoundary BoundaryVτ = λ ,  (1) 

where λ  is the positive scalar coefficient of surface 
with the unit of Pa.sec

m  and  denotes the 

tangential velocity (i.e., slip velocity). 
tV

It is a complete boundary condition which covers 
the full slip boundary condition for  and the 
no-slip one for 

0λ =
λ→∞ . 
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2   Motion of a COSSERAT Fluid 
 
2.1 Kinematics of COSSERAT Continua 
At any material point of the continuum, we consider 
both a velocity and a rotation velocity vector 
denoted by  and V ν , respectively. The so-called 
COSSERAT microrotation  relates the current 
state of a triad of orthonormal directions attached to 
each material point to its initial state, i.e. 

ijR

ij ij ijk kR = δ −Γ ν ,  (2) 

where  and  are the Kronecker delta tensor 
and permutation tensor, respectively. 

ijδ ijkΓ

The associated COSSERAT deformation ijε  and 

torsion-curvature tensor  are written as  ijκ

ij j,i ijk kVε = −Γ ν ,  (3) 

ij j,i ,κ = ν  (4) 
where the comma denotes the partial differentiation. 
 
2.2 Balance Laws in COSSERAT Media 
It is assumed that the transfer of interaction between 
two particles of the continuum through a surface 
element  occurs by means of both a traction 
vector  and a moment vector . Surface 
forces and couples are represented by the generally 
non-symmetric force-stress and couple-stress tensors 

 and , respectively. 

in ds

it ds im ds

ijt ijm
The axioms of balance of linear momentum and 
moment of momentum (i.e. angular momentum) 
require that the following equations hold 

i
ij, j i

DVt f
Dt

+ = ρ ,  (5) 

i
ji, j ijk ik i

Dm t l j
Dt
ν

+ Γ + = ,  (6) 

where  and  are the mass density, 
microinertia, body force per unit mass and body 
couple per unit mass respectively. 

i, j, fρ il

 
2.3 Constitutive Equations 
Here we choose linear constitutive equations which 
describe our material behavior. It can be considered 
as the generalization of Newtonian fluids in the 
classical Navier-Stokes theory. 

( ) ( )
( )

kl v r,r kl v k,l l,k

v l,k klr r

t V V

k V ,

= −π+ λ δ +µ +

+ −Γ ν

V

,

 (7) 

kl v r,r kl v k,l v l,km = α ν δ +β ν + γ ν  (8) 
where  is the thermodynamic pressure. π

As you see, the microrotation field has influence on 
the stress tensor, but the vice versa is not true. 
 
2.4 Field Equations 
At this stage we must mix the above equations to 
obtain governing field equations. The field equations 
for micropolar fluids in the vectorial form are given 
by 
Conservation of mass (i.e. continuity equation) 

( ) 0,
t

∂ρ
+∇ ⋅ ρ =

∂
V  (9) 

Balance of momentum 
( ) ( )v v v v v

v

2 k k

Dk ,
Dt

λ + µ + ∇∇⋅ − µ + ∇×∇×

⎛ ⎞+ ∇× −∇π+ρ − =⎜ ⎟
⎝ ⎠

V V

Vν f 0
 (10) 

Balance of moment of momentum 
( )v v v v

v v
Dk 2k j
Dt

,

α +β + γ ∇∇⋅ − γ ∇×∇×

⎛ ⎞+ ∇× − +ρ − =⎜ ⎟
⎝ ⎠

ν ν

νV ν l 0
 (11) 

where D
Dt  denotes the material time derivative. 

 
 
3   Boundary conditions 
By their character, the boundary conditions can be 
twofold: kinematic and dynamic. The kinematic 
boundary conditions lie in the fact that the kinematic 
variables, the velocity and the angular velocity have 
definite quantities at the boundary. In the dynamic 
boundary conditions, however, on the boundary 
surfaces, the values of the stress and the couple-
stress are fixed. 
From the mathematical point of view, the kinematic 
boundary condition is a Dirichlet's one and the 
dynamic boundary condition is a von Neumann's 
one. 
In the present work, we have kinematic boundary 
conditions for velocity of free-stream at infinity and 
for microrotation on sphere wall. But for velocity on 
sphere wall, we use the Trostel's slip boundary 
condition which is a linear combination of kinematic 
and dynamic boundary conditions. Thus it is a 
Rubin's boundary condition. It shows that slip 
boundary condition is kinematic and dynamic, but 
the slip theory is thermodynamic in nature. 
 
 
4   The Stokes flow about a sphere 
In classical approach to fluid mechanics, the 
governing equations of fluid flow (i.e., the Navier-
Stokes equations) are nonlinear. Their nonlinearity 
is geometrical and is due to the kinematics of flow. 
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So they don't have analytical solution except for 
very simple problems. To avoid this difficulty, it is 
conventional in fundamental mechanics of fluids to 
linearize these equations. Since the nonlinearity is 
due to inertial terms, Stokes assumed that in very 
slow motion of fluids about immersed bodies, the 
inertial effects can be neglected. By this 
simplification, a linear system of equations is 
obtained and it has some analytical closed-form 
solutions. 
In this paper, we have done such a simplification for 
equations of motion obtained from Cosserat theory 
and we also call it as Stokes flow. 
The solutions obtained by the above assumption, are 
limited to the case of very low Reynolds number 
flows. 
Here we consider the slow steady flow of an 
incompressible micropolar fluid around a sphere of 
radius , held fixed. The uniform stream speed at 
infinity is taken to be V

a
∞ . External loads are 

considered absent. In spherical coordinates ( )r, ,θ φ , 
taking  as the axis in the direction of the free-
stream flow, the velocity  and microrotation 

0θ =
V ν  

possess axial symmetry so that 
( ) (rV ,V ,0 , 0,0, .θ= =νV )ν  (12) 

Stokes stream function is defined by 

r 2
1V , V

r sin rr sin θ
∂ψ ∂ψ

= − =
∂θ θ ∂θ

1 .  (13) 

Substituting these into the field equations (10) and 
(11) leads to 

( )2 0,∆∆ ∆ −ξ ψ =  (14) 

( )v v v
2
v

k1 ,
2r sin k

⎛ γ µ +
ν = ∆ψ + ∆∆ψ⎜ ⎟

θ ⎝ ⎠

⎞
 (15) 

where the Laplacian operator  is defined by 2∆ =∇
2 2

2 2 2 2
1 cot .

r r r
∂ ∂ θ

∆ = + −
∂θ∂ ∂θ
∂

 (16) 

Equations (14) and (15) are subjected to the 
boundary conditions 

r

2 2

0, t V at r a,

0 at r a,
1 V r sin as r .
2

θ θ

∞

∂ψ
= = λ =

∂θ
ν = =

ψ→ θ →∞

 (17) 

 
 
5   Solution to Problem 
The solution is obtained by taking 

1 2 ,ψ = ψ +ψ  (18) 
where 1ψ  and 2ψ  satisfy the equations 

1 0,∆∆ψ =  (19) 

( ) ( )
( )

v v v2 2
2

v v v

k 2 k
0 , .

k
µ +

∆ − ξ ψ = ξ ≡
γ µ +

 (20) 

The solution of (19) is well known in the classical 
case (Newtonian fluid). The solution of (20) is 
obtained similarly so that 

2 21
1 1 1

V Asin B r C r D r ,
2 r
∞ ⎛ ⎞ψ = θ + + +⎜ ⎟

⎝ ⎠
4

1  (21) 

2 r
2 2 2

V 1 1sin A e B e .
2 r r

ξ −∞ rξ⎡ ⎤⎛ ⎞ ⎛ ⎞ψ = θ ξ − + ξ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (22) 
Both the solutions are obtained by using the method 
of separation of variables. 
The condition at infinity demands that 1 2D A 0= =  
and 1C 1= . Hence 

2 21
1 2

V A 1sin B r r B e .
2 r r

−ξ∞ r⎡ ⎤⎛ ⎞ψ = θ + + + ξ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (23) 
We can write (15) as 

( )2 v v 2 r 1

v

B kV sin B1 e .
2r k r r

−ξ∞ ⎡ ⎤µ +θ ⎛ ⎞ν = ξ ξ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (24) 
The velocity components are given by (13) 

2 r1
r 1 22

V cos A 1V B r r B
r rr

−ξ∞ e ,⎡ ⎤θ ⎛ ⎞= + + + ξ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (25) 

1
12

r
2 2

A B 2r
rV sinV .

1 12r B e
r r

∞
θ

−ξ

⎡ ⎤− + +⎢ ⎥θ ⎢ ⎥=
⎡ ⎤⎢ ⎥⎛ ⎞− ξ ξ + +⎜ ⎟⎢ ⎥⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

 (26) 

 The pressure field and the normal and shear stress 
components are obtained from constitutive equation 
(7) in spherical coordinates. 

v v
12

2 kp p B V cos ,
2r∞ ∞

µ +
= − θ  (27) 

v v
rr 2

2 r3
1 22 2

2 kt p V cos
r

3A3 3B B e
2 rr r

∞ ∞

−ξ3 ,

µ +
= − + θ

⎡ ⎤ξ⎛ ⎞+ + ξ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (28) 
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v v
r 2

2 r1
22 2

2 kt V sin
2r

3A 2 2B e
rr r

θ ∞

−ξ

µ +
= θ

⎡ ⎤ξ⎛ ⎞+ ξ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
,
 (29) 

Now, by applying the boundary conditions (17) on 
the sphere wall, for stream function and 
microrotation, the remainder integration constants 
are determined. 

( ) ( )( )
( ) ( )

( ) ( )

( ) (

1 2
2

2 2 2

3 2

aA
4 3 2 1 3 Tr

Tr 3 2 11 9

3 3 Tr 1
,

Tr 3 3 2 3 3

=
⎧ζ + χ + + χ +⎪ξ ⎨

⎡+ζ + χ + + χ⎪ ⎣⎩
⎧ ⎫− + χ + χ ζ + χ + χ⎪

)

×
⎫⎪
⎬

⎤ ⎪⎦ ⎭

⎨
⎡ ⎤+ζ − − χ + χ − + χ + χ⎪ ⎪⎣⎩ ⎭

⎪
⎬
⎦

 (30) 

( )( )( )
( ) ( )( )

( ) ( )

1 2

3a 1 1 Tr 2
B ,

4 3 2 1 3 Tr

Tr 3 2 11 9

+ χ + ζ + ζ +
= −

⎧ + χ ζ + + χ +⎪ ⎪
⎨ ⎬

⎡ ⎤+ζ + χ + + χ⎪ ⎪⎣ ⎦⎩ ⎭

⎫
 (31) 

( )
( ) ( )( )

( ) ( )

2 2
2

3ae Tr 2
B ,

4 3 2 1 3 Tr

Tr 3 2 11 9

χζ + ζ +
=

⎧ ⎫+ χ ζ + + χ +⎪ ⎪ξ ⎨ ⎬
⎡ ⎤+ζ + χ + + χ⎪ ⎣ ⎦⎩ ⎭⎪

 (32) 

where v vkζ = µ  and . aχ = ξ
The drag on the sphere is obtained by using the 
integral formula 

( )2
rr r r a0

D 2 a t cos t sin sin d
π

θ =
= π θ− θ θ θ∫ .  (33) 

As you see, the drag is formed from two parts; a part 
due to normal stress,  and another due to shear 
stress, . 

rrD

rD θ

( )( )( )( )
( ) ( )( )

( ) ( )

v
2

6 a V 1 1 2 Tr 2
D ,

4 3 2 1 Tr 3

Tr 3 2 11 9

∞π µ + χ + ζ + ζ + ζ +
=

⎧ ⎫+ χ ζ + + χ +⎪ ⎪
⎨ ⎬

⎡ ⎤+ζ + χ + + χ⎪ ⎪⎣ ⎦⎩ ⎭
 (34) 

where 
v

2 aVRe ∞ρ
=

µ
. 

The drag coefficient for very slow motion of a 
Cosserat fluid about a sphere with Trostel's slip 
boundary condition is given by 

( )( )( )( )
( ) ( )( )

( ) ( )

D 21
2

2

DC
V A

1 1 2 Tr 224 .
Re 4 3 2 1 Tr 3

Tr 3 2 11 9

∞

=
ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥+ χ + ζ + ζ + ζ +
⎢ ⎥=
⎧ ⎫+ χ ζ + + χ +⎢ ⎥⎪ ⎪
⎢ ⎥⎨ ⎬

⎡ ⎤+ζ + χ + + χ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭⎣ ⎦
 (35) 
where 2A a= π  
This is reduced to the result of classical fluid 
mechanics by setting 0χ = ζ = , which is 

D
Tr 2 24C .
Tr 3 Re

+⎛ ⎞= ⎜ ⎟+⎝ ⎠
 (36) 

For two limiting case  (i.e., full slip) and 
 (i.e., no-slip) we have this results from 

classical theory 

Tr 0=
Tr →∞

D,classical,no slip
24C
Re− = ,  (37) 

D,classical,full slip D,classical,no slip
16 2C C .
Re 3 −= =  (38) 

Now we are able to calculate the amount of effect of 
normal stress and shear stress on drag of a sphere 

rr

rr

rr

D 1, for Tr 0,D Tr 3 6 D
D 1D 3Tr 3 6 , for Tr ,
D 3

⎧ = =⎪+ ζ + ⎪= ⇒ ⎨+ ζ + ⎪ = →∞
⎪⎩

 (39) 

r

r

r

D 0, for Tr 0,D 2Tr D
D 2D 3Tr 3 2 , for Tr .
D 3

θ

θ

θ

⎧ = =⎪⎪= ⇒ ⎨+ ζ + ⎪ = →∞
⎪⎩

 (40) 
As you see, the induced drag in full slip condition is 
only due to normal stress, because in this case the 
value of shear stress on wall is zero. 
The pressure coefficient on sphere wall is given by 

p 21
2

v v
12

1

p pC
V

2 k cosB
Va

8cosRe B ,
a

∞

∞

∞

µ

−
=

ρ

µ + θ
= −

ρ
θ

= −

 (41) 
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v v

4 V aRe
2 k

∞
µ

ρ
=

µ +
 is Reynolds number with 

respect to both  and . vµ vk
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6   Conclusion 
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In the present paper the theory of the micropolar 
fluid based on a Cosserat continuum model has been 
applied to an actual problem. We change the 
governing equations either the boundary conditions 
in comparison to classical fluid mechanics. This 
work leads to new terms in results such as stream 
function, velocity components, drag and pressure 
coefficients. We demonstrated that the slippage of 
fluid on sphere wall reduces the induced drag 
slightly. We also showed that the solution reduced to 
classical solution by equating all constants due to 
Cosserat theory to zero. 
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Fig 1, Streamlines 
Re=1, Tr=∞ 
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Fig 2. Pressure Coefficient 
1,1,1Re === χζµ
 

1:Tr=∞, 2:Tr=10, 3:Tr=1, 4:Tr=0 
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