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Abstract: The paper is concerned with the numerical solution of inviscid compressible flow described by
the system of the Euler equations. Our goal is to work out a numerical scheme robust with respect to the
magnitude of the Mach number, i.e. a scheme applicable to flows with a wide range of Mach numbers,
from very low Mach number flow up to hypersonic regimes. Our method is based on the application of
the discontinuous Galerkin finite element method to space discretization, semi-implicit time discretization
and characteristics treatment of boundary conditions. As numerical tests show, the method is sufficiently
accurate, efficient and robust and allows to solve compressible flow with practically all Mach numbers without
any modification of the Euler equations.
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1 Introduction

In the numerical solution of compressible flow, it
is necessary to overcome a number of obstacles.
Let us mention the necessity to resolve accurately
shock waves, contact discontinuities and (in vis-
cous flow) boundary layers, wakes and their in-
teraction. All these phenomena are connected
with the simulation of high speed flow with high
Mach numbers. However, it appears that the so-
lution of low Mach number flow is also rather
difficult. This is caused by the stiff behaviour of
numerical schemes and acoustic phenomena ap-
pearing in low Mach number flows at incompress-
ible limit. In this case, standard finite volume
schemes fail. This led to the development of spe-
cial finite volume techniques allowing the simula-
tion of compressible flow at incompressible limit,
which is based on modifications of the Euler or
Navier-Stokes equations. (See, e.g. [8], [11], [13],
Chapter 14, or [10], Chapter 5.)

Our goal is to develop a numerical technique
allowing the solution of compressible flow with
a wide range of the Mach number without any
modification of the governing equations. This
technique is based on the discontinuous Galerkin

finite element method (DGFEM), which can be
considered as a generalization of the finite vol-
ume as well as finite element methods, using
advantages of both these techniques. It em-
ploys piecewise polynomial approximations with-
out any requirement on the continuity on inter-
faces between neighbouring elements. The dis-
continuous Galerkin space semidiscretization is
combined with a semi-implicit time discretization
and a special treatment of boundary conditions
in inviscid convective terms. In this way we ob-
tain a numerical scheme requiring the solution of
only one linear system on each time level.

In Section 2 the continuous problem describing
inviscid compressible flow is formulated. In Sec-
tion 3 the discontinuous Galerkin space semidis-
cretization is introduced. Further, in Section 4
a semi-implicit time discretization is developed.
Section 5 is concerned with the treatment of
boundary conditions. Finally, in Section 6 we
present an interesting example of the DGFE so-
lution of an inviscid compressible flow past a cir-
cular cylinder at incompressible limit.

The computational results show that the pre-
sented method is applicable to the numerical so-
lution of inviscid compressible flow with a very
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low Mach number at incompressible limit.

2 Continuous problem

For simplicity of the treatment we shall consider
2-dimensional flow, but the method can be ap-
plied to 3D flow as well. The system of the Euler
equations describing 2D inviscid flow can be writ-
ten in the form

∂w

∂t
+

2
∑

s=1

∂f s(w)

∂xs
= 0 in QT = Ω×(0, T ), (1)

where Ω ⊂ IR2 is a bounded domain occupied by
gas, T > 0 is the length of a time interval,

w = (w1, . . . , w4)
T = (ρ, ρv1, ρv2, E)T (2)

is the so-called state vector and

f s(w) (3)

= (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (E + p) vs)
T

are the inviscid (Euler) fluxes of the quantity w in
the directions xs, s = 1, 2. We use the following
notation: ρ – density, p – pressure, E – total
energy, v = (v1, v2) – velocity, δsk – Kronecker
symbol. The equation of state implies that

p = (γ − 1) (E − ρ|v|2/2). (4)

Here γ > 1 is the Poisson adiabatic constant.
The system (1) – (4) is hyperbolic. It is equipped
with the initial condition

w(x, 0) = w0(x), x ∈ Ω, (5)

and the boundary conditions, which are treated
in Section 5. We define the matrix

P (w, n) :=
2

∑

s=1

As(w)ns, (6)

where n = (n1, n2) ∈ IR2, n2
1 + n2

2 = 1 and

As(w) =
Df s(w)

Dw
, s = 1, 2, (7)

are the Jacobi matrices of the mappings f s. It is
possible to show that f s, s = 1, 2, are homoge-
neous mappings of order one, which implies that

f s(w) = As(w)w, s = 1, 2. (8)

3 Discretization

Let Ωh be a polygonal approximation of Ω. By
Th we denote a partition of Ωh consisting of var-
ious types of convex elements Ki ∈ Th, i ∈ I
(I ⊂ Z+ = {0, 1, 2, . . .} is a suitable index set),
e. g., triangles, quadrilaterals or in general con-
vex polygons. (Let us note that in [4] it was
shown that in the DGFEM also general noncon-
vex star-shaped polygonal elements can be used.)
By Γij we denote a common edge between two
neighbouring elements Ki and Kj . The sym-
bol nij = ((nij)1, (nij)2) denotes the unit outer
normal to ∂Ki on the side Γij . Moreover, we
set s(i) = {j ∈ I; Kj is a neighbour of Ki}.
The boundary ∂Ωh is formed by a finite num-
ber of faces of elements Ki adjacent to ∂Ωh. We
denote all these boundary faces by Sj , where
j ∈ Ib ⊂ Z− = {−1,−2, . . .}. Now we set
γ(i) = {j ∈ Ib; Sj is a face of Ki ∈ Th} and
Γij = Sj for Ki ∈ Th such that Sj ⊂ ∂Ki, j ∈ Ib.
For Ki not containing any boundary face Sj we
set γ(i) = ∅. Obviously, s(i) ∩ γ(i) = ∅ for all
i ∈ I. Now, if we write S(i) = s(i) ∪ γ(i), we
have

∂Ki =
⋃

j∈S(i)

Γij , ∂Ki ∩ ∂Ωh =
⋃

j∈γ(i)

Γij . (9)

The approximate solution will be sought at
each time instant t as an element of the finite-
dimensional space

Sh = Sr,−1(Ωh, Th) (10)

= {v; v|K ∈ P r(K) ∀K ∈ Th}
4,

where r ≥ 0 is an integer and P r(K) denotes
the space of all polynomials on K of degree ≤ r.
Functions v ∈ Sh are in general discontinuous on
interfaces Γij . By v|Γij

and v|Γji
we denote the

values of v on Γij considered from the interior
and the exterior of Ki, respectively.

In order to derive the discrete problem, we mul-
tiply (1) by a test function ϕ ∈ Sh, integrate over
any element Ki, i ∈ I, apply Green’s theorem
and sum over all i ∈ I. Then we approximate
fluxes through the faces Γij with the aid of a nu-
merical flux H = H(u, w, n) in the form

∫

Γij

2
∑

s=1

f s(w(t)) (nij)s
· ϕdS (11)

≈

∫

Γij

H(wh(t)|Γij
, wh(t)|Γji

, nij) · ϕ dS.
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If we introduce the forms

(wh, ϕh)h =

∫

Ωh

wh · ϕh dx, (12)

b̃h(wh, ϕh) = σ1 + σ2,

where

σ1 = −
∑

K∈Th

∫

K

2
∑

s=1

f s(wh) ·
∂ϕh

∂xs
dx, (13)

σ2

=
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wh|Γij
, wh|Γji

, nij) · ϕhdS,

we can define an approximate solution of (1) as a
function wh satisfying the conditions

a) wh ∈ C1([0, T ]; Sh), (14)

b)
d

dt
(wh(t), ϕh)h + b̃h(wh(t), ϕh) = 0

∀ϕh ∈ Sh ∀ t ∈ (0, T ),

c) wh(0) = Πhw0,

where Πhw0 is the L2-projection of w0 from the
initial condition (5) on the space Sh. If we set
r = 0, then we obviously obtain the finite volume
method.

4 Time discretization

Relation (14), b) represents a system of ordi-
nary differential equations which can be solved
by a suitable numerical method. Usually, Runge-
Kutta schemes are applied. However, they are
conditionally stable and the time step is strongly
limited by the CFL-stability condition. Another
possibility is to use the fully implicit backward
Euler method, but it leads to a large system of
highly nonlinear algebraic equations whose nu-
merical solution is rather complicated. Our aim
is to obtain a higher order unconditionally sta-
ble scheme, which would require the solution of a
linear system on each time level. This is carried
out with the aid of a suitable partial lineariza-
tion of the form b̃h. In what follows, we consider
a partition 0 = t0 < t1 < t2 . . . of the time in-
terval (0, T ) and set τk = tk+1 − tk. We use the
notation wk

h for the approximation of wh(tk).
In [3] we described a new DG semi-implicit

technique which is suitable for an efficient solu-
tion of inviscid stationary as well as nonstation-
ary compressible flow. This technique is based

on a linearization of the forms σ1 and σ2, defined
by (13) and using the Vijayasundaram numerical
flux. In this way we obtain the form

bh(wk
h, wk+1

h , ϕh) (15)

=
∑

K∈Th

∫

K

2
∑

s=1

As(w
k
h(x))wk+1

h (x) ·
∂ϕh(x)

∂xs
dx

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

[

P +
(

〈wk
h〉ij , nij

)

wk+1
h |Γij

+ P−
(

〈wk
h〉ij , nij

)

wk+1
h |Γji

]

· ϕhdS,

which is linear with respect to the second and
third variable. We use the notation 〈wk

h〉ij =
(wh|Γij

+ wh|Γji
)/2. Further, P± = P±(w, n)

represents positive/negative part of the matrix
P defined on the basis of its diagonalization (see,
e.g. [7], Section 3.1):

P = TDT−1, D = diag (λ1, . . . , λ4), (16)

where λ1, . . . , λ4 are the eigenvalues of P . Then
we set

D± = diag (λ±
1 , . . . , λ±

4 ), (17)

P± = TD±T−1,

where λ+ = max{a, 0} and λ− = min{a, 0}.
On the basis of the above considerations we

obtain the following semi-implicit scheme: For
each k ≥ 0 find wk+1

h such that

a) wk+1
h ∈ Sh, (18)

b)

(

wk+1
h − wk

h

τk

, ϕh

)

h

+ bh(wk
h, wk+1

h , ϕh) = 0

∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = Πhw0.

This is a first order accurate scheme in time. In
[3] also a two step second order time discretiza-
tion was proposed. The linear algebraic system
equivalent to (18), b) is solved by the GMRES
method with a block diagonal preconditioning.
In order to guarantee the stability of the scheme,
we use the CFL condition

τk max
Ki∈Th

1

|Ki|

(

max
j∈S(i)

|Γij |λ
max
P (wk

h
|Γij

,nij)

)

≤ CFL, (19)

where |Ki| denotes the area of Ki, |Γij | the
length of the edge Γij , CFL a given constant and
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λmax
P (wk

h
|Γij

,nij)
is the maximal eigenvalue of the

matrix P (wk
h|Γij

, nij) defined by (6), where the
maximum is taken over Γij . Numerical experi-
ments show that the CFL number can be practi-
cally unlimited.

In order to obtain an accurate, physically ad-
missible solution, it is necessary to add two fur-
ther ingredients to the computational process:

In the case of curved boundaries, it is necessary
to use superparametric elements (see [1] or [2]).

For the flow with internal or boundary layers
(shock waves, contact discontinuities, boundary
layers) it is necessary to avoid the Gibbs phe-
nomenon manifested by spurious overshoots and
undershoots in computed quantities. In [5] we
proposed a method for avoiding this phenomenon
using the limiting of order of accuracy of the
scheme in a vicinity of discontinuities and steep
gradients. Here we do not need its application,
because this paper is concerned with low Mach
number flows only.

5 Boundary conditions

If Γij ⊂ ∂Ωh, i.e. j ∈ γ(i), it is necessary to
specify the boundary state w|Γji

appearing in the
numerical flux H in the definition of the inviscid
form bh. The appropriate treatment of boundary
conditions plays a crucial role in the solution of
low Mach number flows.

On a fixed impermeable wall we employ a stan-
dard approach using the condition v · n = 0 and
extrapolating the pressure. On the inlet and out-
let it is necessary to use nonreflecting boundary
conditions transparent for acoustic effects coming
from inside of Ω. Therefore, characteristics based
boundary conditions are used.

Using the rotational invariance, we transform
the Euler equations to the coordinates x̃1, paral-
lel with the normal direction n to the boundary,
and x̃2, tangential to the boundary, neglect the
derivative with respect to x̃2 and linearize the sys-
tem around the state qij = Q(nij)w|Γij

, where

Q(nij) =









1, 0, 0, 0
0, (nij)1, (nij)2, 0
0, −(nij)2, (nij)1, 0
0, 0, 0, 1









(20)

is the rotational matrix. Then we obtain the lin-
ear system

∂q

∂t
+ A1(qij)

∂q

∂x̃1
= 0, (21)

for the transformed vector-valued function q =
Q(nij)w, considered in the set (−∞, 0) × (0,∞)
and equipped with the initial and boundary con-
ditions

q(x̃1, 0) = qij , x̃1 ∈ (−∞, 0), (22)

q(0, t) = qji, t > 0.

The goal is to choose qji in such a way that this
initial-boundary value problem is well posed, i.e.
has a unique solution. The method of character-
istics leads to the following process:

Let us put q∗
ji = Q(nij)w

∗
ji, where w∗

ji is a
prescribed boundary state at the inlet or outlet.
We calculate the eigenvectors rs corresponding
to the eigenvalues λs, s = 1, . . . , 4, of the matrix
A1(qij), arrange them as columns in the matrix

T and calculate T−1 (explicit formulae can be
found in [7], Section 3.1). Now we set

α = T−1qij , β = T−1q∗
ji. (23)

and define the state qji by the relations

qji :=
4

∑

s=1

γsrs, γs =

{

αs, λs ≥ 0,
βs, λs < 0.

(24)

Finally, the sought boundary state w|Γji
is de-

fined as

w|Γji
= wji = Q−1(nij)qji. (25)

6 Numerical example

In [3], several examples of transonic flow calcu-
lations are presented. They prove the accuracy
and efficiency of our method for the solution of
high Mach number flows.

In order to show the robustness of the de-
scribed technique with respect to low Mach num-
bers, we present interesting results obtained by
the semi-implicit scheme (18) for stationary in-
viscid flow past a circular cylinder with the far
field velocity parallel to the axis x1 and Mach
number M∞ = 10−4. The problem was solved in
a computational domain in the form of a square
with sides of the length equal to 20 diameters of
the cylinder. We show here details of the flow
in the vicinity of the cylinder. Figure 1 shows
isolines of the absolute value of the velocity for
the compressible flow computed by scheme (18)
with r = 2, compared with the exact solution of
incompressible flow (computed by the method of
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Figure 1: Velocity isolines for the approximate solution of compressible flow (left) and for the exact
solution of incompressible flow (right)
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Figure 2: Velo city distribution along the cylinder (full line – compressible flow, dotted line – icom-
pressible flow)
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complex functions – see [6], Section 2.2.35). In
Figure 2, the distribution of the absolute value
of the velocity along the cylinder (related to the
magnitude of the far field velocity) is shown. We
see that the compressible and incompressible ve-
locity distributions are identical. The compu-
tational process started with CFL = 38, which
was gradually increased up to 2000. Thus, the
method is practically unconditionally stable. The
steady state was reached after 300 time steps
(when the maximum norm of the approximated
time derivative was less than 10−8). From the
figures we see that the obtained solution is sym-
metric and the scheme does not produce any wake
behind the cylinder. The computed flow behaves
nearly as incompressible. The difference of the
maximal and minimal values of the approxima-
tion ρh of the density, ρhmax − ρhmin = 2.3 · 10−8

and maxi∈I |∇ρh|Ki
| < 1.99 · 10−6 which means

that the density is practically constant. The com-
puted density variation corresponds to the theo-
retical estimate following from known formulae
(see, e.g. [9], Section 23).
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