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Abstract: We discuss the inverse problem for contaminant transport in porous media. The nonlinear ad-
sorption in equilibrium and nonequilibrium mode is included. The corresponding mathematical model of
convection-diffusion-adsorption type with dominant convection is numerically approximated by time stepping
and operator splitting method. An efficient numerical method is developed with small numerical dispersion
to solve the direct problem and applied to the solution of ill-posed inverse problem. We focus to the determi-
nation of sorption isotherms and kinetic rate of adsorption. The Lagrange method (via the adjoint system)
is used to construct the gradient of the corresponding cost functional with respect to the parameters under
determination. The method is applied to the dual-well setting and some numerical experiments are presented.
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1 Introduction

Precise mahtematical models for contaminant
transport with adsorption are available and a
big effort has been done to develop efficient nu-
merical methods. Nonlinear adsorption, e.g. of
Freundlich, or Langmuir type, can create sharp
fronts in the solution. Moreover, dominant con-
vection can lead to numerical instabilities which
require the application of some ”up-wind” meth-
ods. These in turn lead to numerical dispersion
which shadows the sensitivity on the model data.
This is the main reason to use the operator split-
ting method which allows us to control the trans-
port part with small numerical dispersion. Time
stepping allows us to use a micro time step in
solving the adsorption part, since the time scal-
ing for transport and diffusion significantly differs
from the one during adsorption. The obtained
numerical results support our approach.

2 Mathematical model

Contaminant transport with diffusion and ad-
sorption is modelled in (see [1]) as follows

∂tb(u) + div(v̄.u−D∇u) = −�∂tS, (1)

in x ∈ Ω ⊂ Rd, t ∈ (0, T ) := I, (d = 2, 3)
coupled with

∂tS = κ(ψn(u) − S), (2)

and the boundary conditions

u = C0(t) on ∂Ω1; (v̄.u−D∇u).ν = 0 on ∂Ω2; (3)

−D∇u = 0 on ∂Ω3.

where ∂Ωi ⊂ ∂Ω (i = 1, 2, 3) are nonitersecting.
The initial condition is

u(x, 0) = 0, S(x, 0) = 0. (4)

Here, u is the concentration of contaminant, v̄ is
the velocity of the groundwater, ψn is the sorp-
tion isotherm (for nonequilibrium adsorption), κ
is the kinetic rate of adsorption, S is the mass
of adsorbed contaminant per unit mass of the
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porous medium and � is the bulk density of
porous medium. The function b(u) is of the
form b(u) = u+ �ψe(u) where ψe is the sorption
isotherm in equilibrium mode. It corresponds to
the case κ → ∞ and consequently S = ψ with
ψ ↔ ψe. Thus, our system (1),(2) represents
transport of contaminant with adsorption in equi-
librium and nonequilibrium mode.

The most common sorption isotherms are (Fre-
undlich, Langmuir)

ψ(s) = asb, a, b > 0; ψ(s) =
as

1 + bs
.

Furthermore, D is the dispersivity tensor

Dij = {(D0 + αT |v|)δij +
vivj

|v| (αL − αT )},

where D0 is the molecular diffusion, δij the Kro-
necker symbol and αL, αT are longitudinal and
transversal dispersion coefficients, respectively.
The functions ψe, ψn and parameter κ are to be
determined. We shall look for ψe and ψn in a
special class of smooth functions ψn → ψn(s, λ),
ψe → ψe(s, q) where λ ∈ Rs, q ∈ Rr are pa-
rameters underlying to determination. For the
determination of unknown vector parameter p =
(q, λ, κ) we shall use the additional measurements
of the concentration evolution u∗(x, t) on the out-
flow part of the boundary (breakthroughcurve
BTC), which response to the inflow concentration
C0(t). We construct the cost functional F (p, u)
by means of which we measure the descrepancy
between the solution u = u(x, t, p) and u∗(x, t).
We have

F(u, p) =
∫ T

0

∫
∂Ω3

v̄.ν(u− u∗)2dxdt. (5)

Now, the solution of the inverse problem consists
of the determination of optimal p0 = (λ0, q0, κ0)
such that the functional F attains its minimum
in p0. Then the required isotherms are ψn :=
ψn(s, λ0), ψe := ψe(s, p0).

3 Numerical approximation

To solve our convection-diffusion-adsorption
problem, we use time stepping and operator split-
ting in which, along any small time interval, the
problem is split into: transport , diffusion and
adsorption problems. Let τ = T/n be a time
step and ui ≈ u(x, ti), ti = iτ for i = 1, ..., n.
First, we realize transport along (ti−1, ti) with

the initial value ui−1. We indicate the result by
u

1/3
i = T i(τ)ui−1, where T i(τ)ui−1 corresponds

to the solution of the transport equation

∂tb(φ) + div (v̄φ) = 0, (6)

with the inflow condition φT (x, t) = C0(t) and
the initial condition φT (x, ti−1) = ui−1. Then
we denote u1/3

i = φT (x, ti). The diffusion opera-
tor Di(τ) generates the solution of the diffusion
equation along (ti−1, ti)

∂tb(φ) + div(D∇φ) = 0 (7)

with boundary condition D∇φ.ν = 0 on ∂Ω and
with initial condition φD(x, ti−1) = u

1/3
i . Then,

we define u
2/3
i = Di(τ)u1/3

i = Di(τ)T i(τ)ui−1.
The adsorption part is realized by the operator
Ri(τ) solving the following system of ODE

∂tb(φ) +
�

θ0
∂tS = 0, ∂tS = κ(φ− S), (8)

with the initial conditions φR(x, ti−1) = u
2/3
i ,

S(x, ti−1) = Si−1. Then we set

ui = Ri(τ)Di(τ)T i(τ)ui−1, Si = S(x, ti).

The convergence of this approximation is based
on the results in [3, 5] .

3.1 Numerical approximation of (6)

We use implicite Godunov type higher order ap-
proximation. In the case of Freundlich, or Lang-
muir sorption isotherms the function b(s) is con-
cave which makes construction of an entropy
solver for the corresponding Rieman problems
easier. In our application to the steady state ve-
locity field generated in the dual-well setting, the
velocity is parallel to one of the axes when using
bipolart transformation. Then the solution can
be obtained in semianalytical form -see [4].

3.2 Numerical approximation of (7)

We use the finite volume approximation and solve
the resulting nonlinear algebraic system by a
Newton iteration method. In the case of larger
time steps we can use alternatively the relaxation
method -see [8, 7].
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3.3 Numerical approximation of (8)

Integrating (8) we obtain

b(φ(t))+S(t) = c ≡ b(ui−1)+Si−1 ∀t ∈ (ti−1, ti).

S(t) = Si−1e
−κt+

κ

∫ t

ti−1

e−κ(t−s)ψ(φ(s)) ds, t ∈ (ti−1, ti)

and hence, after elimination of S, we solve the
resulting nonlinear integral equation by time dis-
cretization with a micro time-step τi < τ . We
approximate the unknown function ψn(φ(t)) by
a piecewise linear function by means of φk on
micro-time levels ti−1 + kτi. Then, successively
for k = 1, ...ki, kiτi = τ we determine φk = φk(x)
using Newton-iterations - see [6]. Then we set

Ri(τ)φ(x, ti−1) := φki
(x) ≈ φ(x, ti).

3.4 Construction of gradient for (5)

Our solution of inverse problem is based on
iterations (Conjugate gradient, De Broyden,
Levenberg-Marquardt) requiring construction of
gradient. When we have to determine only a few
parameters of the model, the gradient can be con-
structed numerically. When more parameters are
under determination this can be very costly since
our direct problem is complex and time consum-
ing. In that case the Lagrange method via the
solution of an adjoint problem (which is linear)
is more efficient. We construct the solution Ψ of
the adjoint system

∂ub(u, q)∂tΨ + v̄.∇Ψ + div (D∇Ψ) (9)

−�κ∂uφ(u, λ)(Ψ − η) = 0,

where

η(x, t) = κ

∫ T

t
eκ(t−s)Ψ(x, s)ds, i.e.

d

dt
η = κ(η − Ψ), η(T ) = 0. (10)

with the boundary and initial conditions

Ψ(x, t) = 0 on ∂Ω1, D∇Ψ.ν = 0 on ∂Ω2 (11)

(v̄Ψ+D∇Ψ).ν = 2v̄.ν(u−u∗) on ∂Ω2; Ψ(x, T ) = 0

Then, we transform the time variable τ ↔ T − t,
Ψ̄(x, τ) = Ψ(x, T − t) and note that (9) is then a

linear parabolic problem for Ψ̄. Then the gradi-
ent of the functional (5) is of the form

∇qF =
∫ T

0

∫
Ω
∇qb(ū, q)∂tΨ̄dxdt+ (12)

∫
Ω
∇qb(u0, q)Ψ̄(x, T )dx

∇λF = −�κ
∫ T

0

∫
Ω
∇λψn(ū, λ)(Ψ̄ − η̄)dxdt (13)

∂κF = −�
∫ T

0

∫
Ω
ψn(ū, λ)(Ψ̄ − η̄ − ξ̄)dxdt (14)

with

d

dt
ξ = κ(ξ + η − Ψ), with ξ(T ) = 0. (15)

4 Application to dual-well

To obtain realistic model data, the real in-situ
measurements are required. The most common
is the dual-well setting in an acquiffer under
the Dupuit-Forchheimer assumption (the vertical
component of the flow can be neglected). The
local steady-state flow generated by injection-
extraction wells significantly simplifies the orig-
inal problem and the measuraments of the flow
field as an input data for (1). The flow in the
accquiffer is horizontal with uniform thickness
H and bounded below by impermeable bound-
aries. The wells are assumed to be fully pene-
trating and the injection-extraction is uniformly
distributed over the depth of the well- for the
details -see [2]. In this case our domain Ω =
R2 \ Br1(−d, 0) ∪ Br2(d + c, 0) where Br1(−d, 0)
is the extraction well with radius r1 centered at
the point (−d, 0) and Br2 is the injection well.
In the injection well a tracer is injected with the
known concentration C0(t) and its time evolu-
tion response is measured (breakthrough curve -
BTC) at the extraction well. This is the only
source for our callibration. The steady state flow
is governed by

∆Φ = 0 in Ω, �v = − 1
heffθ0

∇Φ,

where �v is the corresponding velocity field. Here,
the flow potential is defined by

Φ(x, y) = khH−(1/2)kH2, if Φ(x, y) > (1/2)kH2
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in the confined zone, and for the unconfined zone
by

Φ(x, y) = (1/2)kh2, if Φ(x, y) < (1/2)kH2,

where k is the hydraulic conductivity, h is the
head (measured from the bottom of the acquif-
fer), θ0 is the porosity and heff = min(h,H).
The curve h(x, y) = H separates the confined
and unconfined zones. Due to the symmetry
of the flow, we can cosider Ω as the upper half
plane (y > 0). The flow problem can be signifi-
cantly simplified when using bipolar transforma-
tion (see [9]) that transforms Ω into a rectangle
Ω̃ = (0, π) × (v(1), v(2)) with coordinates (u, v):

x =
δ

2
sinh v

cosh v − cos u
, y =

δ

2
sinu

cosh v − cos u
,

where the value δ can be determined from

z = 2r12M2 +r1
4−2 r12r2

2 +r2
4−2 r22M2 +M4

d =
1
2

√
z

M2
, δ = 2

√
d2 − r21, c = M − 2d.

Here the equipotential curves of Φ in Ω cre-
ate the horizontal lines in Ω̃ (parallel with the
u-axis) and the streamlines, which are orthog-
onal to them, create the vertical lines, paral-
lel with the v-axis (conformal mapping). Then
Φ̃(u, v) = Φ(x, y) depends only on the v variable
and Φ̃(v) = Av + B where A, B are to be deter-
mined from the boundary conditions. As to the
values v(1) and v(2), they are obtained from

sinh v(1) = −δ/(2r1), sinh v(2) = δ/(2r2).

The coefficients A and B are obtained from the
boundary conditions

Av(1) +B = Φ1, Av(2) +B = Φ2.

Problem (1) can be transformed into the form
(see [2])

∂tb(C) = g{∂u(a∂uC)+∂v(b∂vC)}+G∂vC−�∂tS,
(16)

where g, a, b and G are known functions depend-
ing on u and v:

g =
4χ2

γ3θ0heff (v)
, χ = cosh v − cos u,

a = D0γθ0heff (v) + 2αTχA

b = D0γθ0heff (v) + 2αLχA, G = Aγg,

and where αL, αT are the longitudinal and
transversal dispersion coefficients, respectively.

The transformed boundary conditions are

C(u, v(1), t) = C0(t) on Γ1 (17)

∂uC = 0 on Γ2 ∪ Γ4, ∂vC = 0 on Γ3, (18)

where Γ1 := (0, π) × {v = v(2)}, Γ2 := {0} ×
(v(1), v(2)), Γ3 := (0, π) × {v(1)} and Γ4 := {π} ×
(v(1), v(2)), together with the homogeneous initial
condition C((u, v), 0) = 0.

The advantage of this transformation can be
demonstrated on the corresponding transformed
equation (using the splitting method)

∂tb(φ) −G(u, v)∂vφ = 0, (19)

which is a one dimensional problem in v (u can
be taken as constant in space disctretization strip
u ∈ (ui−1, ui) ). Then, the corresponding solu-
tion can be constructed in a semianalytical form
(see [4], [7]).

5 Inverse problem in Ω̃

For the inverse problem we shall measure the time
evolution of the concentration C(1)(t) in the ex-
traction well depending on the concentration evo-
lution C0(t) in the injection well. In fact, we can
measure the average concentration

C(1)
p (t) =

∫
δBr1 (−d,0)(∇νΦ)Cp(σ, t) dσ∫

δBr1 (−d,0)(∇νΦ) dσ

which in Ω̃ takes the form

C(1)
p (t) =

1
π

∫ π

0
Cp(u, v(1), t)du.

Our cost functional now takes the form

F(p,Cp) =
∫ T

0
(C(1)

p (t) − Ĉ(1)(t))2 dt

with the gradient given by formulas (12), (13),
(14) and (10),(15), where Ψ̄ is the solution of the
corresponding adjoint (parabolic) problem

∇qb(C̄, q)∂τ Ψ̄ +Aγ∂v(gΨ̄) − ∂v(D∂v(gΨ̄))

+ �κ∇λφ(C̄, λ)(Ψ̄ − η̄) = 0, (20)
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for D0 = αT = 0, with the boundary conditions

Ψ̄ = 0 on Γ1; b∂v(gΨ̄) −AγgΨ̄ =

1
π2

∫ π

0
(C(u, v(1), τ) − C∗(τ))du on Γ3

with the homogeneous initial condition
Ψ(u, v, 0) = 0, where Ψ̄(u, v, τ) = Ψ(u, v, T−τ) ≡
Ψ(u, v, t).

6 Numerical experiments

For the direct and inverse problems, we shall con-
sider H = 15m,d = 5m,�1 = r2 = 15cm, θ0 =
0.2 and k = 10−5 m/s = 0.864 m/day. We
solve a direct problem with nonlinear transport,
where we inject the tracer with concentration
C0 = 1 during 2 days and then we stop the injec-
tion. We consider ψe(C) = C0.75, αL = 0.1 and
αT = D0 = 0. We solve the problem on a space
grid with 80 × 400 nodes and the upper bound
for the time step is 0.04.
In Fig. 1, we illustrate the dependence of the
BTC (average contaminant concentration versus
time) on the sorption rate coefficient κ. We
take ψn(C) = C0.75. In Fig. 2, we show BTC
for κ = 0.1 and ψn(C) = Cq for different q.
Qualitatively similar results are obtained with
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0.08

0.1

0.12

0.14

Figure 1: BTC for κ = 10−5 (black), 0.01, 0.1,
0.5, 1.0, 10.0 (cyan)

Table 1: Determination of κ
step κ res

1 0.516459 0.873973
2 0.128196 0.0158943
3 0.106859 0.00104487
4 0.100622 8.86792e-06
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Figure 2: BTC for ψn = Cq with q=0.9 (blue),
0.75 (black), 0.3 (red)

ψe(C) = Cq for various q.
For the inverse problems we generate Ĉ(1)(t) by
solution of direct problem. In Table 1 we deter-
mine κ (κ = 0.1) starting from the value κ = 1.
In Table 2 we determine ψn = aCb, (a = 1, b =
0.75) starting from a = 1.2, b = 0.3.

Table 2: Determination of ψn

step b a res

1 0.305428 1.12444 0.142267
2 0.315242 1.02182 0.100131
3 0.339558 0.881168 0.0550554
4 0.408132 0.770948 0.0273729
5 0.531708 0.774542 0.013951
6 0.63673 0.862957 0.00449045
7 0.6995 0.935394 0.000934897
8 0.72977 0.973005 0.000157976
9 0.742355 0.989535 2.34244e-05

10 0.747188 0.996101 3.23506e-06

The numerical dispersion can be demonstrated
in the case αL = αT = D0 = 0 (only transport).
The numerical dispersion in transport part can
be significantly reduced using adaptive mesh re-
finement. We consider a problem with only trans-
port and equilibrium adsorption (nonlinear trans-
port) and with step input. In that case the so-
lution is reduced to 1D transport along strips
between streamlines. In the next pictures we
consider Ω with the wells situated in the points
(−5, 0), (5, 0). In Fig. 3, we show the solution ob-
tained using a fixed space grid with 400 points
in each strip and in Fig. 4 we can see the solu-
tion obtained using and adaptive grid with 200
fixed points and 10 extra moving points placed
around the solution’s front. The exact solution
obtains only the values {0, 1} when C0(t) ≡ 1.
The space betveen concentration isoclines in Fig.
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3 corresponds to the smearing of the shock (the
concentration there attains the values from (0, 1).
This numerical dispersion is still much better in
comparison with the used ”up wind” method.
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Figure 3: Solution of a 2D nonlinear transport
problem with fixed grid shown after 6 days
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Figure 4: Solution of a 2D nonlinear transport
problem with adaptive space grid shown after 6
days

7 Conclusions

The pricise and efficient numerical method for
contaminant transport with adsorption in dual-
well flow is presented. Due to the low numeri-
cal dispersion the method can be used in solv-
ing the inverse problems to determine the equi-
librium and non-equilibrium sorption isotherms
and kinetic rate of adsorption. The method has
been successfully applied in [2] to the determi-
nation of hydraulic permeability and longitudi-
nal dispersion coefficients. The method is appli-
cable under the following assumptions: the flow
in the acquifer is horizontal (Dupuit-Forheimer);

acquifer is homogeneous with the uniform thick-
ness and impermeable ground; the wells are fully-
penitrating; the injection-extraction (of water
and solute) are uniformly distributed over the
depth.

The additional numerical experiments support-
ing the used method will be included in an ex-
tended version of te WSEAS international Jour-
nal.
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