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Abstract: The purpose of this research work is to perform accurate numerical computations of supersonic flow in a 
converging nozzle and specifically to study Mach-disks. The latter process has been widely studied over the last 
years. In the present study numerical simulations are performed for transient supersonic flow, tracing the transition 
from a Mach reflection to a regular one. This has been done by enforcing the walls of a converging nozzle to come 
closer together, changing the deflection angle with time. Viscosity was taken into account and the full Navier-
Stokes have been solved. The results obtained clearly show the gradual extinction of the Mach disk and the 
eventual wave  intersection to a single point. 
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1   Introduction 

 
A symmetrical parabolic converging nozzle of  

inlet diameter 4 m and outlet 3 m was used to generate 
shock waves (Fig.1). According to shock reflection 
theory, when the shock angle φ is smaller than the 
Von-Neumman critical angle φv the shock wave 
reflects into a regular reflection. In our case both 
shock waves induced from the top and bottom walls 
intersect to a regular intersection (single point) [2]. 
For shock angles greater than the detachment angle φd 
a Mach intersection will be induced, which means that 
the intersecting waves form a Mach disk [6]. In the 
range between φv and φd both types of reflection could 
be induced.  

Despite the existence of those critical angles, the 
transition conditions are not very clear. There are 
differences between experimental and numerical 
results, especially in the Mach disk region and 
considerable disagreement between numerical and 
theoretical values concerning the above mentioned 
critical angles.  

The waves’ intersection closely to an axis of 
symmetry is examined here. At the inlet region, due to 
the deflection of walls, oblique shock waves are 
formed. These waves intersect at two points, known as 
Mach or triple points, leading to a normal shock wave, 
the Mach disk. Afterwards these waves reflect on the 
walls downstream. According to theory, depending on 
flow conditions, there form two slip lines or 
discontinuity lines and a vortex sheet. 

 

 
Fig. 1. Shock wave intersections, causing mach disk. 
 

In transient problems hysterisis is observed, due 
to the continuous changes of the deflection angle. The 
result is transitions from Mach to regular reflections 
and vice versa. In more detail when the deflection 
angle is less than θv (Von-Neumann criterion)  then 
we have regular reflection. When it reaches the value 
θd  (the detachment angle) we get Mach reflection. 
Then θ decreases (deflection angle is the maximum 
angle), while the shock reflection remains Mach, and 
when it reaches again θv we have conversion to 
regular. This cyclic behaviour denotes that the 
phenomenon presents hysterisis. Only the transition 
process is dealt with in this work. 
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2   Solving the flow equations  
 
2.1 The mathematical problem 

 
The flow is described by the Navier-Stokes 

equations as applied for supersonic flight. The 
discretized equations must be set up considering the 
movement of the grid since the flow passes through 
moving boundaries (walls). For that reason the 
velocity vector 

−
υ  is equal to the difference of the 

absolute flow velocity and grid velocity of the moving 
mesh. The equations are hyperbolic in nature and in 
an abbreviated form are as follows [9]: 
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The symbols µ,ρ , p,
−
υ , 

−

τ , effk , h, T,E,  respectively, 

denote molecular viscosity, density, static pressure, 
velocity vector, stress tensor, total thermal 
conductivity, enthalpy, static temperature and energy. 
 
2.2 Numerical Solution and Turbulence 
      Modelling 

 
The above differential equations are solved by the 

finite volume technique. The SIMPLE-Consistent 
algorithm was chosen for accounting for the pressure-
velocity coupling [17]. First order upwind scheme 
was used for the convective terms and central for the 
diffusion terms. The temporal discretization was also 
of first order.  

The formulation for this scheme was fully implicit 
and the system of the algebraic equations for every 
time step was solved iteratively by a classic Gauss-
Seidel point iterative method,. For reasons of 
convergence acceleration, a pseudo-time step 

relaxation was used in every time step with a suitable 
relaxation factor. Also was used a classic V-cycle 
multigrid algorithm for the same reason. 

Turbulence modelling was used when accounting 
for the viscous solutions of equations. For that 
purpose the Spalart-Allmaras model [15] was chosen, 
which solves only one equation, the equation for eddy 
viscosity. The model was designed initially for low 
Reynolds numbers but it is used widely for aerospace 
applications (transonic-supersonic speeds) [5], despite 
the fact that its dependent variable is a fictitious one.   

The transport equation for the eddy viscosity v  is 
derived by arguments of dimensional analysis and 
Galilean invariance, and is given by: 
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where vG  is the production of turbulence viscosity 
and vY  is the destruction of turbulence viscosity that 
occurs in the near-wall region. The symbols d ,S,χ 

2uf , 1uf  respectively, denote wall distance, 
deformation tensor, ratio of molecular to kinematic 
viscosity and  functions of molecular and kinematic 
viscosity. The other symbols are constants   

For the numerical solution of supersonic flow 
inside the nozzle, two commercial codes were used, 
FLUENT 6.1.18 2d version (solver) and GAMBIT 
2.1.6. (mesh generator), both provided by  Fluent Inc. 

An unstructured mesh of 67000 cells was 
employed. Inlet conditions were: atmospheric pressure 
and Mach number of 1.8 and outlet conditions, 
pressure of 255000 pascal. No  slip conditions apply at 
both nozzle walls and classic wall functions were used 
[18].  

Density is computed via the perfect gas law 
(admission of isentropic flow). Finally, corcerning the 
molecular viscosity µ, because during a supersonic 
flow there exist substantial temperature gradients, a 
function was defined, which describes the changes of 
viscosity with respect to temperature. The law of 
Sutherland [5] was chosen: 
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where 16.273=oT  Κ and 78.1=oµ  kgm-1s-1 are 
the reference values. 

Due to the movement of the wall boundaries (as 
they approach each other) the mesh must be updated 
with time. Specifically the walls move with the 
rotation speed of 3 degrees per second. The original 
point of rotation is the edge point of outlet for every 
wall respectively (Fig.1).  As a result it is obvious that 
the grid is continuously deforming and it has to be 
updated at every time step. The main techniques 
applied for updating the deforming mesh is the spring-
based smoothing method and local remeshing. The 
last method has been  described in detail  in Anthony 
Anderson’s research work [16]. 

2.3. Grid refinement and time independency. 

Three different unstructured meshes were 
generated in order to indicate which mesh is 
independent of further grid refinement. Fig.2 shows 
the pressure distribution along the axis of symmetry 
for the three meshes. That of 67000 cells has almost 
the same distribution of the most refined mesh. The 
same is true for the other variables as well. So it was 
selected for time saving reasons (cpu time).  

The second step is the time independency 
investigation. For this purpose we considered three 
different time steps (0.05, 0.1 and 0.2 sec). Again 
pressure distributions are presented at the symmetry 
plane for three different time positions. Fig. 3 shows 
that the choice of time step 0.1 sec is acceptable. 

 

  
Fig.2. Pressure distribution along axis of symmetry for three 

          different meshes. 
 

 
 

 
Fig.3. Pressure distribution along axis of symmetry for    
           three  different time steps: t=0.2 sec, 0.6 sec and  
           1.2  sec  from top to bottom respectively 

 

3   Results and discussion 

Computational results were obtained on a Pentium 
IV Machine with a cpu time of about 6 hours for full 
convergence of the primitive variables: x and y 
velocity, eddy viscosity and static pressure. 
Convergence is deemed to occur when the scaled 
residuals fall below 10e-5. The total number of time 
steps was 16, from 0.1 sec to 1.6 sec.  
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Beginning the analysis of results, and observing at 
time t=0.2 sec the Mach contours, we see the Mach 
disk formed around the middle of the axis (Fig.4). At 
the next time steps, we can easily observe both walls 
approaching each other. As a result, the deflection 
angle is decreasing, causing the reduction of disk’s 
length. After 1.5 seconds the Mach disk does no 
longer exist and the waves intersect at a regular 
intersection. 

Fig. 4 illustrates the presence of an additional 
process. The disk is moving towards the outlet with 
time, and the decrease of the deflection angle causes a 
corresponding decrease to the shock angle of the 
waves. As a result they become weaker and of course 
they expand more in the flow domain. 

 

 

t=0.2 sec                                                        

 

 

t=0.9 sec                                                        

 

t=1.3 sec                                                        

 

 

t=1.6 sec                                                        

Fig.4. Mach contours plotted versus time (t=0.2sec  
          to 1.6 sec). 

3.1 Transition from Mach to Regular 
intersection.. 

In shock wave reflection studies a main objective 
is to compute the height and position of the Mach disk 
versus time. In this study, the independent variable is 
not the wedge angle, as used  in most studies, but 
time, because of the transient nature of the process. To 
perform height computation we need information at 
every time provided by the results obtained until then. 
Because the Mach disk is a normal shock wave, we 
trace the region where considerable discontinuities 
occur (subsonic to supersonic flow). This criterion 
gives us direct guidelines for evaluating the height 
value. At first place the Mach number distribution at 
the axis plane is estimated. Fig. 5 displays a 
significant decrease of Mach number, indicating the 
position where the Mach disk begins to expand. The 
first point of this spontaneous change defines the 
starting point of disk’s thickness. The flow there 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp168-173)



 

remains supersonic. Behind that point, flow becomes 
subsonic. In this region we make a normal section 
(direction parallel to the y axis), and we compute the 
Mach number distribution in this section. We observe 
that as we move towards the wall (positive y), the 
Mach number increases (Fig. 6). There is a point 
where the flow becomes sonic (M=1). After that point 
the flow returns supersonic. The sonic point indicates 
where the height of the Mach disk ends. This sonic 
point is the Mach  or triple point as mentioned above. 
Following this process at all time positions, we 
estimate height as  a function of time. Fig. 7 shows 
that height decreases with time and becomes zero 
(regular reflection) at time=1.5 sec. 

 

Fig.5 Mach number distribution along the axis of symmetry 
plane 
         at a particular time step. 
  

  
Fig.6. Mach number distribution at the symmetry plane 
          at x=1.77m.  
 

Based on the above procedure, we compute the 
change of Mach disk’s position. From Fig. 6 we find 
the beginning of disk’s thickness. Repeating for the 
remaining time steps, we plot the disk position versus 

time (Fig.8). It is obvious that the disk moves towards 
the outlet. 

Fig. 7. Disk height varying with time. 
 

 
Fig. 8. Disk position along axis of symmetry plotted against 
           time.              

 

4 Conclusions 

Numerical simulations have been carried out, by 
means of special numerical and mesh-update 
techniques. The system equations have been solved by 
a segregated (not coupled) manner, using known point 
iterative methods. Flow viscosity was taken into 
consideration and the full Navier- Stokes equations 
were solved. The results appear plausible and the 
shock position and sharpness were predicted 
accurately without the need for special shock 
capturing techniques.  

Finally giving a further interest for numerical 
research, it would be very interesting to apply periodic 
movement to the walls, i.e. making them converging 
and diverging. Then the Mach disk would periodically 
form and then vanish, depicting the hysterisis process.  
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